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Soluble surfactant spreading: How the amphiphilicity sets the Marangoni hydrodynamics
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Amphiphiles are molecules combining hydrophilic and hydrophobic parts. The way they arrange in bulk
and at interfaces is related to the balance between these two parts, and can be quantified by introducing the
critical micellar concentration (cmc). Amphiphiles (also named “surfactants”) are also at the origin of dynamical
effects: local gradients of interfacial concentrations create the so-called Marangoni flows. Here we study the
coupling between the molecule amphiphilicity and these Marangoni flows. We investigate in detail a spreading
configuration, where a local excess of surfactants is locally sustained, and follow how these surfactants spread
at the interface and diffuse in bulk. We have measured the features of this flow (maximal distance and maximal
speed), for different types of surfactant, and as a function of all experimentally available parameters, as well as
for two different configurations. In parallel, we propose a detailed hydrodynamical model. For all the measured
quantities, we have found a good agreement between the data and the model, evidencing that we have captured
the key mechanisms under these spreading experiments. In particular, the cmc turns out to be—as for the static
picture of a surfactant—a key element even under dynamical conditions, allowing us to connect the molecule
amphiphilicity to its ability to create Marangoni flows.
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I. INTRODUCTION

Amphiphilic molecules are made by associating two parts
of opposite nature, one being hydrophobic and the other
hydrophilic. The chemical structures of these two parts set
the balance between hydrophobicity and hydrophilicity, i.e.,
the amphiphilicity of the molecule. These two opposite parts
actually differ by their solubility in water. In water, any added
molecule disturbs the local organization of the surrounding
water molecules. It is the amplitude of the distortion of
this bond network which dictates the solubility of the added
molecule. This interaction is known as the hydrophobic
effect [1–3]. As a consequence, all chemicals have a critical
concentration for solubility, describing the maximal amount
which can be solubilized in water, before phase separation.
Molecules with low solubility—such as alkane chains—are
therefore considered to be hydrophobic. By assembling a
hydrophilic moiety to such hydrophobic molecules, one can
balance the hydrophobic effect and eventually obtain an
amphiphilic compound.

This ambivalent structure of amphiphiles is at the origin of
various specific behaviors. In terms of solubility, gaining an
amphiphilic behavior has a strong impact. As long as T > TK ,
where TK is the Krafft temperature of the molecule [4,5],
the solubility increases by several orders of magnitude, when
compared to the one of the hydrophobic part. The origin of this
effect is linked to the ability for amphiphiles to form finite-size
aggregates, called micelles [4,5]. The bulk concentration above
which the number of micelles increases sharply is called
the “critical micelle concentration” (cmc). In parallel to the
formation of micelles in bulk, amphiphiles can also optimize
their interaction with water by adsorbing at free interfaces. As
a consequence, the gas-solution interfacial tension is reduced;
hence, amphiphiles are also named “surfactants” in relation to
their activity at surfaces. From an equilibrium point of view,
the bulk concentration, surface concentration, and surface
tension are fully imbricated. The occurrence of micelles in bulk

above the cmc corresponds to a saturation of the interfacial
concentration and surface tension. All these features can be
compiled within various theoretical frameworks, such as the
widely used one from Gibbs [4–7]. In this equilibrium picture,
the impact of the amphiphilicity is known [4,5,8]; as a central
landmark, it is found that the more hydrophobic a molecule, the
lower its cmc. As well, the cmc of a given molecule depends
on experimental parameters, such as the temperature or the
presence of added salt (the latter will be investigated below).
From a practical point of view, it is these specificities in bulk
and at interfaces which make surfactants the ideal candidate
for stabilizing dispersions, su foams and emulsions.

Together with the above self-assembled features in bulk and
at interfaces, amphiphiles are also at the origin of a dynamical
effect, known as the Marangoni effect. Heterogeneities in the
distribution of surfactant molecules at the interface between
two fluids triggers a Marangoni flow, i.e., the bulk flow of both
phases due to a gradient of their interfacial tension [9,10].
Fluid flows induced by gradients of interfacial tension have
received a great deal of attention, as they are encountered
in different situations, such as transport phenomena in lipid
nanotubes [11,12], the formation of lipid tethers [13], the
stability and dynamics of thin liquid films in foams and
emulsions [14,15], capillary locomotion of insects [16–19],
surfactant replacement therapy for neonates suffering from
respiratory distress syndrome [20,21], coating and printing
processes [22,23], or the control of water evaporation [24,25].
In all these cases, taking into account a Marangoni effect is a
key point in the understanding.

From a general point of view, two kinds of concentration-
induced Marangoni flows can be distinguished. In the first
case, surface tension gradients are created in systems with a
fixed amount of surfactants, by varying locally the area of
an air-solution interface or the concentration. This is what
happens, for instance, when considering fluctuations of a foam
liquid lamellae, or—in a more controlled way—when using

2470-0045/2016/93(1)/013107(13) 013107-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.013107
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an overflowing cylinder [26–28]. In the second case, surface
tension gradients are induced exogenously by adding extra
surfactants to an initial system. A simple example of the latter
situation is the controlled deposition of a solution of surfactants
on a layer of a liquid, having a different surface tension. This
problem has been extensively studied, both experimentally and
through simulations, for the case of surfactants insoluble in the
bulk phase [29–37]. In that case, the molecules spread on the
interface as a result of the Marangoni stresses, together with a
front of vertical deformation of the interface.

In comparison, and despite its relevance to real situations,
the study of spreading flow due to soluble surfactants has
received less attention. A large part of past studies deal with
the spreading of soluble liquids (mostly alcohols) on water,
i.e., systems without cmc and micelles [38–43]. When solu-
tions of soluble surfactants are considered, mostly numerical
simulations have been done [44–46], whereas experimental
studies often focused on transient behavior, especially on
front propagation [47–49]. Moreover, experimental results
were often collected for very thin films (less than 1 mm
in thickness), adding complexities such as the occurrence
of fingering instabilities [50,51]. Finally, experiments were
also often performed in confined and/or small size vessels
[50,52].

All together, these works tend to show that the possibility
to have some transfer of amphiphiles from the interface to the
bulk can balance the Marangoni stress, and can actually change
the spreading dynamics. Qualitatively, for soluble species, it
is clear that there has to be a competition between interfacial
spreading (driven by the hydrophobic part), and solubilization
in bulk (driven by the hydrophilic part). Although the links
between amphiphilicity and equilibrium features in bulk and
at interfaces have been widely studied, it remains to elucidate
how the hydrophilic-hydrophobic balance of a surfactant
drives the Marangoni spreading flows. In that respect, the
quantitative scale relevant to the description of amphiphilicity
under dynamical conditions must be identified.

