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Slip boundary conditions over curved surfaces
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Molecular dynamics simulations are used to investigate the influence of surface curvature on the slip boundary
condition for a simple fluid. The slip length is measured for flows in planar and cylindrical geometries with a
range of wall-fluid interactions. As wall curvature increases, the slip length decreases dramatically for closely
packed surfaces and increases for sparse ones. The magnitude of the changes depends on the crystallographic
orientation and differs for flow along and perpendicular to the direction of curvature. These different patterns
of behavior are related to the curvature-induced variation in the ratio of the spacing between fluid atoms to the
spacing between minima in the potential from the solid surface. The results are consistent with a microscopic
theory for the viscous friction between fluid and wall that expresses the slip length in terms of the lateral response
of the fluid to the wall potential and the characteristic decay time of this response.
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I. INTRODUCTION

Modern developments in micro- and nanotechnologies have
created great interest in studying and modeling fluid transport
at these small scales. Solving continuum hydrodynamic equa-
tions requires boundary conditions at solid-fluid interfaces. As
the system size shrinks to micro- or nanoscales, these boundary
conditions play increasingly important roles because of the
large surface-volume ratio. The traditional no-slip boundary
condition for macroscopic flows may break down, and a slip
boundary condition is then needed to describe the fluid velocity
at the solid surface [1–5].

Navier proposed the first and the most widely used slip
boundary condition [6], which states that the slip velocity is
proportional to the shear rate of the fluid at the surface. The
slip length is introduced as the proportionality coefficient and
is used to characterize the degree of fluid slip at the surface.
In the simple case of flow past a flat surface, the slip length
measures the distance from the actual surface to the virtual
plane where the extrapolated fluid velocity would equal that
of the solid surface.

Molecular dynamics (MD) studies for flat surfaces [7–12]
have indicated that when the shear rate is small, the slip
length is flow independent and only depends on the properties
of the fluid (e.g., viscosity, temperature, and fluid structure)
and the microscopic properties of the local interface (e.g.,
wall-fluid interaction strength and atomic structure of the
surface). For surfaces with more complicated geometries, one
can apply the Navier slip boundary condition locally with
the same slip length but only if the surface normal changes
on length scales that are much larger than the atomic scale
and all the microscopic properties remain the same [13,14].
This geometrical independence is of practical importance.
For example, one can measure the local slip length from a
surface with a simple geometry (e.g., cylindrical for surface
forces apparatus experiments and spherical for atomic force
microscopy experiments) [2,3,15,16] and use it as the local
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intrinsic property for other surfaces as long as they are
microscopically the same.

In the limit where the radius of curvature of the surface
approaches the molecular scale, the separation of the char-
acteristic length scales fails and the small scale curvature
becomes one of the microscopic properties of the surface.
Some simulations suggest that curvature may affect the local
slip length [17–20]. In particular, Falk et al. found very large
changes with slip length in axial flow along nanotubes [19,20].
A more recent study [21] argued that these nanotubes were so
slippery that no velocity gradient occurred in the fluid and the
effective slip length was infinite. The authors argued that slip
was a material property and presented MD simulations that
showed almost no change in slip length with curvature.

In this paper, we present MD simulations of slip over curved
solids with a wide range of solid-fluid interactions and solid
geometries. Curved walls are generated by smoothly rolling up
planar walls into cylinders while preserving the local atomic
structure of the surface. Studies of flow between cylinders give
slip boundary conditions at walls with negative (outer) and
positive (inner) curvature. Both axial flow along the cylinder
and rotational Couette flow are studied.

We find very different changes in slip length with curva-
ture for different surfaces and different flow directions. As
curvature increases there can be little change in slip length,
as found by Chen et al. [21], large decreases in slip length,
as found by Falk et al., or increases in slip length. The key
factor is the ratio of the lateral spacing between minima in
the wall potential to the spacing between fluid atoms. Slip
is suppressed when these spacings are comparable and fluid
atoms can lock in registry with the substrate [7,19,20,22,23].
Curvature increases the spacing between minima, which may
enhance or suppress locking. Since curvature does not affect
the spacing along the cylinder axis, the change in slip length
can be much greater for rotational flow around the cylinder
than for axial flow.

All of the simulation results can be collapsed using a
theory for friction between a solid and fluid layer [22,23].
In this theory the key measure of the strength of viscous
coupling between fluid and solid is the magnitude of lateral
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density modulations in the first fluid layer due to the periodic
potential from the solid. Most of the variation in slip length
with curvature is related to changes in this response. Slip also
depends on the lifetime of these density modulations which is
found to be a material property of the fluid, depending only
on the ratio of the spacing between solid atoms to the mean
spacing between fluid atoms. The relation between this theory
and the later work of Falk et al. [19,20] is discussed.

The paper is organized as follows. In Sec. II, the details
of molecular dynamics simulations are described. In Sec. III,
we describe how key quantities such as fluid layering, lateral
structure factor, and slip length are defined and measured from
the simulations. In Sec. IV, results for slip length and fluid
structure are presented and the behavior of the slip length
is interpreted by a microscopic theory. The summary and
conclusions are given in the last section.

II. DETAILS OF MOLECULAR SIMULATIONS

A. Interaction potentials and equations of motion

We use standard molecular dynamics to simulate simple
fluid flows over rigid solid walls. The simulations are per-
formed using LAMMPS from Sandia National Laboratories [24].
A truncated Lennard-Jones (LJ) potential is used to model the
interactions between fluid atoms:

VLJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
− Vc, for r < rc, (1)

where r is the distance between the two atoms and ε and σ

define the characteristic energy and length scales of the fluid,
respectively. VLJ is truncated at a distance rc = 2.2σ to save
computational cost, and Vc is chosen so VLJ(rc) = 0. Wall
(w) and fluid (f ) atoms also interact through a truncated LJ
potential with parameters εwf , σwf , and rc,wf . The four sets of
wall-fluid interaction parameters studied are listed in Table I.
If not stated otherwise, then σwf = 1σ and rc,wf = 2.2σ .

The equations of motion are integrated using the velocity-
Verlet algorithm with a time step �t = 0.005τ , where τ =
σ
√

m/ε is the characteristic time scale and m is the mass of
a fluid atom. For most simulations, fluid temperature is main-
tained at T = 1.1ε/kB by imposing a Langevin thermostat on
all fluid atoms in the flow-irrelevant y direction [7,25]. The

TABLE I. The four sets of wall-fluid interaction parameters
(subscript wf ) studied in this paper. The energy εwf , interaction
length σwf , and cutoff distance rc,wf are normalized by the fluid
interaction energy ε and length σ . The surface lattice spacing was
a/σ = 0.75, 0.86, 1.0, 1.09, or 1.20. For walls aligned with the (110)
direction along the cylinder axis the inner and outer cylinder radii are
3.85σ and 23.0σ or 7.67σ and 26.83σ . For the (100) direction along
the axis, the radii are 4.09σ and 21.69σ or 8.14σ and 25.75σ . The
surface corrugation is decreased and slip length increased when εwf

is decreased or σwf is increased.

Wall type εwf /ε σwf /σ rc,wf /σ

A 0.1 1 2.2
B 0.4 1 2.2
C 0.4 1 1.12
D 0.057 1.27 2.2

thermostatted equation of motion in the y direction is given by

mÿ = fLJ − m�ẏ + F (t), (2)

where fLJ is the total LJ force from all other particles. The
damping rate � controls the heat flux between the system
and the heat bath and F (t) is a random force sampled
from a Gaussian distribution with zero mean and variance
2m�kBT/�t . We use a damping rate � = 0.5τ−1, which
is small enough that the atomic motions are underdamped
but large enough to eliminate viscous heating. We checked
that varying � by a factor of 2 does not change the results.
Past studies of slip boundary conditions have shown there is
little effect of thermostats on the low rate limit of interest
here [7,26,27]. Effects are observed when rates are high
enough that heating occurs [26,27].

For simulations of axial flow between cylinders, instead
of the Langevin thermostat, an isotropic dissipative particle
dynamics (DPD) thermostat with a damping rate 0.5τ−1 is
applied on the fluid [28–30]. Thus the angular invariance
of the fluid flow is preserved. Changes in damping rate and
comparison to the Langevin results for flat surfaces confirmed
that this thermostat has negligible impact (<2%) on the
presented results for flow, slip length, and fluid structure.

The bulk density of fluid is fixed at ρ = 0.81σ−3. The
strain rates in our simulations are low enough (�0.07τ−1)
to ensure that the bulk fluid is Newtonian with shear viscosity
μ ∼ 2.13ετσ−3. In this low-strain-rate regime, linear response
is also observed at the wall-fluid interface and the slip length
is insensitive to shear rate [7,8,12,21].

B. Planar geometry

For the planar Couette geometry, fluid is confined in a
channel between two solid walls parallel to the x-y plane
[Fig. 1 (left)]. Flow is generated by moving the top wall
along x at a speed Uw. Periodic boundary conditions are

FIG. 1. Geometry of planar (left) and cylindrical (right) geome-
tries. In the planar case fluid is confined between rigid walls separated
by height H and periodic boundary conditions are applied in the plane
of the wall. Flow is generated by moving the top wall along x at a
speed Uw . In the cylindrical case the walls are rigid coaxial cylinders
with Rwi and Rwo the inner and outer radii of the solid surfaces,
respectively. Angular and axial flow are generated by rotating the
inner wall or translating it along the y axis, respectively, so surface
atoms have speed Uw . Periodic boundary conditions are applied along
the axial y direction.
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imposed along x and y directions. Each planar wall consists
of three (001) layers of a FCC crystal. Wall atoms are fixed
rigidly to lattice sites. Past studies show thermal vibrations
affect the value of slip length but do not change the trends
with surface geometry and interactions [7,11]. The x axis is
aligned with either the (110) or the (100) vector of the FCC
lattice. We take the nominal height of the wall surfaces to
coincide with the center of the wall atoms in the layer closest
to the fluid. The separation distance between wall surfaces is
H = 30σ . The spatial periods along the x and y directions are
Lx = Ly = 24.08σ and Lx = Ly = 25.54σ for cases of flow
along the (110) and (100) directions, respectively.

A key parameter of the wall is the lateral separation of the
nearest-neighbor atoms in the first layer, designated by the sur-
face lattice spacing a. The surface lattice spacing determines
the characteristic length of the atomic-scale corrugations in
the wall potential felt by fluid atoms, and it has been disclosed
to be an essential factor that regulates the degree of slip [7].
Here we investigate slip boundary conditions for four values
of the surface lattice spacing on the bottom wall (a = 1.20σ ,
1.09σ , 1.00σ , 0.86σ , and 0.75σ ) and for various sets of the
wall-fluid LJ parameters (Table I). The results serve as the
reference cases for flat surfaces, i.e., curvature κ = 0. For top
wall surfaces, no-slip boundary conditions are always enforced
by using large values of εwf .

C. Cylindrical geometry

As shown in Fig. 1 (right), fluid is confined in the region
between two coaxial cylindrical walls, whose central axes lie
along the y axis. A periodic boundary condition with a period
of length Ly = 24.08σ or 25.54σ is applied along the y (axial)
direction.

Each cylindrical wall is made by curving a planar wall along
the x direction, while the atomic arrangement remains un-
changed along the y direction. As depicted in Fig. 2, the cylin-
drical wall is formed by three rolled-up layers of solid atoms,
and the atoms of a given layer have the same radial distance
from the central axis. Each layer consists of Nθ rows of atoms
along the axial direction and the azimuth angle between neigh-
boring rows is 2π/Nθ . The value of Nθ is chosen so the surface
layer adjacent to the fluid has a locally square structure with

a

FIG. 2. Close-up side views of the wall geometry for planar
(bottom) and cylindrical (top) simulations with the nearest-neighbor
direction aligned with flow. Circles show lattice sites and closed
circles indicate atoms on the surface closest to the fluid. Surface
atoms are separated by a and successive layers are separated by
a/

√
2. The spacing between subsurface atoms changes with radius

for curved surfaces.

nearest-neighbor spacing a. Two orientations of the flat wall
relative to the cylindrical axis are considered. In the first, the
nearest-neighbor direction, (110), is aligned with the axis. In
the second, the next-nearest neighbor direction (100) is aligned
with the axis. Carbon nanotubes grow with a wide range of
axis orientations and this is known to play an important role
in determining their properties, such as conductivity [31–35].

The nominal position of the wall surface is defined by the
first layer of wall atoms, such that the surface radius Rw equals
the radial coordinate of surface atoms. The surface curvature
κ is defined as κ = 1/Rwi for the inner wall and κ = −1/Rwo

for the outer one, where Rwi and Rwo denote the surface radii
of the inner and the outer walls, respectively. In this study, for
walls aligned with the (110) direction along the cylinder axis
the inner and outer cylinder radii are 3.85σ and 23.0σ or 7.67σ

and 26.83σ . For walls aligned with the (100) direction along
the axis, the radii are 4.09σ and 21.69σ or 8.14σ and 25.75σ .

The procedure used to generate the curved walls may
produce very small or large separations between atoms in
the layers away from the fluid. These might lead to plastic
rearrangements in experimental systems. However, the struc-
ture of these inner layers has very little effect on the flow
boundary condition. Simulations without the third layer gave
indistinguishable results for the slip length. The main effect
of the second layer is to prevent fluid atoms from penetrating
between atoms of the outer solid layer [7]. As shown in Sec. IV
only the response to the periodic potential from the outer layer
is needed to explain the detailed trends in slip length. This is
why results for very short range interactions where fluid atoms
only feel the outer layer (rc = 21/6σ ) show the same trends as
simulations with larger rc. It also explains why our results are
very similar to those of Chen and Koplik [21], who used a very
different crystalline structure under the outer solid layer.

D. Fluid structure near wall

Figure 3 shows the time-averaged fluid density profile as
a function of distance from the wall for flat surfaces with
a = 1.2σ and 0.75σ . In the near wall region, the distribution

Distance from surface 
0

ρσ
3

0

1

2

3

κσ = − 0.043
κσ = 0
κσ = 0 .26

a = 0 .75σ
a = 1 .20σ

321 4
( )units of σ

FIG. 3. Fluid density as a function of distance from wall surface
for lattice spacing a = 1.20σ and 0.75σ at the indicated curvatures.
Surfaces have wall-fluid interaction strength εwf = 0.4ε, σwf = 1σ ,
and the density is averaged over 104τ . The oscillations reflect layering
and the layer boundaries are typically associated with the density
minima. Here the (110) direction is along the cylinder axis but similar
results are found for the (100) orientation.
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of fluid atoms becomes nonisotropic and layering emerges in
the density profile [7,10,36–46]. The first peak corresponds
to the preferred spacing between wall and fluid atoms. The
density profile then oscillates with peaks separated by one
fluid atom diameter and gradually relaxes to a uniform bulk
density after a few oscillations. Near a wall surface, layers
can be associated with each density peak and the boundaries
between layers with local density minima. Trends in layering
with wall geometry and interactions are discussed in Sec. III B.

Layering is less related to the slip length than the
degree of lateral structure within the first layer of
fluid [7,11,12,17,19,20,43,47–49]. To describe the in-layer
structure, the two-dimensional (2D) static structure factor,
S1(�q), is calculated as a function of wave vector �q for the
first layer of fluid atoms.