To solve some of these issues, we recently published first
results on the exogenous spreading of a soluble surfactant [53].
It was shown that, for a soluble surfactant, the spreading is
limited in distance, and this distance depends on the surfactant
structure. We proposed a scaling description which was
partially validated by experiments. Nonetheless, more work
was needed to understand thoroughly these features. In that
spirit, we report here a new set of experimental and theoretical
results on the dynamics of spreading with soluble surfactants.
In particular, we generalize the problem to a new longitudinal
configuration, and study the scaling regimes for the flow
velocity in both axisymmetric and longitudinal configurations.
Also, the spreading experiments are generalized to another
type of surfactants (nonionic ones), and we report new results
on the effect of glycerol, used to tune the viscosity. We also
discuss experimental artefact and limitations, as well as the role
of insoluble impurities. Together with the experimental results,
we propose a mathematical model for the model, and highlight
the excellent agreement between this model and our data, thus
proving that we are able to understand the links between the
finite surfactant amphiphilicity and the finite characteristics of
the Marangoni spreading flow.

TABLE I. Table of physicochemical properties of the different
surfactant solutions.

Surfactant solution Surface tension (mN/m) cmc (10−3 M)

C10TAB 39.5 65
C12TAB 39 14
C14TAB 38 3.6
SDS 35 8.1
C8E5 35 9.2
C10E5 38 0.9

II. EXPERIMENT

A. Chemicals

We performed experiments using the ionic surfactants
sodium dodecyl sulfate (SDS, i.e., C12NaSO4), decyltrimethy-
lammonium bromide (C10TAB), dodecyltrimethylammonium
bromide (C12TAB), and tetradecyltrimethylammonium bro-
mide (C14TAB). We also used two nonionic surfactants—
pentaethylene glycol monooctyl ether C8E5 and pentaethylene
glycol monodecyl ether C10E5—whose cmc values are on the
same order as the cmc of the ionic surfactants. All chemicals
were purchased from Sigma-Aldrich, with a purity greater
than 99%. They are all dissolved in ultrapure water (Millipore
water).

The cmc values and the surface tension above the cmc at
equilibrium are given in Table I. Note that the cmc varies
over almost two orders of magnitude, while the corresponding
surface tensions are different by less than 5 mN m−1 [54–56].

In the spreading experiments, all the surfactant solutions
have concentrations above the cmc (from twice the cmc up
to 30 times the cmc, as shown in the following sections).
Moreover, for tests on the role of impurities, myristic acid—
an insoluble fatty acid, of chemical formula (C14H28O2)—is
added to set the amount of insoluble species present in the
surfactant solution. Glycerol is used to tune the bulk viscosity
of these solutions.

B. Type of experiments and setups

The principle of our experiment consists of a continuous
deposition, at constant flow rate Q, of a concentrated surfactant
solution on top of a aqueous layer. We use a high-precision
syringe pump (“PhD Ultra” from Harvard Apparatus) to
sustain this localized steady input of surfactant, with typical
molar flow rates on the order of μmol/s. The solution is
deposited through a stainless steel needle (diameter dn =
3 × 10−3 m). Then, as discussed below, we monitor how this
excess is hydrodynamically redistributed. The liquid pool is
also pure water (Millipore range). In some cases, it can also
contain surfactants to set the initial surface tension of the
reservoir, or glycerol to tune the bulk viscosity of this reservoir.
All the experiments are done at room temperature (T = 21 ◦C).

We used liquid tanks of various sizes and shapes, with areas
A of 79, 227, 650, 875, 1600, and 8000 cm2. The thickness of
the liquid layer in the tank was between 1 and 5 cm. Thinner
layers led to the establishment of different kinds of flow, similar
to those observed when surfactants spread on thin films [36].
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FIG. 1. Experimental configurations. (a) Axisymmetric spread-
ing. (b) Longitudinal spreading.

Experiments are performed in two deposition configu-
rations. The first one corresponds to a pointlike source,
providing axisymmetric spreading (Fig. 1). The second type
of geometries allows us to study a longitudinal spreading. It
is performed in a rectangular container 2 meters long and 35
cm wide. Inside the reservoir, two spacer sheets are placed to
select any width from 3 to 30 cm (Fig. 1). Then, depending on
the selected width, one or multiple point sources (up to 8) are
use to create a homogeneous deposition along the width (point
sources are placed every 3 cm).

C. Typical observations of the Marangoni flow: Finite
spreading distances and velocities

A central point of our measurements is that we dope the
surfactant solutions with tracers to visualize the macroscopic
flow boundaries and to measure the local velocity. In the
following experiments, we mostly use oil droplets for the
tracers. Basic vegetal oils (such as sunflower, rapeseed, or
olive oil) are mixed to the surfactant solutions to produce
oil-in-water emulsions, using an Ultra-Turrax or a two-syringe
device. The fraction of oil and solution are equal, so that
we prepare a 50/50 oil-in-water emulsion. The oil droplets
have diameters on the order of 10 μm: with such a size and
oil fraction, the deposited dispersion remains fluid with a low
viscosity, while it already looks milky. As well, this emulsion
remains stable for at least a couple of hours, as the adsorbed
surfactants prevent fast coarsening or coalescence.

Once oil droplets are added, typical flow patterns are
observed, as shown in Fig. 2 for the two configurations; clear
separations and limits are revealed from the variations of the
grey level. Qualitatively, the white zone corresponds to high
surface density of droplets, while the dark zone corresponds
to low ones. As the experiment runs in a continuous mode
with a constant imposed flux, this implies a low velocity
of droplets in white zones, whereas the tracers flow at high
velocity in dark zones. Thus, along a radius starting from
the deposition locus [Fig. 2(a)], we first observe a small
white region of radius rs (high density and low speed of
tracers), followed by a transparent region (low density and
high speed of tracers) up to a radius R, and the density of
tracers re-increases after R. Note the characteristic vortex
patterns occurring just after R, arising from hydrodynamical
instabilities (the study of which is beyond the scope of this
article). Far from these recirculation patterns located around
R, the surface appears dark as no tracers have reached these
distances. The same phenomenology, with clear separation
between different regimes, is recovered in the longitudinal
configuration, allowing us to determine a typical distance L

[Fig. 2(b)].
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FIG. 2. Typical top views in the axisymmetric (top) and recti-
linear (bottom) configurations. The Marangoni flow extends over a
distance R in the axisymmetric configuration and over a distance
L in the rectilinear configuration. The dimension are R = 2.6 cm,
L = 9.6 cm, H = 5 cm.

We can therefore infer that the tracers are only transported
to a finite distance, located at R and L in Fig. 2. Above R or
L, the Marangoni flow has stopped, and the tracers become
free to float on top of the fluid layer. With such definitions,
the values R and L can then be measured as a function of the
various parameters.

We had shown previously that these oil droplets, acting as
tracers, were passive from a hydrodynamical point of view
over the typical timescale of our measurements (for instance,
solid particles simultaneously deposited with the surfactants
gave the same results) [53]. As a new test, we used gas bubbles
as tracers. By adding gas bubbles to the surfactant solution,
we have studied how foams spread on pure water. Foams were
also generated with the two-syringe device, allowing us to have
different initial liquid fractions (from 0.05 to 0.2), while aging
of the foam provides different bubble sizes (within the range
of hundreds of microns). In all the cases of bubble sizes and
liquid fractions, the same phenomenology and flow patterns are
recovered, definitively showing that the distance of spreading
is independent of the tracer.

Importantly, note that the pictures of Fig. 2 correspond to a
steady state, obtained after a transient of typically 30 seconds.
In Fig. 3(a), we show typical evolutions of R(t) for three
different tank areas, showing the initial transient, the steady
state—where R and L are measured—and a final regime where
R(t) eventually decreases. The reasons for this final decrease
are discussed below.

To go further on the flow characterization, we add a
measurement of the local speed of the tracers. In practice, we
used a high-speed camera to monitor the motion of the droplet
at the surface. A Phlox light was installed under the tank.
A Photron Fastcam mounted with a 20-cm-long bellow and
a reverse 50-mm Nikon camera lens was used to record from
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FIG. 3. (a) Radius R as a function of time. V = 0,8 l. Q = 1
μmol s−1. Dashed line: S = 79 cm2. Dashed-dotted line: S = 227
cm2. Solid line: S = 650 cm2. Vertical lines: times when vortices
stop at the interface and when oil droplets get packed, coinciding
with the decrease of R. (b) Spreading radius R as a function of time,
in the overflowing setup (vessel radius Rvessel = 9.45 cm). Beginning
of overflowing at t = 62 s. V = 2 l. Q = 1 μmol s−1.

above at 3000 images/s the oil droplets’ motion at any location.
With this configuration, the field of view is 2 mm wide.
As a consequence, the full tracers’ trajectories are obtained
by translating the recording setup along the spreading axis.
The resulting velocity profiles are consistent with the ones
shown in [53], with high velocities within the spreading zone,
separated by an acceleration close to the deposition point, and
deceleration occurring slightly before R. In the following, we
report the maximum velocity value; it is respectively located
at a radius r ≈ 0.3R and length l ≈ 0.5L in the axisymmetric
and longitudinal configurations.

There is a practical limit in terms of accuracy for de-
termining the spreading boundaries. As explained, the grey
level variations correspond to speed variations. Thus, sharp
velocity gradients and high velocities in the spreading region
are required to get accurate values of R and L. The experiments
show that, for given parameter ranges, the velocity is no longer
high enough to optically detect the frontiers of the spreading
area, especially the starting (acceleration) position (rs) and
ending (deceleration) position (R or L). Thus, as shown below,
our measurements of spreading distances will be limited as
soon as the flow velocity gets too low. Still, we will be able
to obtain some values for the maximal velocities under these
conditions.

D. Time evolution: Accumulation of tracers
and insoluble species

In this section, we discuss two different phenomena
occurring with time—accumulation of tracers and insoluble
species at the interface—and determine their actual role on the
finite spreading and on the evolution seen on Fig. 3(a).

In [53], we already proposed that the main source for the
final decrease of R is linked to the finite area of the container
and to the accumulation of tracers populating this area. Indeed,
the free area available for the floating droplets decreases with
time, as more and more droplets are deposited. At some time,
these droplets gets packed, and all the surface around the
spreading area appears white; observations showed that it is
when the droplets have fully covered the free interface that they
start to crop the spreading zone, so that R starts to decrease.
The data of Fig. 3(a) confirm that we can control this effect
by changing the area of the container. To fully investigate this
effect, a new experiment was performed, using an overflowing

configuration. The point is to perform the experiment in a
vessel, almost full of water and at the limit of overflowing. The
vessel radius must remain larger (here, Rvesell = 9.45 cm) than
the spreading distance [R ∼ 6.5 cm at the flow rate chosen
in Fig. 3(b)]. Therefore, during a first regime [about 60 s of
deposition in Fig. 3(b)], there is no overflow, but the radius R

eventually decreases as the droplets populate the whole area.
Then, as a consequence of the increase of the total volume with
time, the fluid overflows (here, at 62 seconds). This removes all
the emulsion droplets packed on the interface which overflows,
and one then recovers the initial spreading radius R, as there
are finally no more boundaries to pack the emulsion droplets
[Fig. 3(b)].

It is important to point out that the accumulation of the
emulsion droplets at the interface (inherent of a finite area A)
has a timescale a few orders of magnitude smaller than the
accumulation of the soluble surfactant in bulk (inherent of a
finite volume V ). This results from the fact that the surfactant
solution flow rates are on the order of micromole/s, while the
volume of the liquid pool is in liters.

To be complete regarding time evolution and finite size
effects, we also wondered about the impact of the accumulation
of the oil droplets on the surface tension outside the spreading
distance (for radius and length bigger than R and L). We
measured by a Wilhelmy plate technique (from Nima) the
surface pressure as a function of time, � = γ0 − γ , outside of
the spreading zone. Here, γ0 is the interfacial tension of the
initial solution (pure water), and γ is the surface tension at time
t . It turns out that � increases with time. However, performing
the same experiment without the oil droplets shows that this
interfacial pressure increase is recovered, and is therefore not
due to the accumulation of droplets. We have identified the
source of this increase to be the accumulation of insoluble
impurities at the interfaces. Such molecules are always present
at uncontrolled concentrations in our surfactant solutions. To
investigate their effects, rather than trying to remove them with
consecutive purifications, we have chosen to add controlled
amounts of an insoluble species to an SDS solution. Myristic
acid is then solubilized within the SDS micelles under heating.
In Fig. 4, we report how the surface pressure, outside of
the spreading zone, increases for different areas A and three
myristic acid concentrations.

A first outcome is that these results are self-consistent,
if one considers only the insoluble species. There are direct

FIG. 4. (a) Interfacial pressure � outside of the spreading zone
as a function of time; solid line: 1% of myristic acid; dashed-dotted
line: 5.4% of myristic acid; dashed line: 16.7% of myristic acid.
Inset: steady-state radii, R, taken at t = 30 s, for the three different
myristic acid concentrations. (b) Interfacial pressure � outside of
the spreading zone as a function of time; solid line: S = 1600 cm2;
dashed line: S = 5400 cm2.
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correlations between available areas, concentration, and pres-
sure increase for these insoluble molecules. For instance, if
the solution contains more insoluble species, or if the area A

is smaller, pressure increases sooner. In other words, we can
understand and control the rate of increase of the pressure
outside the spreading zone, and this is fully explained in terms
of accumulation of impurities at the interface.

In parallel, the second and crucial outcome of these tests is
that there are no correlations between the dynamics of pressure
increase and the dynamics of the spreading, evidenced by the
tracers and shown in Fig. 3(a). The fact that the impurities
accumulate slowly or rapidly can never be assigned to the
evolution of R(t); the timescales associated with R(t) and
�(t) are independent and uncorrelated. Indeed, the radius of
the spreading zone stabilizes to its steady value well before the
outside pressure tends to saturate. The beginning of the steady
regime thus coincides with outside pressures which are either
low or high (depending on the trough area A or of the amount
of impurities), but still evolving. Moreover, as shown in the
insert of Fig. 4(a), the value of this spreading radius R during
the steady state (typically after 30 s of deposition) appears to
be independent of the amount of myristic acid and thus of the
surface tension of the reservoir fluid; we will come back on
this effect of the surface tension difference in Sec. IV.