For the flat surface, S1(�q) is evaluated according to

S1(�q) = S1(qx,qy) =
∣∣∣∣∣∣
∑

j

exp[i(qxxj + qyyj )]

∣∣∣∣∣∣
2

/N1, (3)

where xj and yj are the 2D coordinates of atom j and N1 is
the number of fluid atoms in the first layer. The allowed wave
vectors are determined by the periods of the system in the x-y
plane, �q = (2πh/Lx,2πk/Ly), where h and k are integers.
The periodic potential of the wall produces sharp peaks in
S1(�q) at the corresponding reciprocal lattice vectors �Gm,n of
the wall. For the fcc (100) surface with nearest neighbors along
x and y, �Gm,n = (2πm/a,2πn/a).

The squared relative amplitude of the areal density modu-
lation n1( �G) produced at each �G is

|n1( �G)/n̄1|2 = S̃1( �G)/N1, (4)

where n̄1 = N1/A1 is the number of particles per area in
the first layer. This response to the substrate potential is
independent of system size while the intrinsic diffusive
background S1,eq(�q)/N1 decreases linearly with system size.
We increase the system size until the diffusive background is
small and then subtract it from the total signal. The induced
peaks are confined to only one of the wave vectors allowed by
periodic boundary conditions, and the background is obtained
by averaging over the four closest allowed �q.

For the cylindrical surface, we approximate the first fluid
layer by a 2D cylindrical sheet located at the radius corre-
sponding to the first peak in the fluid density. As noted below
this radius is associated with the flow boundary condition and
is denoted Rbc. The polar coordinates of each atom in the
first layer (rθ,y) are mapped to 2D coordinates on a sheet
(x,y) with x = Rbcθ [19,20]. Then the lateral structure factor
is evaluated with respect to the 2D coordinates. The main
difference from the planar case is that the period Lx is replaced
by the circumference of the layer, 2πRbc, in determining the
allowed wave vectors.

The structure factors shown below are obtained for equi-
librium systems. They are nearly the same in sheared systems
because the shear rates are kept in the limit of linear response.
Structure factors are typically evaluated every 0.05τ and
temporally averaged over up to 500τ .

E. Calculating the slip length

1. Planar Couette flow

For stationary Newtonian fluid flow past an impenetrable
solid surface, Navier’s slip model assumes that the friction
force per unit area between the fluid and the solid surface is
proportional to the slip velocity �ut , i.e., the relative velocity
of fluid and solid. This force is balanced by the viscous shear
stress �nt of the fluid at the surface,

β�ut = �nt , (5)

where β is the drag coefficient between the fluid and the
solid surface, and n and t represent the normal and tangential
directions to the surface, respectively. Newton’s law for the
bulk fluid relates the shear stress to the strain rate ∂ut/∂n:

�nt = μ
∂ut

∂n
, (6)

where μ denotes the fluid viscosity. Combining these equations
one arrives at Navier’s slip boundary condition,

�ut = μ

β

∂ut

∂n
= Ls

∂ut

∂n
, (7)

where the slip length Ls ≡ μ/β quantifies the degree of slip
at the surface.

For planar Couette flow, the viscous stress �xz is constant
throughout the channel, and the incompressible Navier-Stokes
equations reduce to μ∂2ux/∂z2 = ∂�xz/∂z = 0. Solving this
equation, one arrives at a linear velocity profile,

ux = A1z + A2. (8)

The two constants, A1 and A2, are determined by the boundary
conditions at the wall-fluid interfaces.

Mean velocity profiles from two very different lattice
constants are presented in Fig. 4(a). Both profiles exhibit the
expected linear velocity profile [Eq. (8)] in the central region
of the fluid. Deviations begin to become apparent within one
or two atomic diameters of the wall due to the layering and
in-plane structure discussed above [7]. At the top wall there is
a strong interaction that causes the fluid velocity to saturate to
the wall velocity inside the fluid. This is called a stick boundary
condition and is kept the same for all runs. The behavior near
the stationary bottom wall is very sensitive to wall density. For
the sparse surface case (a = 1.2σ ) the velocity approaches
zero, but for the closely packed surface there is a substantial
velocity difference at the wall, i.e., slip.

The definition of the slip length in Eq. (7) requires both the
strain rate and slip velocity. For Couette flow the strain rate
is uniform in the central region and given by the coefficient
A1 in Eq. (8). The value of slip velocity is more ambiguous.
Since the goal is to determine boundary conditions for the
continuum equations, the slip velocity is evaluated from the
extrapolation of the continuum solution rather than the actual
velocity profile [5]. The answer still depends on the location of
the wall which is uncertain up to lengths of order σ . We choose
the height d1 of the density peak associated with the first fluid
layer (Fig. 3) as the hydrodynamic boundary. The slip velocity
�ut then corresponds to the velocity difference between the
first fluid layer and the solid wall. This is the natural quantity
for Eq. (5) and the calculation of frictional drag discussed
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FIG. 4. Velocity profiles for (a) planar Couette flow at a = 0.75σ

(dashed blue) and 1.2σ (dotted red) and (b) angular (dashed blue) and
axial flow (dotted red) in cylindrical geometry at a = 0.75σ . Thin
solid black lines show fits to continuum theory and dotted vertical
lines show the positions of wall surface atoms. Flows are along the
(110) orientation with εwf = 0.1ε.

below. For the planar Couette case any other choice (e.g., in
Refs. [7,12,50,51]) gives a constant shift in the slip length and
other common choices of the reference plane differ by less
than the layer spacing.

For the planar flow simulations, the velocity profiles are
averaged within horizontal bins of thickness �z = 0.05σ for
a time period of 104τ at steady state. The resulting flow profile
is fit to Eq. (8) over the region more than 3σ from either
surface. We verified that changing this condition by ±σ does
not produce any noticeable changes. The slip length is then
obtained from the fit coefficients as

Ls = d1 + A2/A1. (9)

The fit results are further averaged over five independent
realizations of the system to quantify statistical errors and
remove any long-time correlations.

2. Cylindrical Couette flow

For the case of angular flow between rotating cylinders, the
viscous shear stress at the curved cylindrical surface is given
by

�nθ = μ

(
∂uθ

∂n
− κuθ

)
, (10)

where κ denotes the local curvature of the surface. For the
convex inner surface in Fig. 1, κ > 0, and for the concave
outer surface, κ < 0. Plugging Eq. (10) into the force balance

condition, Eq. (5), one arrives at the slip boundary condition
for a curved surface [13,14],

�uθ = μ

β

(
∂uθ

∂n
− κuθ

)
= Ls

(
∂uθ

∂n
− κuθ

)
. (11)

In terms of the local angular velocity, ω = uθ/r , Eq. (11) can
be rewritten into a form similar to Eq. (7) [21]:

�ω = Ls

∂ω

∂n
. (12)

Therefore the slip length along the direction of curvature can
be interpreted as the distance inside the wall to which the fluid
angular velocity is linearly extrapolated to reach the angular
velocity of the wall surface.

For bulk flow between two rotating concentric cylinders,
the incompressible Navier-Stokes equations reduce to

dp

dr
= ρ

uθ
2

r
, (13)

d

dr

(
1

r

d

dr
(ruθ )

)
= 0, (14)

where the pressure p and the tangential velocity uθ are
functions only of the radial coordinate r and there is no flow
along the cylinder axis. The general solution of the velocity
profile is given by

uθ (r) = B1r + B2/r, (15)

where the constants B1 and B2 are determined by the boundary
conditions.