In other words, the insoluble species spread and populate
the available area, independently of the finite spreading of the
soluble ones. Though insoluble surfactants gradually change
the outside surface tension, they are not responsible of a finite
spreading of the soluble ones, nor of the steady-state value and
time evolution of R(t).

Thus, at this stage, we have shown that, if tracer packing is
prevented and as long as velocities are high enough to detect
sharp flow boundaries, clean and reliable steady values for
R, L, and Vmax are obtained. Moreover, the (un)controlled
codeposition of insoluble impurities has no impact, as it is
uncorrelated to the spreading of the soluble species.

III. THEORY

The scaling laws governing the interfacial and bulk flows,
as well as the surfactant diffusion, have been established
in [53]. The spreading area of the surfactants can be seen
as an exchange zone between the interface and the bulk. In
steady state, the incoming flux of surfactant Q deposited at
the interface is entirely transferred to the bulk through this
exchange zone, whose area thus adjusts to ensure this mass
balance. The coupling between the hydrodynamics flow and
the surfactant transfer from the interface to the bulk has two
origins: (i) the surface tension gradient at the interface induces
a Marangoni flow which spreads the surfactants and thus
increases the area of the exchange zone; (ii) the flow washes
the subphase and enhances the vertical concentration gradient,
thus leading to a more efficient diffusion process. Quantifying
this second point requires us to consider in detail the viscous
and mass boundary layers that develop under the spreading
zone. In this section, we rigorously derive the equations of
motion, and prove that the concentration and velocity fields
are both given by a master curve, once properly rescaled. This
confirms that the qualitative scaling analysis made in [53] leads

to the correct dependence for the characteristic velocity and
for the spreading zone size.

A. Governing equations

The equations of motion are written in the axisymmetric
situation, in cylindrical coordinates (r,φ,z). The origin of the
cylindrical coordinates is the injection point and the interface
is the plane z = 0. The longitudinal case will be recovered
with the same set of equations, in the limit r → ∞ and with
an injection point at a distance x0 from the origin, as discussed
at the end of the section. The fluid velocity is v = u(r,z)er +
v(r,z)ez, the pressure p(r,z), the bulk surfactant concentration
c(r,z), the interfacial surfactant concentration �(r), and the
surface tension γ (r). The fluid’s density is ρ and its viscosity
η, the surfactant diffusion coefficient is D, and the gravity is g.

The Navier Stokes equation in cylindrical geometry is,
projected on er and ez,

ρ

(
∂u

∂t
+ u

∂u

∂r
+ v

∂u

∂z

)

= −∂p

∂r
+ η

(
∂2u

∂r2
+ 1

r

∂u

∂r
− u

r2
+ ∂2u

∂z2

)
, (1)

ρ

(
∂v

∂t
+ u

∂v

∂r
+ v

∂v

∂z

)

= −∂p

∂z
− ρg + η

(
∂2v

∂r2
+ 1

r

∂v

∂r
− v

r2
+ ∂2v

∂z2

)
, (2)

and the fluid mass conservation is
∂u

∂r
+ u

r
+ ∂v

∂z
= 0. (3)

The velocity vanishes for z → −∞ and for r → ∞. At the
interface, the tangential stress conservation imposes

η

(
∂u

∂z
+ ∂v

∂r

)
= ∂γ

∂r
. (4)

This last relation is at the origin of the Marangoni flow.
In this study we assume that the surfactant exchange at

the interface is limited by the bulk diffusion. The interface is
thus at equilibrium with the subphase and �(r) = �eq(c(r,0)).
Moreover, the surface tension is assumed to be equal to the
equilibrium surface tension γ (r) = γeq(c(r,0)). The master
curve is only obtained using the linear approximation �(r) =
∂c� c(r,0) and γ (r) = γ0 − |∂cγ | c(r,0), with ∂c� and ∂cγ two
constants.

The convection diffusion equation for the surfactants is

∂c

∂t
+ u

∂c

∂r
+ v

∂c

∂z
= D

(
∂2c

∂r2
+ 1

r

∂c

∂r
+ c

r2
+ ∂2c

∂z2

)
, (5)

and the surfactant mass conservation at the interface z = 0 is

∂�

∂t
+ 1

r

∂

∂r
(ru�) = −D

∂c

∂z
. (6)

The set of bulk equations (1), (2), (3), and (5) involves the
four unknown functions u, v, p, and c. It is closed with the
boundary conditions u = v = c = 0 for z → −∞ or r → ∞
and with an hydrostatic value of p at these boundaries. At the
interface z = 0, we impose the conditions v = 0 and p = 0,
and for u and c Eqs. (4) and (6).
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This complex nonlinear system is identical to the one solved
by Bratukhin et al. [57] for thermal Marangoni effects around
a local heat source. The analytical solution of [57] corresponds
to a true steady state in an infinite domain. In contrast, what
we call steady state in the following is, strictly speaking, a
quasi-steady state. Indeed the surfactants are continuously
accumulating in the bulk, as discussed in Sec. II D. The far-field
diffusion in the whole volume of the bucket is thus transient,
whereas the local dynamics close to the interface is steady.
The boundary conditions are thus modified in comparison
with [57], as the fluid outside the mass boundary layer acts as
a sink. In that case, the system can only be solved numerically,
which is not the aim of the paper. Instead, using some well
controlled approximations and the assumption of local steady
state, it will be turned into an equivalent system with properly
rescaled quantities, involving no physical parameters.

The unique solution of this dimensionless system will be
the expected master curve. Coming back to the scaled physical
quantities will provide the scaling laws for the velocity and the
concentration fields and consequently the scaling laws for R

(or L) and Vmax.

B. Existence of a master curve

The main approximation of our analysis is that the
vertical length scales are much smaller than the horizontal
ones. This is the usual basis of the boundary layer theory.
Equations (1), (2), and (3) are rescaled with the following
physical units: we define r = XR0, u = UU0, z = 	vZ1 or
z = 	cZ2, v = (	v/R0)U0V , and c = Cc∗. The two vertical
characteristic lengths are 	v = √

ηR0/(ρU0) for the viscous
boundary layer and 	c = √

R0D/U0 for the mass boundary
layer. At this point, the parameters R0 and U0 are arbitrarily
chosen and must only satisfy 	c 	 	v 	 R0, a condition that
will be checked a posteriori. The concentration c∗ is c(0,0)
[or c(x0,0) for the linear case].

In steady state, Eqs. (1) and (3) become, using 	v 	 R,

U
∂U

∂X
+ V

∂U

∂Z1
= ∂2U

∂Z2
1

, (7)

∂U

∂X
+ U

X
+ ∂V

∂Z1
= 0. (8)

In this approximation, the pressure is hydrostatic in the whole
domain, as deduced from Eq. (2), and thus does not depend
on r .

The boundary equation at the interface is, from Eq. (4),

∂U

∂Z1
+ ∂Cs

∂X
= 0 and V = 0, (9)

with Cs(X) = C(X,0) and with the velocity unit chosen as

U0 = |∂cγ |	vc
∗/(ηR0). (10)

Equations (9) are the interfacial boundary conditions for
Eqs. (7) and (8) and show the first coupling between the flow
and the surfactant transport, as discussed in the introduction
of Sec. III.

A first-order expansion of V in the vertical coordinates
Z1 leads to V (Z1,X) = V (0,X) + Z1

∂V
∂Z1

(0,X). Using the

boundary condition V (0,X) = 0 and the mass conservation
Eq. (8) we obtain, for Z1 	 1:

V (Z1,X) = −Z1

X

∂

∂X
(XUs) with Us = U (0,X). (11)

The rescaling of the surfactant transport, Eq. (5), is made
with the second vertical length scale Z2:

U
∂C

∂X
+ 	v

	c

V
∂C

∂Z2
= ∂2C

∂Z2
2

. (12)

For Z2 of order unity, we get Z1 = 	c/	vZ2 	 1. We thus
can use the expansion (11) to obtain, at leading order in 	c/	v ,

Us

∂C

∂X
− Z2

X

∂

∂X
(XUs)

∂C

∂Z2
= ∂2C

∂Z2
2

. (13)

The interfacial boundary condition is, from (6),

1

X

∂

∂X
(XUsC) + ∂C

∂Z2
= 0 and C(0,0) = 1, (14)

where the value of R0 has been set to

R0 = ∂c�U0	c/D. (15)

Combined with Eq. (10), this last equation allows to express
the searched physical units U0 and R0 as power laws of well
defined physicals quantities:

U0 = (|∂cγ |c∗)1/2η1/4D1/4ρ−1/2∂c�
−1/2, (16)

R0 = (|∂cγ |c∗)1/2η1/4D−3/4ρ−1/2∂c�
3/2. (17)

The transport equations (13) and (14) involve the interfacial
velocity Us , which reflects the second coupling between flow
and surfactant transport.

Finally, we get two subsets of equations without any
remaining physical nondimensional number: U and V are
governed by Eqs. (7) and (8), with the variables (X,Z1) and the
boundary condition at interface Eq. (9) and C is governed by
Eq. (13) with the variables (X,Z2) and the boundary condition
at interface Eq. (14).

These two subsystems are coupled but the coupling only
involves the interfacial values Us(X) and Cs(X). This allows to
use the different variables Z1 and Z2 to solve each subsystem,
without specifying the ratio Z2/Z1. The solution, denoted
(Û , V̂ , Ĉ), is thus unique and independent of any physical
parameters. In principle, the self-consistency of the approach
requires to check that Ĉ(X,Z2) varies over a vertical distance
of the order of unity, so that the expansion leading to Eq. (11)
is justified.

The equations for the linear case are obtained by taking
the limit X → ∞ in all bulk and interfacial equations.
The injection condition C(0,0) = 1 becomes C(X0,0) = 1,
with X0 
 1 an arbitrary constant. Another set of solutions
(Ũ , Ṽ , C̃) is obtained for the linear case.

C. Predictions for the physical quantities

First, the total flux of surfactant Q is introduced in the
problem, and replaces the interfacial concentration which is
not measured experimentally. For the axisymmetric case, the
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relation (6), once integrated over the whole interface, leads to

Q = D

∫ 2π

0

∫ ∞

0

∂c

∂z
r dr dθ

= −
∫ 2π

0

∫ ∞

0

1

r

∂

∂r
(rus�)r dr dθ

= 2πU0R0c
∗∂c� lim

X→0
XUsC . (18)

This leads to the relation

∂c� = Ka

Q

R0U0c∗ (19)

with Ka = (2π limX→0 XÛsĈ)−1 a number.
This last point differs in the two geometries. In linear

geometry we need to integrate between the injection line at
x0 = R0X0 and +∞ and we get

∂c� = Kl

Qlin

c∗U0
(20)

with Ql = Q/(2πx0) the flux per unit length and Kl =
1/[Ũs(X0)C̃(X0)].

The surface tension difference between the injection point,
where c = c∗, and the pure water is denoted below by �γ =
|∂cγ |c∗. The expression (19) [or (20) for the linear case] is
substituted in Eqs. (16) and (17), and the system obtained is
solved to get a new explicit expression for U0 and R0.

For the axisymmetric case,

Ra
0 = K

3
4
a

(
Q

c∗

) 3
4
(

ηρ

�γ 2D3

) 1
8

, (21)

Ua
0 = K

− 1
4

a

(
c∗�γ 3

Q

) 1
4
(

D

(ηρ)3

) 1
8

, (22)

and, for the longitudinal case,

Rl
0 = K3

l

(
Ql

c∗

)3√
ηρ

�γ 2D3
, (23)

Ul
0 = K−1

l

c∗�γ

Ql

√
D

ηρ
. (24)

Note that, for comparison with the experimental results in the
linear configuration, we use Ql = Q/H to obtain the flux per
unit length Ql .

All the physical quantities can be deduced from the solution
(Û , V̂ , Ĉ) or (Ũ , Ṽ , C̃) and the physical units. The spreading
distance R in the axisymmetric configuration can be defined
as the radius at which the velocity is a small fraction ε of the
maximal velocity Um; it is thus given by R = Ra

0Xs with Xs

verifying Û (Xs) = εÛmax; the maximal physical velocity is
Vmax = Ua

0 Ûmax. Similarly, in the linear configuration, L and
Vmax are proportional to Rl

0 and Ul
0.

These predictions are compared to experimental results in
Sec. IV. As the solutions of the rescaled systems are not
known, only the functional dependencies can be tested. We
thus defined Rth, Lth, V a

th, and V l
th from Ra

0 , Rl
0, Ua

0 , and Ul
0

by omitting the unknown numerical prefactors.

D. Validation of the approximations

The comparison with the experimental results discussed in
Sec. IV shows that the master curves (Û , V̂ , Ĉ) and (Ũ , Ṽ , C̃)
and their derivatives are of order 1 in the whole domain, as
expected from the governing equations. Consequently, R and
R0 are of the same order of magnitude, as well as U0 and Vmax.
The assumption 	c 	 	v 	 R0 can thus be checked using the
experimental measurement. With R ∼ 10−2m, η ∼ 10−3 Pa s,
ρ ∼ 103 kg m−3, Vmax ∼ 10−1 m s−1, and D ∼ 10−10 m2 s−1,
we get 	v ∼ 3 × 10−4 m and 	c ∼ 3 × 10−6 m, thus validating
the scale separation used to establish the master curve.

The steady state is also a crucial assumption, which
requires a discussion. The plateau duration τp can be bigger
than hundreds of seconds. In the Navier-Stokes equation,
ρ∂u/∂t is at most of the order of ρU0/τp ∼ 1, whereas
η∂2u/∂z2 ∼ ηU0/	

2 ∼ 103. A similar result is obtained for
the transport equation. For the two equations, the validity
of the steady state assumption arises from the fact that the
intrinsic time scale R0/U0 ∼ 0.1 s is much smaller than the
experimental time scales.

Lastly, note that all the parameters involved in the scaling
laws (21)–(24) are control parameters or well defined physical
properties, excepted for c∗ which is the concentration of the
subphase at the injection point. Our previous experiments
showed that, for anionic surfactants, if one assigns the cmc
value to c∗, one gets consistent results and the theoretical
scaling is recovered for the spreading distance [53]. We will
return below, with new experimental results and interpretation,
to this relation between c∗ and the cmc for surfactants.