In simulations, the angular flow is generated by rotating the
inner wall at a rotation rate Uw/Rwi , where Uw is the speed
of the surface atoms (closest to the fluid). For the cylindrical
simulations, the velocity is averaged within cylindrical slabs of
thickness �r = 0.05σ every 5 × 103τ over a simulation time
of 105τ . The slip length is then calculated for each average
velocity profile and further averaged over 20 consecutive time
intervals.

Figure 4(b) shows that the mean flow profiles from MD
simulations are well fitted by the continuum solution except
for regions within a few sigma of the walls [Eq. (15)]. As found
in past work, the viscosity of the fluid may be modified in the
layers closest to the walls [7,44,52]. The sharp peak shown in
Fig. 4(b) near the inner wall comes from a very low density of
atoms that are so close to the wall that their velocity is close to
that of the wall. They make up a very small fraction of the first
density peak. This effect is not visible near stationary walls
because the density and wall velocity are both going to zero.

To measure the slip length from the MD velocity profiles,
we rewrite Eq. (15) as

ruθ (r) = B1r
2 + B2, (16)

and fit the simulation data by this parabolic function. Combin-
ing Eq. (15) and Eq. (11), plugging in the fitted parameters B1

and B2, and solving for Ls , the slip length of the inner wall is
given by

Ls = −
(

B1Rbc + B2

Rbc
− Ubc

)
Rbc

2

2B2
, (17)
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where Rbc = Rwi + d1 denotes the position of the hydrody-
namic boundary, and Ubc = Uw(1 + d1/Rwi) designates the
fluid velocity at the effective hydrodynamic boundary Rbc.
For the outer surface,

Ls =
(

B1Rbc + B2

Rbc
− Ubc

)
Rbc

2

2B2
, (18)

where Rbc = Rwo − d1 and Ubc = 0 since the outer wall is
held at rest.

As for the planar case, the wall position is defined at the
center of the first density peak in the above analysis. For
the cylindrical geometry, changing this definition does not
produce a constant shift in the slip length because the flow is
nonlinear. Shifting the reference plane to the midpoint between
wall and first fluid layer [19–21] can reduce Ls by up to ∼4σ

for the smallest radii and largest slip lengths but the trends with
curvature remain the same. The definition used here is most
natural for the theory described in Sec. IV which relates the
friction between the first fluid layer and substrate to structure
in the first layer.

3. Axial flow in cylindrical geometry

For the axial flow case, the viscous shear stress at the cylin-
drical surface is �ny = μ∂uy/∂n and thus the slip boundary
condition has the same form as Eq. (7), �uy = Ls(∂uy)/∂n.
The Navier-Stokes equations for the bulk flow reduce to

μ

r

d

dr

(
r
duy

dr

)
= dp

dy
= 0, (19)

and the velocity profile is given by

uy(r) = C1 ln(r) + C2. (20)

In simulations, the axial flow is produced by moving the
inner cylinder along the y direction at a speed Uw. To measure
the slip length, Eq. (20) is fitted to the mean velocity profile
[as illustrated in Fig 4(b)], and the slip length along the axial
direction is calculated by

Ls = [C1 ln(Rbc) + C2 − Uw]
Rbc

C1
, (21)

and Ls = −[C1 ln(Rbc) + C2]
Rbc

C1
, (22)

for the inner and the outer walls, respectively.

III. RESULTS

A. Slip length

Calculated slip lengths are tabulated in the Supplemental
Material for all the flow geometries and surface properties
included in this study [53]. For each case we verified that the
results are in the low-strain-rate limit by varying the strain rate
by at least a factor of 2. The quoted values were evaluated for
planar flows with top wall speed Uw = 1.0σ/τ , for cylindrical
angular flows with inner wall speed Uw = 0.2σ/τ , and for
cylindrical axial flows with inner wall speed Uw = 0.6σ/τ . In
all cases the maximum strain rate is less than 0.071/τ , which
Chen et al. [21] also find is in the linear response limit.

In Fig. 5(a), the value of the slip length is plotted against
the surface curvature for cylindrical Couette flow with different

L s
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FIG. 5. Slip length Ls as a function of surface curvature κ for
εwf = 0.1ε. (a) Ls for cylindrical Couette flows along (110) direction
with different lattice spacing: a = 1.2σ (triangles), 1.09σ (circles),
1.00σ (squares), 0.86σ (hexagons), and 0.75σ (pentagons). (b) Ls

with a = 0.75σ for cylindrical Couette flows along (110) (blue
pentagons) and (100) direction (red triangles) and axial cylindrical
flows along (110) (black circles) and (100) direction (green squares).
Dotted lines are guides to the eye.

surface lattice spacings. Here εwf = 0.1ε, σwf = 1σ and flow
is along the (110) direction between nearest neighbors of
the fcc surface. For this rotational flow case, three typical
patterns are clearly observed. For the highly packed surfaces,
a = 0.75σ or 0.86σ , the slip length Ls decreases by up to
a factor of 5 as curvature increases. The opposite trend is
observed for sparse surfaces, a = 1.20σ or 1.09σ , where Ls

increases slightly (∼30%). Nonmonotonic behavior is found
for a = 1.00σ : Ls drops as κσ increases from −0.043 to
0.13 and then rises as κσ further increases from 0.13 to 0.25,
These trends with curvature are determined by surface density
and are not affected by changing the wall-fluid LJ interaction,
although the absolute slip lengths are affected. Note that Chen
et al. [21] considered a = 1.09σ and positive curvatures. We
also find little change in Ls for this special case.

The changes in slip length with curvature are very de-
pendent on surface orientation as shown in Fig. 5(b). For
the nearest-neighbor (110) orientation, the slip length for
rotational flow shows the large changes illustrated in Fig. 5(a)
while there is very little (∼10%) change in the slip length
for axial flow. In contrast, for the (100) orientation, curvature
affects axial flow more strongly than rotational flow. Both
follow the trend with curvature for rotational (110) flow but
change more gradually. Note that for flat surfaces Ls is the
same for flow along (100) and (110) even though the directions
are not crystallographically equivalent.
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The different patterns of behavior of slip length for different
flow directions, atomic spacings and lattice orientations can
only be understood from the microscopic perspective. We first
consider how curvature affects the structure of the fluid and
then present a quantitative theory for the variations in slip
length.

B. Fluid structure

The correlation between the atomic spacing on flat surfaces
and the degree of fluid layering has been discussed in
Refs. [7,10]. As illustrated in Fig. 3, denser surfaces (smaller
a) lead to sharper density peaks. One reason is that a higher
density increases the number of wall atoms that interact
with a given fluid atom and thus deepens the potential
energy minimum at the first layer. Increasing the density also
reduces the ability of fluid atoms to penetrate in between wall
atoms. Figures 6(a) and 6(b) illustrate the lateral variation
of constant energy surfaces above flat walls. As wall atoms
move closer, the depth of local minima decreases rapidly.
The decrease in the corrugation of the equipotential surface

FIG. 6. Equipotential surfaces at Vwall = 1.1ε for (a) planar wall
and (b) cylindrical wall with positive curvature and radius Rw =
3.84σ . (c) Potential contours over the xz plane at y = 0 for the
same flat (thin blue) and cylindrical (thick red) surfaces presented
in (a) and (b). Different line patterns correspond to different energy
contours: Vwall = −0.4ε (solid), −0.3ε (dashed), and −0.1ε (dotted).
The black circles and asterisks mark atomic positions of the flat
and the cylindrical wall, respectively. The z coordinate is shifted so
the topmost atoms of cylindrical and flat surfaces coincide. Here
εwf = 0.1ε and a = 1.20σ .

reduces fluctuations in the preferred height of fluid atoms and
thus sharpens the first density peak.

Figure 3 provides information about how curvature affects
layering. For all cases considered we found a monotonic
increase in layering as the curvature went from positive
to negative. The effect is particularly noticeable for large
κσ where the radius of curvature approaches atomic scales.
Figure 6(c) provides insight into the origin of this trend. While
the spacing between wall atoms remains fixed, the first fluid
layer forms at a different radius. Since the number of atoms
is fixed, the spacing between potential minima scales as the
radius of the fluid layer divided by that of the wall layer.
This produces an effective decrease in the wall density with
increasing κσ . As for flat surfaces, the decrease in wall density
leads to a broader and lower density peak.

Past work shows that the degree of slip correlates more
strongly with lateral structure than fluid layering or wet-
ting [7,11,12,17,19,20,43,47–49,54]. Even featureless walls
that are perfectly wetting produce strong layering peaks, but
they provide a translationally invariant surface that cannot
transmit friction. The drag coefficient β only depends on
the variation in surface potential that is related to lateral
corrugation (Fig. 6). As noted in Sec. II D this lateral
corrugation produces in-plane density modulations n1( �G)
[Eq. (4)] at the reciprocal lattice vectors �G that characterize
the periodicity of the substrate. The squared relative amplitude
|n1( �G)/n̄1|2 = S1( �G)/N1.

Figures 7(a) and 7(b) show S1(�q)/N1 for flat walls with
high and low density. Only positive qx and qy are shown since
the structure factor has the fourfold symmetry of the wall. The
weak circular ridges at a wave vector |�qf | ≈ 2π/σ reflect the
intrinsic short range order within a fluid. They are insensitive to
wall density but decrease with system size as 1/N1 since S1(�qf )
is constant. There are also sharp peaks at the reciprocal lattice
vectors characterizing the periodicity of the substrate. These
Bragg peaks represent the response of the fluid to the surface
corrugation and are independent of system size [7,22,23].

Previous studies of flat surfaces found that β increased with
the in-layer response to the substrate potential at reciprocal
lattice vectors (Refs. [7,22,23,54]). For flat surfaces the largest
response is at the shortest reciprocal lattice vectors, �G±1,0

and �G0,±1. As noted above, a denser surface tends to have
a weaker corrugation and thus smaller values of S1( �G)/N1.
In Figs 7(a) and 7(b) the peaks for a = 1.2σ are about 40
times larger than those for a = 0.75σ . Larger systems had to
be used for a = 0.75σ to reduce the circular ridge from the
diffuse background below the Bragg peaks.

Figures 7(c) and 7(d) show S1(�q)/N1 for the same atomic
spacings but with curvature κσ = 0.26. Here the cylinder
axis is along the 110 direction and the curvature breaks the
symmetry between x and y directions. The peaks along the
axis of the cylinder change relatively little (∼10%) from the
values for flat surfaces, but the peaks along the direction of
curvature change dramatically. From our previous arguments
we expect the curvature to produce a larger effective spacing
and thus a larger Bragg peak. This is consistent with the order
of magnitude increase in the peak height for the dense surface,
a = 0.75σ . However the Bragg peak for the sparse surface,
a = 1.2σ , is smaller by about a factor of 3. The reason is that
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FIG. 7. In-plane order as characterized by normalized structure factor S1(�q)/N1 for two lattice spacings, a = 1.20σ [(a), (c), and (e)] and
0.75σ [(b), (f), and (d)], with εwf = 0.1ε. Panels (a) and (b) show results for flat walls with x axes along (110). Panels (c) and (d) show results
for cylindrical walls with κσ = 0.26 and axes along (110) direction. Panels (e) and (f) show results for cylindrical walls with κσ = 0.24 and
axes along the (100) direction.

the relative spacing of fluid and wall atoms is also important.
The fluid can respond more to the potential when the Bragg
peak is close to the circular ridge. Curvature moves the peak
away from the ridge for a = 1.2σ and towards the ridge for
a = 0.75σ .

In the following we focus on the wall-induced portion of
the Bragg peaks, S̃1( �G). We verified that increasing the system
size reduced the background from the circular ridge and did
not affect the value of S̃1( �G) obtained by subtracting this
background. The calculated values of S̃1( �G)/N1 at smallest
reciprocal lattice vectors are also tabulated in the Supplemental
Material for all the flow geometries and surface properties
included in this study [53].

The variation of S̃1( �G1,0)/N1 with surface curvature κ

is manifested in Fig. 8 for (110) flow at different surface
lattice spacings a. Note that the trends with curvature in
S̃1( �G1,0)/N1 are exactly opposite to the trends in Ls shown
in Fig. 5(a). For dense surfaces the Bragg peak rises by an
order of magnitude as curvature increases and the effective
corrugation increases. For the sparse surfaces, the Bragg peak
decreases monotonically because the associated wave vector
is moving away from the circular ridge associated with the
intrinsic spacing between fluid atoms. For the intermediate
wall density the two effects compete and the peak height has
a maximum at intermediate curvature.

The fundamental cause of these variations is the change in
the effective spacing aeff between potential energy minima
divided by the intrinsic spacing between fluid atoms. The
spacing between fluid atoms scales as n̄

−1/2
1 , where n̄1 changes

by of order 10% with interaction strength and other parameters.

The effect of curvature on aeff depends on orientation. For the
(110) orientation the axial spacing is not affected while the
spacing around the circumference scales as aeff = aRbc/Rw =
a(1 + κd1).

Figure 9(a) presents a clear picture of how the Bragg
peak height varies against aeff n̄

1/2
1 for the full range of wall

densities studied. Similar results are obtained for other wall-
fluid interaction strengths. The largest response is obtained
for aeff n̄

1/2
1 around 0.8 to 0.9, where the Bragg peak is

near the center of the circular ridge. The peak height falls

κσ
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FIG. 8. Variation of S̃1( �G1,0)/N1 (open blue) and S̃1( �G0,1)/N1

(closed black) with surface curvature for the same surfaces shown in
Fig. 5(a), i.e., εwf = 0.1ε and lattice spacing a = 1.2σ (triangles),
1.09σ (circles), 1.00σ (squares), 0.86σ (hexagons), and 0.75σ

(pentagons). Dotted lines are guides to the eye.
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FIG. 9. (a) Variation of S̃( �G)/N1 at �G1,0 for y axis (110)
orientation (open blue) and at the smallest �G for y axis along (100)
orientation (closed red) as a function of the relative effective spacing
aeff n̄

1/2
1 , i.e., the effective spacing of minima in the wall potential

energy aeff normalized by the mean spacing of the first layer n̄
−1/2
1 .

The symbols indicate lattice spacing a = 1.2σ (triangles), 1.09σ

(circles), 1.00σ (squares), 0.86σ (hexagons), and 0.75σ (pentagons).
(b) Variation of Ls as a function of effective spacing for cylindrical
Couette flow and for the same surfaces in (a). Dotted lines are guides
to the eye and εwf = 0.1ε.

off as aeff increases or decreases because the peak position
moves away from the intrinsic fluid spacing. The decrease in
corrugation with decreasing aeff produces a very asymmetric
curve that drops much more rapidly as aeff decreases. Note
that curvature does not change aeff along the cylindrical axis
for the 110 orientation and we observe little (<10%) change in
S̃1( �G0,1)/N1 with κ . Figure 9(b) replots the data from Fig. 5(a)
as a function of aeff . Note that the trends in Ls are exactly
opposite to those in S̃1( �G)/N1. Stronger order induced by the
solid leads to less slip.