IV. RESULTS AND COMPARISONS TO THE MODEL

A. Axisymmetric spreading

As already explained, we focus here on two macroscopic
quantities, which are the spreading distance (here, the radius
R), and the maximal velocity Vmax within the spreading area.
Figures 5 and 6 summarize how these quantities depend on the
various experimental parameters.

In Fig. 5(a), the role of the influx rate Q is shown. We
first need to figure out if the key parameter is really the
number of surfactant molecules deposited per second, so that
μmol s−1 is the correct dimension for Q. In practice, the flow
rate Q, expressed in μmol s−1, is Q = Qvce, where Qv is the
volumetric flow rate delivered by the syringe (ml s−1) and
ce is the concentration of surfactant in the emulsion. As the
emulsion contains 50% oil, this concentration ce is half of the
initial concentration in the water phase.

To solve this issue, in Fig. 5(a), we show data obtained by
the two approaches: keeping Qv constant and changing ce, or
the opposite. The results show that it is equivalent to varying
Q by one or the other way. The fact that the relevant quantity is
expressed in μmol s−1 also demonstrates that all the surfactants
are involved, not only the free monomers (whose concentration
saturates at the cmc). Even surfactants initially within micelles
are indeed engaged in the spreading process; this is not a trivial
result, as the ability for micelles to rapidly disassemble to get
involved in interfacial dynamical processes is complex and
not fully understood [58]. In terms of data fitting, the solid
line in Fig. 5(a) is a power law with an exponent 3/4, in
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FIG. 5. (a) Variation of the radius R with the influx rate Q

in μmol/s. Squares: 50%-50% oil-in-water emulsion at a fixed
concentration of SDS (15 cmc); circles: 50%-50% oil-in-water
emulsion with an influx rate of 1 ml/min varying concentration of
the SDS solution; triangles: foam with a liquid fraction of 20%.
(b) Variation of the radius R with the difference of surface tension,
�γ ; Q = 1 μmol s−1. (c) Variation of radius R with surfactant cmc,
Q = 1 μmol s−1. (d) Variation of the radius R when glycerol is added,
modifying both density, viscosity, and cmc; Q = 1 μmol s−1. In the
four graphs, solid lines correspond to the predicted scaling laws;
exponents are respectively 3/4, −1/4, −3/4, and 1/8 for (a) to (d).

good agreement with Eq. (21). Note also that we plot the
data obtained with using bubbles as tracers, demonstrating
that tracers have no effect on R, for any Q. Regarding the
effect of Q on the flow velocity, Fig. 6(a) shows that the
velocity decreases with an increase of Q. Though it seems
counterintuitive, this is in agreement with our model, and the
data can be well adjusted with the expected power law of
exponent 1/4 given by Eq. (22).

In Fig. 5(b), we present the results on the effect of the
initial gradient of surface tension. In practice, the deposited
solution is always at the lowest value of the surface tension
(as the concentration is above the cmc) and we tune the
gradient by initially adding the same surfactant in the bulk
water layer. In the axisymmetric configuration, the spreading
radius is expected to scale as R ∼ �γ −1/4. Indeed, we find
data consistent with such an exponent, although the accuracy
is not optimal as the range of variation remains low. This is
measured for a given Q, but it remains true at other values. As

FIG. 6. (a) Variation of the maximum velocity Vmax with the influx
rate. (b) Variation of the maximum velocity Vmax with �γ , Q = 1
μmol s−1. (c) Variation of the maximum velocity Vmax with cmc,
Q = 1 μmol s−1. (d) Variation of the maximum velocity Vmax when
glycerol is added, Q = 1 μmol s−1. In the four graphs, solid lines
correspond to the predicted power laws; exponents are respectively
−1/4, 3/4, 1/4, and 1/8 for (a) to (d).

well, a scaling regime is found for velocity, which can be well
adjusted by a power law of exponent 3/4, in agreement with
Eq. (22) [Fig. 6(b)].

We can make here a few important remarks. First, note the
counterintuitive behavior with �γ ; the fact that the radius R

increases with decreasing �γ is not a straightforward behav-
ior. Second, when reducing �γ , we get to the experimental
limitation in terms of velocity, discussed previously. As we
approach an initial concentration of cmc/2 in the bulk, Vmax

decreases down to values so low, Vmax ≈ 0.15 m s−1, that
the boundaries of the spreading zone are difficult to localize,
thus preventing reliable measurement of R. Therefore, we
cannot have access to �γ typically lower than 10 mN/m.
Note finally that the low dependance of R with the surface
tension gradients, R ∼ �γ −1/4, is consistent with the tests
with insoluble myristic acid, explaining why the accumulation
of myristic acid was decreasing the surface tension, without
significant changes of R.

Further experiments deal with the role of surfactant am-
phiphilicity; in the model, a typical concentration c∗ arises as
the relevant scale to link the flow properties to the molecule
properties. We can compare our data to this model, considering
that, for surfactants, c∗ is the cmc. The graph in Fig. 5(c) shows
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that the spreading distances for different types of surfactants
can actually be compiled in a consistent manner when plotted
as a function of the surfactant cmc (the solid line is a power law
with an exponent 3/4, as predicted). This is supplementing our
previous results [53], by also showing that nonionic molecules
behave similarly. Moreover, we demonstrate the relevant role
of the cmc also in the scaling of the flow velocity [Fig. 6(c)]:
we find that, for all the surfactants, Vmax scales with cmc1/4,
in agreement with Eq. (22).

Let us comment on this equality between c∗ and the
cmc. Indeed, the details of the flow and transport properties
close to the injection point, leading to this equality, are not
entirely elucidated. We propose the following scenario. Three-
dimensional mixing occurs close to the injection point, leading
to a small volume of radius rs at a concentration of intermediate
value between the injected concentration (larger than the cmc)
and the cmc. This region corresponds to the white dense region
seen in Fig. 2 close to the injector. At the interface, the bound-
ary of this region, of typical radius rs , saturates at its maximal
concentration, and the Marangoni stress is thus vanishing for
r < rs . For r > rs , the subphase concentration gets below the
cmc, allowing for concentration gradients at the interface, and
Marangoni flows. Our model only describes what happens
for r > rs . It is difficult to estimate this radius theoretically,
but experimentally the velocity profile shows a sharp increase
at a distance rs , significantly larger than the injector size.
However, as rs 	 R, the assumption of a point source with
a local subphase concentration equal to the cmc is valid.

Finally, we have also investigated the dependence with
the fluid viscosity. This is a bit more complex than the
other parameters, as our approach based on the addition of
glycerol changes not only the viscosity, but also the diffusion
coefficient, the density, and (more slightly) the cmc [59,60].
If we assume that D ∼ 1/η, and group the terms of Eq. (21)
impacted by the glycerol, we get that R should scale like
R ∼ (ρη4 cmc−6)1/8, with all other quantities kept constant.
We tested this combination in Fig. 5(d), plotting the data
obtained as glycerol is added, and get good agreement (the
solid line is a power law with an exponent 1/8). The same
multiple effect of glycerol is also found for the velocity: the
glycerol-dependent combination is Vmax ∼ (ρ−3 η−4 cmc2)1/8.
The data are given in Fig. 6(d), and once again they can be
fitted by the expected power law.