The effect of curvature on S̃1( �G)/N1 differs considerably
for the (100) orientation where flow is along the next-nearest
neighbor direction. Curvature now rotates the angle θ between
the cylinder axis and the nearest potential energy minima as
well as changing the distance. Accounting for the change in
spacing around the circumference we find:

aeff = a
(
1 + κd1 + κ2d2

1

)1/2 ∼ a(1 + κd1/2), (23)

tan(θ ) = 1/(1 + κd1) ∼ 1 − κd1. (24)

Figures 7(e) and 7(f) show S1(�q)/N1 for the same curvature as
Figs 7(c) and 7(d) but with this new orientation. As expected,
the smaller change in aeff leads to smaller changes in the
Bragg peak heights. This is also consistent with the smaller

change in Ls with curvature for this wall orientation. Note that
the reciprocal lattice vectors rotate in the opposite direction
from the vector to adjacent potential energy minima and thus
towards the cylinder axis. As we now discuss, this change
in direction explains why curvature affects axial flow more
strongly than rotational flow for the (100) direction.

C. Relating slip length to structure

In this section, we describe a microscopic theory that
provides a quantitative relationship between the slip length,
curvature, and fluid structure and thus gives a deeper insight
into the mechanism of the wall-fluid coupling. By definition,
the slip length Ls is the fluid viscosity divided by the interfacial
drag coefficient. We have verified that for our simulations the
viscosity can be treated as a constant parameter. Thus, the slip
length is only a function of the strength of the viscous friction
at the wall-fluid interface, i.e., Ls is inversely proportional to
the drag coefficient β.

The force between the wall and the first fluid layer
dominates the drag force. It can be calculated using a
model for the closely related problem of friction between an
adsorbed monolayer and a solid substrate [22,23,54]. While
the fluid layer slides over the substrate, the density modulation
produced by the periodic substrate potential remains locked
in phase with the substrate. The relative motion of the
wall-induced modulation and the center of mass of the layer
leads to dissipation and thus a viscous drag. The rate of
energy dissipation is proportional to the energy stored in the
modulation and to the decay rate of energy into other modes
[22,23]. Equating this dissipation to the power per unit area
dissipated by drag, β�u2, gives an expression for β and an
associated time τslip = mn̄1/β.

Smith et al. [23] present expressions for β in the limit of
linear response where the modulation in areal number density
at wave vector �q and frequency ω, n(�q,ω), is proportional to
the substrate potential U (�q,ω):

n1(�q,ω) = −α(�q,ω)U (�q,ω), (25)

where α(�q,ω) represents a linear susceptibility to the substrate
potential. Their Eq. (10) gives

β =
∑

�G
|U ( �G)|2|Ĝ · �û|2| �G|2 Im[α( �G, �G · ��u)]

�G · ��u , (26)

where �G · ��u represents the oscillation frequency produced
by relative motion at slip velocity ��u and the last term on
the right-hand side becomes independent of ��u as ��u goes to
zero. Ĝ and �û are unit vectors along �G and ��u, respectively.
Note that β scales as the square of the Fourier components of
the substrate potential. The authors of Refs. [22,23] tested this
scaling over 3 orders of magnitude in β.

One of the complexities associated with using Eq. (26)
is that the substrate potential depends on height. One can
calculate the Fourier transform averaged over the density
profile in the first layer or one can use the Bragg peaks in
the structure factor to measure the effective potential. Using
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the general relation

S̃1( �G)

N1
=

∣∣∣∣n1( �G,0)

n̄1

∣∣∣∣
2

=
∣∣∣∣α( �G,0)

n̄1

∣∣∣∣
2

|U ( �G)|2, (27)

one can rewrite the drag coefficient as

β = n̄1

∑
�G

|Ĝ · �û|2 S̃1( �G)

N1

1

tph( �G)
, (28)

where

tph( �G) ≡ lim
ω→0

m

n̄1| �G|2
ω|α( �G,0)|2
Im[α( �G,ω)]

(29)

can be interpreted as the lifetime of acoustic phonons in the
fluid layer [23] and is inversely proportional to the rate at which
the energy stored in this induced modulation is dissipated into
other density waves. The first factor in the sum of Eq. (28)
reflects the fact that only modulations with a component along
the direction of flow �û are affected by the motion and
contribute to dissipation.

Equation (28) explains many of the trends found above,
including the inverse correlation between S1( �G) and Ls seen in
Fig. 8 and in previous studies of flat surfaces [7,11,12,43,47–
49,55]. In the case of flat surfaces the predicted slip length
is independent of direction by symmetry (Table S3). For
example, for flow along the (110) orientation two of the four
reciprocal lattice vectors are along the flow and contribute to
β while the others are perpendicular. For the (100) orientation,
all four contribute to β but only half as much, since they
are at 45◦ to the flow. Curvature breaks this symmetry. For
the (110) orientation, curvature only affects the magnitude of
�G and S̃1( �G) along the rotation direction. This explains why
rotational slip lengths change but axial do not. For the (100)
orientation all four �G change in magnitude and all have the
same S̃1( �G). Thus the axial and rotational slip lengths change
in the same direction. The axial slip length is smaller because
�G rotates to be more along the axial direction [Eq. (24)].

In the cases considered in Refs. [22,23], the phonon lifetime
was nearly constant and the slip length scaled inversely with
the sum over the smallest wave vectors of S̃1( �Gmain)/N1.
Figure 10(a) shows there is a strong inverse correlation
between slip length and S̃1( �G)/N1 for all curvatures and
orientations considered. However, there is a significant spread
that must reflect a variation in tph.

Figure 10(b) shows the value of the phonon lifetime
calculated from Eq. (28) as a function of the ratio between
minima spacing and fluid atom spacing, aeff n̄

1/2
1 . All the data

collapse onto a universal curve that represents the intrinsic
response of the fluid layer. This represents a very compelling
confirmation of Eq. (28).

We have attempted to calculate tph independently by
measuring the susceptiblity to a sinusoidal potential. As
discussed in the Appendix, the potential oscillated with time
but was constant for heights below the first minimum in the
density shown in Fig. 3. For a = 1.0 (aeff n̄

1/2
1 = 0.82) we

find tph/τ = 0.92, which is in excellent agreement with the
numerical results in Fig. 10(b). However, for aeff n̄

1/2
1 = 0.6
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FIG. 10. (Color) (a) Variation of slip length Ls as a function of
the first peak in the structure factor S̃1( �Gmain)/N1 for cylindrical
Couette flows along (110) (blue) and (100) (red) directions and axial
cylindrical flows along (110) (black) and (100) (green) directions.
Results are shown for lattice spacing a = 1.2σ (triangles), 1.09σ

(circles), 1.00σ (squares), 0.86σ (hexagons), and 0.75σ (pentagons)
and different wall-fluid interactions from Table I: A (open), B
(closed), C (right-side left triangle and pentagon), and D (diamond
and right-side up-triangle). Dotted lines are guides to the eye. (b)
Variation of phonon lifetime tph from Eq. (28) with S̃1( �G) integrated
over the entire first layer as a function of the relative effective spacing
aeff n̄

1/2
1 .

and 1.0 the calculated values of tph are much larger than the
numerical results, tph/τ = 0.62 and 0.61, respectively. This
deviation reflects the fact that Eqs. (25)–(28) assume that the
density modulations in the first layer are independent of height.
This assumption is reasonably accurate for aeff = 1.0 but there
are strong variations with height for larger and smaller aeff .

Figure 11 shows the cosine Fourier transform n( �G) of the
local area density as a function of height for flat surfaces of
different a. A negative value corresponds to density peaks
out of phase with the solid substrate so fluid atoms lie in gaps
between solid atoms. Positive values correspond to fluid atoms
lying above solid atoms.
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FIG. 11. (a) Variation of cosine Fourier transform n( �G) of the
local area density (averaged over a thin slice) as a function of height
for flat surfaces where εwf = 0.1ε and a = 1.2σ (solid red), 1.00σ

(dashed green), and 0.75σ (dotted blue). The thin solid line designates
n( �G) = 0. (b) Fluid density profiles for the same surfaces.

For a = 1.00σ the order is similar to that in an fcc crystal
with all atoms in the first fluid layer above gaps in the solid.
Atoms in the second layer lie above gaps in the first layer
and thus above solid atoms. For smaller and larger a the
oscillations in in-plane order do not correspond with the peaks
and troughs in the density versus height. The sign of n( �G)
changes within the first layering peak in both cases. Indeed, for
a = 0.75σ , the sign change occurs near the density peak of the
first layer. The transition to n( �G) > 0 indicates that the atoms
are not responding to the direct interaction with the wall but
instead to the density modulation in fluid atoms that lie closer
to the wall where n( �G) < 0. The lack of coherence in the first
density peak reduces the lifetime of the associated mode and
thus tph is smaller than in the two-dimensional approximation
of Eq. (29).

It is possible to choose different definitions of the layer
width that improve the quantitative agreement with Eq. (28).
For example, choosing the top of the first layer to coincide
with the height where n( �G) first becomes positive improves
quantitative agreement in all cases. However, deviations for
large aeff remain larger than the statistical uncertainties.

In Refs. [19,20], the drag coefficient β along the axial
direction was explored for carbon nanotubes. They used a
fluctuation dissipation argument that is closely related to the
above discussion in the linear response limit. They find

β = tF n̄1

kBT

∑
�G

S1,eq( �G)f 2
1 ( �G), (30)

where tF is the force decorrelation time at equilibrium and
f1( �G) is the Fourier component of the force field along the flow
direction. They did not specifically state that the equilibrium
structure factor rather than the induced peak should be used
in Eq. (30) but the density modulations were too small to
influence S1( �G) in their system and this identification is
consistent with their discussion.

Note that Eq. (30) has many similarities to Eq. (26). Since
f1( �G) = U ( �G)( �G · �û), both expressions predict quadratic
scaling of β with substrate potential. This is the lowest order
scaling allowed by symmetry and the quadratic scaling was

confirmed in Refs. [22,23] over 3 orders of magnitude in β.
As discussed above, S1,eq( �G) is related to the response to the
substrate potential.

In the Appendix we show that Eq. (30) is quantitatively
consistent with both Ls and the theory of Smith et al. [Eq. (28)]
for a model potential that is uniform throughout the first
layer. However, for the actual atomistic potential, Eq. (30)
is less accurate because of the variations in order shown
in Fig. 11. Falk et al. [20] note that the rapid decay of
the potential corrugation with height leads to a quantitative
discrepancy from their theory by a “constant prefactor of 10 or
less, depending on the liquid.” The Appendix shows that the
prefactor may depend on the solid as well as the liquid. We
also show that the initial fluctuation-dissipation argument that
leads to Eq. (30) breaks down for atomistic interactions.

IV. SUMMARY AND CONCLUSIONS

We have used molecular dynamics simulations of flows in
planar and cylindrical geometries to study the variation of the
slip length with surface curvature for a range of geometries
and surface interactions. Curvature at nanometer scales can
increase or decrease Ls by an order of magnitude, depending
on the direction of flow and surface geometry. The results
explain why little change in Ls was seen in one previous
study [21] while another found large changes [19,20].

The slip length scales inversely with the viscous drag β

between the first fluid layer and the solid wall, Ls = μ/β. As
in previous studies of flat surfaces [7,11,12,17,19,20,43,47–
49], the drag is directly related to lateral density modulations
induced in the fluid by the wall potential. The magnitude of this
epitaxial order increases with the strength of the corrugations
in the wall potential and also with the susceptibility of the fluid
to respond to the potential. This susceptibility is greatest when
the separation between minima in the potential is comparable
to the spacing between fluid atoms in the first layer.

Curvature changes the effective separation aeff between
minima because the fluid atoms lie at a different radius than
the solid substrate. As shown in Fig. 6, positive curvature
increases the spacing because fluid atoms are at a larger radius,
while negative curvature decreases the spacing. The fractional
change in the spacing between potential minima is ∼κd1 where
d1 is the height of the first fluid layer above the solid.

A natural measure of the ratio between the spacing of
minima and the spacing between fluid atoms is aeffn

1/2
1 ,

where n1 is the areal density of fluid atoms in the first layer.
Independent measures of the susceptibility (see Appendix)
show that the fluid is most able to lock into the potential
corrugation when aeffn

1/2
1 ≈ 0.8 and drops as aeff increases or

decreases. Figure 9(b) shows that the slip length is smallest (β
is largest) at slightly larger aeff and changes much more rapidly
with decreases in aeff than increases in aeff . This asymmetry
reflects changes in the strength of the periodic corrugation
from the substrate. Increasing the spacing between solid atoms
allows fluid atoms to penetrate more deeply into the spaces
between them and greatly increases the lateral variation in
potential energy. Decreasing the spacing betwen solid atoms
makes the potential more nearly constant. As aeffn

1/2
1 decreases

below 0.8, the decrease in corrugation and susceptibility both
reduce β, leading to a rapid rise in Ls . As aeffn

1/2
1 increases
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above 0.8, the increase in corrugation partially offsets the drop
in susceptibility and Ls rises slowly.

Curvature does not affect the spacing along the cylinder
axis. This explains why there is almost no change in Ls for
axial flow and large changes for radial flow when the nearest-
neighbor atoms of a square surface lattice are aligned along the
axis. However, when the next-nearest neighbors are along the
cylinder axis, Ls changes more for axial flow than radial flow.
This change in behavior can be understood by considering
how the density modulations produced by the substrate are
affected by flow. The largest modulations are at the smallest
reciprocal lattice vectors of the substrate �G. Flow only affects
modulations with a component of �G along the flow velocity
�v. When the nearest-neighbor direction is along the axis
there is a reciprocal lattice vector along the axis and another
perpendicular. Curvature only affects the perpendicular vector
and thus does not affect axial flow. When the next-nearest
neighbor direction is along the axis, the reciprocal lattice
vectors have both axial and radial components. Curvature
rotates the reciprocal lattice vectors towards the axial direction
so axial slip lengths change most [Eq. (24)].

Falk et al. considered axial flow over nanotubes with
hexagonal symmetry [19,20]. In this case the reciprocal lattice
vectors are not parallel to the nearest-neighbor spacing. Thus
they found large changes for axial flow when the nearest-
neighbor direction was along the axis. For this lattice there
should be almost no change in axial flow if the nearest-
neighbor direction is along the radial direction.

All the observed changes in slip length can be understood
in terms of a simple model for friction between the first fluid
layer and the substrate [22,23]. In this model the viscous drag
is directly related to |Ĝ · v̂|2 times the strength of the density
modulations produced by the substrate as measured by the
in-layer structure factor S1( �G)/N1. The changes in structure
factor are inverse to the changes in Ls noted above [Figs. 9
and 10(a)]. It is largest when aeffn

1/2
1 is near 0.9 and drops off

more rapidly at small aeff because the corrugation becomes
weaker as the surface is more closely packed.

The only remaining factor in the theory is the inverse
phonon lifetime tph which describes the rate of energy
dissipation out of the density modulations. Numerical data
for all surface densities, orientations, and interactions collapse
onto a universal curve when tph is plotted against aeffn

1/2
1

[Fig. 10(b)]. The phonon lifetime is largest for aeffn
1/2
1 ≈ 0.8

where the fluid can most easily lock into epitaxy with the
substrate. When the spacing between fluid atoms is larger or
smaller, this locking is difficult and the lifetime decreases.
The lifetime is futher suppressed by the fact that the density
modulations are not uniform across the first layer when spacing
between fluid atoms deviates from aeff (Fig. 11).