We would like to conclude this part with two remarks.
First, we are again limited in this study on viscosity by too
low velocities at high concentration of glycerol; increasing the
bulk viscosity reduces the velocity, leading to smooth and flat
velocity profiles which then cannot be optically detected. The
threshold speed is here again of the order of Vmax ≈ 0.15 m s−1.
Second, if only glycerol is added in the deposited solution and
not in the water pool, one gets the same results as without
glycerol. In fact, glycerol is not mandatory in the injection
fluid, as long as it is added in the pool. To vary the surfactant
spreading flow through viscosity, it is just sufficient to only
change the viscosity of the liquid reservoir.

B. Longitudinal spreading

In this second geometrical configuration, as shown in
Eq. (23), the predicted power-law exponents for L are larger

FIG. 7. (a) Variation of the length L with Q/H . (b) Variation
of the length L, renormalized by influx and gap thickness, with
the surface tension difference �γ . (c) Variation of the length L,
renormalized by influx and gap thickness, with the surfactant cmc.
(d) Variation of the length, renormalized by influx and gap thickness,
when glycerol is added. In the four graphs, solid lines correspond to
the predicted scaling laws; exponents are respectively 3, −1, −3, and
1/2 for (a) to (d).

than those predicted for the axisymmetric case for R, hence
they are a priori easier to check experimentally.

Nonetheless, this increase in the value of the exponents
introduces experimental limitations due to the large variations
of L and Vmax with the experimental parameters. Despite our
2-m-long trough, the range for L remains finite. Moreover, we
also need to keep the width of the channel H much smaller
than L to remain in a longitudinal spreading condition. We
solve this issue by taking advantage of the fact that data for L

is predicted to be rescalable by (Q/H )3. This first requires us
to check these dependencies with Q and H , so that the other
data can subsequently be normalized by these quantities. In
Fig. 7(a), data for different Q and H are compiled. It turns out
that the different sets of data, at various H , can be collapsed
on a single curve, once plotted as a function of Q/H . As well,
the solid line corresponds to a power law with an exponent
3, in agreement with Eq. (23). Corresponding velocity data
are plotted in Fig. 8(a). The velocity decreases with Q and
the data can be adjusted by a power law of exponent −1 in
agreement with Eq. (24). From now on, all data regarding L

will be rescaled by Q/H .
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FIG. 8. (a) Variation of the maximum velocity Vmax with the influx
rate. (b) Variation of the maximum velocity Vmax with �γ , Q = 1
μmol s−1. (c) Variation of the maximum velocity Vmax, normalized
by influx and gap thickness, with cmc. (d) Variation of the maximum
velocity Vmax when glycerol is added. In the four graphs, solid lines
correspond to the predicted scaling laws; exponents are respectively
−1, 1, 1, and 1/2 for (a) to (d).

Concerning the effect of the difference of surface tension
�γ , data and power-law adjustments are given in Figs. 7(b)
and 8(b) for L and Vmax. As explained before, L is first rescaled
by Q/H to keep experimentally convenient values for L. This
is not necessary for Vmax, as its dependence is smaller with �γ ,
so that experiments can be done at any single H . Again, the
experimental behaviors correspond well to Eqs. (23) and (24):
we get L ∼ �γ −1 and Vmax ∼ �γ . Note that this confirms the
nontrivial increase of the spreading distance as �γ is reduced,
as also found in the axisymmetric configuration. The study
at small �γ is here again prevented, as it corresponds to too
low values of Vmax, so that we could not detect L accurately.
Note also that, in Fig. 8(b), all the data do not correctly match
with the scaling law. The smallest values of Vmax fall below
the fitting curve; it is possible that, in these experimental
conditions providing low interfacial speeds, some of the
approximations start to be no longer valid, or that the spreading
distance is not long enough to obtain a fully developed velocity
profile (with the correct maximal velocity).

For the effect of the surfactant amphiphilicity, results are
given in Figs. 7(c) and 8(c) for L and Vmax. Once again, a good
agreement with the model is found once data are plotted as a

function of the cmc: the solid lines in these graphs are respec-
tively power laws with exponents −3 and 1. The nonionic sur-
factants here again show the same behavior as the ionic ones.

Finally, glycerol is also added to our bulk solutions. As
explained previously, it changes the bulk viscosity, the cmc,
the density, and the diffusion coefficient. In this longitu-
dinal geometry, once we group these effects, we get L ∼
(ρη4/cmc6)1/2. Measurements of L are plotted as function
of this combination in Fig. 7(d), and can be well fitted by the
predicted exponent. The impact of glycerol on the velocity is
also successfully checked in Fig. 8(d) in that case, the scaling
Vmax ∼ (ρ−1η−2 cmc2)1/2 groups the different effects of the
added glycerol. Note that, as for the effect of the surface tension
difference, smallest values of Vmax appear to be slightly too
low when compared to the rest of the data, probably evidencing
some limits of the validity of our model.

C. Data collapsing

Another way to compare the data to the model consists of
plotting the different experimental quantities as a function of
the predicted ones. This is shown in Fig. 9 for the distances
R and L and the associated velocities Vmax. The important
point here is that this approach, by collapsing the effect of
all the parameters on a single graph, is much more stringent
than the comparisons made separately for each parameter. It
turns out that, for both geometrical configurations and for all
the measured quantities, these plots reveal no inconsistency
between the parameters. All the data collapse rather well;
such an agreement confirms, as a whole, the existence of
a master curve for the velocity field, both in axisymmetric
and longitudinal geometries. Moreover, this provides also
quantitative information on the prefactor relating the spreading
distances and the maximal velocities to the length and velocity
units. From the graphs of Fig. 9, the experimental prefactors
are respectively 0.39, 1.45, 0.1, and 1.7 for the panels (a) to
(d). Except for the spreading distance in the longitudinal con-
figuration which gives a prefactor of 0.1, the other prefactors
remains close to unity, which validates the assumptions made
in the model (see Sec. III D). Only a full quantitative analysis
could provide derivations of the prefactors, and might explain
the different values of the prefactors.

V. MARANGONI FLOWS AS A TOOL TO MEASURE cmc
OF COMPLEX SOLUTIONS

Taking advantage of the cmc dependence of the spreading
distance R or L, we tested our ability to derive how the cmc
changes with solution components, from relative measure-
ments of R.

The first test has been performed by adding salt to a
surfactant solution, as it is known to decrease the cmc [4,61]
without changing the other physicochemical properties of the
solution. The spreading radius R(cs) has been measured for
SDS solutions containing different amounts of added NaCl, at
concentration cs in the range 0–0.1 mol/l. From Eq. (21) we
get the relation cmc(cs)/cmc(0) = [R(0)/R(cs)]4/3.

In Fig. 10(a), we show the predicted variation of the cmc,
normalized by the value for no salt, as a function of the salt
concentration. We also add results from the literature, obtained
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FIG. 9. (a) and (b) Experimental radius and velocity versus theoretical radius and velocity in axisymmetric configuration. (c) and (d)
Experimental length and velocity versus theoretical length and velocity in longitudinal configuration. For the four graphs, circles: varying
influx rate; triangles: glycerol effect via viscosity, density and cmc; squares: varying �γ ; diamonds: varying cmc.

by measuring the cmc with the pendant drop method [61],
and we get an excellent agreement. Especially, our technique
based on the optical determination of the cmc was able to
reproduce the nonlinear behavior, with a faster decrease at low
salt concentration than at higher cs .

In another test, we mixed two surfactant solutions, C12TAB
and, at different ratios, and analyzed the cmc of the mixed

FIG. 10. (a) normalized cmc deduced from optical measurement
of R and using our model as a function of the NaCl concentration
added in a SDS solution. Circles: Q = 0.3 μmol s−1; squares: Q =
0.6 μmol s−1; triangles: Q = 1.2 μmol s−1. Line: data collected by
the pendant drop technique. (b)Normalized cmc deduced from optical
measurement of R and using our model as a function of the molar
fraction of C14TAB in a solution of C12TAB. Circles: our experiments;
line: data collected by the pendant drop technique.

solutions. Figure 10(b) shows how the normalized cmc evolves
as a function of the ratio of mixing. For comparison, we
add the data obtained by the pendant drop technique [62].
Once again, the agreement is excellent, here also being able
to capture nonlinear behavior. This proves that the approach
based on imaging the spreading distance can actually provide
the evolution of a cmc as a function of the additives.

For comparison, one must remember that the pendant
drop technique requires numerous dilutions, measurements
of the surface tension γ for each concentration c, and
detection of a kink in the γ (c) curve. This protocol is actually
much more time-consuming that our spreading-based method.
Nevertheless, one must keep in mind that there are limitations
in the range of accessible cmc (for practical reasons, R must
remain within tens of cm).

VI. CONCLUSIONS AND PERSPECTIVES

We have reported new experimental results on soluble
surfactant spreading, confirming and strongly supplementing
those we reported earlier [53]. In particular, for two different
geometrical configurations and for both the spreading distance
and the spreading velocity, we have shown that all their
variations with experimental parameters can be explained.
Moreover, as tested in Fig. 9, the different dependences are
self-consistent, and all the data can be rescaled and compiled
on master curves. All together, this work proves that our model
relies on good theoretical building blocks and assumptions.

We want to point out that some of these results are indeed
striking. First of all, it was not obvious a priori that a
steady-state solution, with finite R or L, necessarily exists
for this problem of soluble surfactant spreading. Also, the
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FIG. 11. (a) spreading radius as a function of the flow rate.
Circles: SDS solution at 15 cmc; triangles and squares: data with
alcohols from [38–41]. (b) Normalized spreading radius, using the
cmc for the surfactant and the limit of solubility, cs , for the alcohols.

various scaling exponents of Eqs. (21)–(24) are far from
obvious, and cannot be derived by trivial scaling combinations.
As an example, the dependencies with �γ or viscosity are
clearly counterintuitive. Quantitatively, it also turns out that
the unknown prefactors in the Eqs. (21)–(24) are of the order
of 1.

These results bring some important insights both on
fundamental and practical issues. Fundamentally speaking,
we show that, by studying surfactants, a finite hydrophobicity
goes with a finite equilibrium concentration (cmc) and with a
finite distance over which gradients are dynamically relaxed.
The equilibrium-defined cmc turns out to also be the scale for
including the hydrophobicity in dynamical processes.

From a practical point of view, this work provides some
strategies for new ways of rapid cmc measurement, especially
well adapted to easily monitor how it evolves as a formulation
is designed. Note also that, for all practical conditions, it
becomes crucial to check first whether the typical characteristic
dimension d of the tank is bigger or smaller than R (or L);
in the case where d < R, soluble surfactants will behave
as insoluble ones, meaning that finite-size effects dominate
finite-hydrophobicity ones.

We also want to point out that we have investigated and
understood here a rather “simple” spreading situation. At this
stage, we believe that the ingredients of our model can be useful
building blocks for a few other similar but more complex
experiments (in particular those when evaporation and/or
chemical reaction also compete with bulk diffusion [63,64], or
when anisotropy comes into play to induce motion [18,19]).

As a first step towards a generalization of our analysis,
oriented up to now towards surfactants and cmc, we have col-
lected previous data on the spreading of some soluble alcohols.
These molecules have no cmc, but a characteristic solubility
concentration cs , which is discussed in [38–41]. Usually, above
the solubility limit, alcohols start to make large aggregates,
much bigger than micelles, while there is no thermodynamical
equilibrium such as the one between interfaces and micelles
for surfactants. This is in fact closer to the case of surfactant
aggregation below a Krafft temperature. In Fig. 11(a), we have
replotted these data as a function of Q, together with our data
for SDS. Then, in Fig. 11(b), we have compiled on the same

graph the alcohol data, taking cs for the typical concentration
c∗ in Eq. (21); it turns out that all these data, once normalized
by the relevant scale for concentration, collapse on the single
curve. This simple and successful test of rescaling different
data sets—ours for surfactant associated to a cmc, and others
taken in the literature for alcohols associated with a solubility
concentration—clearly demonstrates the generic relevance of
our work. Beyond this proof of concept, many issues are still
pending to fully understand how far the Marangoni behavior
of alcohols and the one of surfactants are similar. In particular
one has to determine how the surface tension is modified by
the alcohols, below and above the critical concentration c∗.
Further progress on this issue is expected by studying a class
of molecules, named solvo-surfactants [65], which exhibit
properties both of solvents and of surfactants.

The study as a function of time has also brought some
interesting features. Because of the finite area of the tank, we
have shown that tracers and insoluble impurities accumulate
with time. If the packing of the tracers is the main source for
reducing the spreading zone with time, we have found that the
spreading of insoluble and soluble turns out to be completely
uncorrelated. Surprisingly, we show here that, in the context
of Langmuir monolayers, it is possible to deposit a controlled
amount of insoluble species on a free interface by dispersing
them first into a water-soluble surfactant solution. This could
be used as an alternative to the generally used nonpolar
solvent.

So far, we have focused on the spreading distances, and
associated velocities. Still, many aspects deserve some further
work. First, it might be useful to get rid of any tracers, meaning
that other means for measuring the flow boundaries need to
be found. In fact, some preliminary results show that one
can also get some insights by profilometric techniques [66].
This technique also gives us some information on the nonflat
steady-state shape of the interface, opening interesting links
with other types of dynamical deformations (such as the
hydraulic bump [67]). A thorough description would also
require the measurement of the radial surfactant concentration
profiles, as well as velocity circulation in bulk. Those are
various works in progress, which are beyond the scope of this
article and will be published later. As well, further work is
also required to discriminate between the various possible
hydrodynamical instabilities to find out the origins of the
complex recirculating flows located at the boundary of the
spreading zone. Last, preliminary experiments of deposition
of concentrated surfactant solution at the interface between
water and oil reveal other striking features.
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