We compared our results to a model proposed by Falk
et al. that is also based on the friction between the substrate
and first fluid layer [19,20]. The results are equivalent to the
theory of Smith et al. [22,23] when the potential producing
the density modulations is uniform across the two layers
(Appendix). This quantitative agreement breaks down for the
more realistic potentials used in the main text because the
density modulations vary across the first layer. As noted by
Falk et al., the exponential decrease in density modulation

with height causes quantitative discrepancies between Ls and
Eq. (30) by up to an order of magnitude.

Although this study used simple models for both fluid
and solid surfaces, the observed trends with curvature should
be quite general and the theoretical approach [22,23] can
be extended to more complex cases. Potentially important
applications are transport of fluids inside and outside carbon
nanotubes [19,20,56–60] and other other nanotubes and
nanowires. Moreover, many experimental surfaces are rough
down to nanometer scales. In this case the effect of topography
cannot be determined by applying a constant slip length along
the surface. There will be intrinsic variations in the local slip
boundary condition due to curvature. Including these may
explain deviations between past simulations and continuum
theories that assume constant Ls [13,14,17,61] and allow
construction of a more accurate mesoscopic flow boundary
condition.
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APPENDIX

In this Appendix we describe simulations that were used to
calculate Ls using the models in Refs. [19,20,22,23]. These
two dimensional models implicitly assume that the periodic
potential from the substrate and the response of the fluid are
independent of height within the first layer. In the following
we associate the first layer with all atoms in the density peak
nearest to the wall. The end of the layer is taken to be the
position of the first minimum after the peak in plots like Fig. 3
or Fig. 11. All atoms in the first layer feel the same lateral
potential from the wall.

The wall-fluid interaction along the z direction is modeled
by a Lennard-Jones 9/3 potential:

V (z) = 4εwf

[
2

15

(
σ

z

)9

−
(

σ

z

)3]
− Vc, for r < rc,

(A1)

where εwf = 0.1ε and the potential is zero for r > rc. To model
the lateral corrugation of the wall potential, a lateral force was
applied only to fluid atoms in the first layer:

�F (x,y) = −∇V1(x,y), (A2)

V1(x,y) = 2U1[cos(Gx) sin(ωt) + cos(Gy)], (A3)

where G = 2π/a and the strength of the potential corrugation
U1 = 0.1ε. We compare to simulations with flow along the
x direction and the corrugation along this direction varies
sinusoidally in time with frequency ω.

The slip length in Eq. (6) is Ls = μ/β. To determine
β from the theory of Smith et al. we need to calculate
the phonon lifetime from Eq. (29). In the limit of small
ω, the imaginary part of α(G,ω) is proportional to ω and
the magnitude becomes equal to the real part. In this limit
we can use Eq. (25) to write ω|α(G,0)|/Im[α(G,ω)] =
ωRe[n1(G,ω)]/Im[n1(G,ω)], where n1(G,ω) is the areal
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density modulation in the first layer due to the time-dependent
corrugation in Eq. (A3). We evaluated this ratio for progres-
sively lower frequencies to determine the limiting value for
each system. The ratio typically converged for ωτ < 0.001.
Then |α(G,0)| was determined from the ratio |n(G,0)|/U1

evaluated in steady state (ω = 0) and tph was calculated from
Eq. (29).

For the ideal wall potential of Eq. (A3), we can also
quantitatively compare Eq. (28) with the model proposed
by Falk et al. [19,20]. The periodic force in Eq. (30) is
f1( �G) = ( �G · �û)U ( �G). Thus the only additional quantity to
be evaluated is the force decorrelation time:

tF =
∫ ∞

0 dt〈Fx(0)Fx(t)〉
〈Fx(0)Fx(0)〉 , (A4)

where Fx is the total force between the fluid and the substrate
along the x axis. Note that equating the expressions for β from
the two theories gives a relation between tF and tph:

tF

kT

| �G|2n̄2
1

|α( �G,0)|2 S1,eq( �G) = 1

tph( �G, �G · ��u)
. (A5)

Falk et al. note that there is a long tail in the integrand
for the force decorrelation time due to hydrodynamic effects.
They argue this should not be included in tF . Following their
procedure, we evaluated tF by taking the plateau value of
the integral of Eq. (A4). An alternative Green-Kubo relation
that avoids long tails has been developed by Huang and
Szlufarska [62].

Calculated results for the slip length from both theories
are compared to values determined from flow simulations in
Fig. 12. All results are equivalent within the statistical errors
and show the trends with the ratio of wall atom to fluid atom
spacing, an̄

1/2
1 , that were identified in the main text. The slip

length is shortest when the wall spacing and fluid spacing
are similar so the fluid can more readily lock in phase with
the substrate. The slip length increases with the mismatch in
lengths.

a n̄ 1/ 2
1

0.6 1

L s
/σ

5

10

15

20

25

30

0.8

FIG. 12. The variation of slip length as a function of the relative
wall spacing an̄

1/2
1 for the ideal wall potential of Eq. (A2). Asterisks

show the slip length determined directly from the Couette profile,
diamonds are from the theory of Smith et al. [Eq. (28)], and squares
are from the theory of Falk et al. [Eq. (30)]. Symbol sizes are
comparable to statistical error bars.

a n̄ 1/ 2
1

β
F

/β

0.4

0.6

0.8

1

0.6 0.8 1.0

FIG. 13. Ratio of the drag predicted by Eq. (A6) to the measured
drag β = μ/Ls as a function of the relative wall spacing an̄

1/2
1 . Red

crosses show results for the ideal wall potential of Eq. (A2). Blue
symbols show results for flow along the (110) direction of flat atomic
walls with lattice spacing a = 1.2σ (triangles), 1.09σ (circles), 1.00σ

(squares), 0.86σ (hexagons), and 0.75σ (pentagons). The symbol
type indicates the wall-fluid interaction from Table I: A (open), B
(closed), C (right-side left triangle and pentagon), and D (diamond
and right-side up-triangle).

Figure 12 shows that both two-dimensional theories for Ls

are accurate for all wall densities when the physical system
is effectively two dimensional. However, as noted in the main
text, atomic surfaces produce a lateral corrugation in potential
that can change substantially within the first layer. The theory
of Smith et al. remains quantitatively accurate when the wall
and fluid have similar spacings but predicts too large a phonon
lifetime for larger and smaller a. One can view this as a
reduction in the lifetime of density modulations that are not
coherent across the layer.

We found significant quantitative differences between Ls

and the theory of Falk et al. for atomistic surfaces with all
spacings. When one evaluates f1 at the density peak, as they
suggest, their model gives values of Ls that are up to an order
of magnitude too large. Given the variation in modulation
with height one may wonder whether other definitions could
improve the quantitative agreement, but we also found a
breakdown in the fluctuation-dissipation relation used to derive
their expressions. Their starting point is

βF =
∫ ∞

0
dt〈Fx(0)Fx(t)〉/AkBT , (A6)

where the left-hand side represents the dissipation, the right-
hand side is the fluctuation and the superscript F indicates
that this is the prediction of their model. Figure 13 shows the
ratio of βF to the directly measured value of β = μ/Ls . The
ratio decreases linearly with a and Eq. (A6) is wrong by up
to a factor of 2. Of course this does not represent a failure of
the fluctuation-dissipation approach but rather an assumption
about how the dissipation is related to flow. Converting βF to
a slip length requires assuming that the first layer is moving
coherently and this approximation is invalid because of the
rapid change in corrugation potential with height.
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