
PHYSICAL REVIEW E 93, 013102 (2016)

Hydraulic transport across hydrophilic and hydrophobic nanopores:
Flow experiments with water and n-hexane
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We experimentally explore pressure-driven flow of water and n-hexane across nanoporous silica (Vycor
glass monoliths with 7- or 10-nm pore diameters, respectively) as a function of temperature and surface
functionalization (native and silanized glass surfaces). Hydraulic flow rates are measured by applying hydrostatic
pressures via inert gases (argon and helium, pressurized up to 70 bar) on the upstream side in a capacitor-based
membrane permeability setup. For the native, hydrophilic silica walls, the measured hydraulic permeabilities can
be quantitatively accounted for by bulk fluidity provided we assume a sticking boundary layer, i.e., a negative
velocity slip length of molecular dimensions. The thickness of this boundary layer is discussed with regard to
previous capillarity-driven flow experiments (spontaneous imbibition) and with regard to velocity slippage at the
pore walls resulting from dissolved gas. Water flow across the silanized, hydrophobic nanopores is blocked up
to a hydrostatic pressure of at least 70 bar. The absence of a sticking boundary layer quantitatively accounts for
an enhanced n-hexane permeability in the hydrophobic compared to the hydrophilic nanopores.
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I. INTRODUCTION

Liquid flow and shear in pores a few nanometers across
plays a dominant role in a plethora of processes and phe-
nomena encompassing transport across biomembranes and
biological tissues [1–3], geological erosion and hydraulic
fracturing [4,5], the synthesis of nanostructured hybrid ma-
terials by electrodeposition [6] or melt infiltration [6–11], the
separation of liquids by filter membranes, the durability of
concrete [12–14], and friction [15–17]. The possibility for
energy storage by forced liquid intrusion in nanoporous media
is another topic which increasingly attracts interest both from
a fundumental and an applied perspective [18–21].

Also the goal for an engineering of flows of minute amount
of liquids in small devices, i.e., the design of laboratory-on-
a-chip devices [1,22–41], motivates research activities with
regard to the flow properties of liquids in extreme spatial
confinement.

Similarly as for the thermodynamic equilibrium properties
of pore-confined condensed matter [11,42–46], a couple of
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interesting questions regarding the transport behavior for the
flow in such restricted geometries arise [47]: (i) Can the
macroscopic wetting properties or values of fluid parameters,
such as the viscosity η, surface, and interfacial tensions σ ,
accurately describe a liquid down to very small length scales,
on the order of the size of its building blocks [36,48–50]? (ii)
What happens with the conventional hydrodynamic no-slip
shear stress boundary condition at the confining walls? (iii)
How sensitive depends the nanofluidic transport behavior on
dissolved gases?

Measurements with the surface-force apparatus (SFA),
which allow one to study shear viscosities [51–57] and
frictional properties [15–17] of thin films with thicknesses
down to subnanometers, have revealed that, depending on the
shear rate, the type of molecule, and the surface chemistry,
sometimes remarkably robust bulk fluidity could be observed
and sometimes also sizable deviations.

In general, the enormous academic and economic interests
on the interfacial behavior of liquids are manifested by a
vast publication rate concerning this issue during the past
decade. Many different techniques like SFA, atomic force
microscopy, particle image velocimetry, fluorescence recovery
after photobleaching and controlled dewetting as well as
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molecular dynamics or lattice Boltzmann simulations were
utilized [36,58–62].

To date many factors have been found that seem to influence
the boundary conditions. The most prominent and maybe the
least controversially discussed among them is the fluid-wall
interaction expressed in terms of the wettability [30,60,62–76].
The weaker the interaction the more likely the slip. In addition,
shear rates beyond a critical value are supposed to induce slip,
too [77–81]. In contrast, the influence of surface roughness is
rather debatable [82]. There are results for a decrease [64,83]
as well as for an increase [84] of the slip length with increasing
surface roughness. Furthermore, dissolved gases [59,85–87],
the shape of the fluid molecules [68], or the add-on of
surfactants [88] seem to influence the boundary conditions. In
summary, there is a huge set of factors (see Refs. [36,58,85,89])
and certainly a complex interplay among many of them that
finally determines the interfacial flow behavior.

Pioneering experiments to probe transport behavior through
nanoporous media were performed by Nordberg [90] and
Debye and Cleland in the middle of the 1900s [91]. Nordberg
studied water and acetone flow, whereas Debye and Cleland
reported on the flow of a series of linear hydrocarbons
(n-pentane to n-octadecane) through nanoporous Vycor glass.
Flow rates in agreement with Darcy’s law, the generalization of
Hagen-Poiseuille’s law for simple capillaries towards porous
media [92], were observed.

As Abeles et al. [93] documented by an experimental
study on toluene using also nanoporous Vycor glass, flow
in nanoporous media can be through molecular flow (also
termed Knudsen diffusion [94]), surface diffusion, and viscous
liquid flow driven by capillary forces (termed “spontaneous
imbibition”) [92,95,96] or by external hydraulic pressure
(called “forced imbibition”) [97,98], depending on the size
of the pores and on the temperature and pressure of the fluid.

In the following we focus on forced imbibition dynamics of
water and n-hexane across monolithic Vycor glass monoliths
with two distinct mean pore diameters. After a short intro-
duction to flow across spongelike porous media, we present
our experimental setup and discuss our results with regard to
the hydrodynamic boundary conditions at the pore walls as a
function of surface functionalization and the possible influence
of dissolved gases.

II. PRINCIPLES OF LIQUID FLOWS
IN A NANOPOROUS MEDIUM

The measurements presented below involve the flow of
liquids through Vycor, a complex pore network comparable to
a sponge. As simple approximation one can reduce the problem
to the flow of a fluid through a tiny capillary. Consequently, the
law of Hagen-Poiseuille is the starting point of the subsequent
development of a theory of the liquid flow in a pore network.

A. Liquid flow in isotropic pore networks

For a given pressure difference �p applied along a
cylindrical duct with radius r and length � the volume flow
rate V̇ is determined by

V̇ = π r4

8 η �
�p. (1)

A

B

FIG. 1. Illustration of the meaning of the tortuosity τ of a pore
network such as Vycor. Left: For an isotropic distribution of the pores
only every third pore is subjected to the pressure gradient yielding
τ = 3. Right: For meandering pores an additional factor of L

D
must

be introduced to correct the length D of the direct interconnection of
two points for the actual path length L.

Here η denotes the dynamic viscosity of the flowing liquid.
In the next step, one has to evolve concepts in order to
account for the spongelike structure of an isotropic pore
network. In general such a network can be characterized by
three quantities. The mean pore radius r0 and the volume
porosity φ0, as obtained from sorption isotherm experiments,
are probably the most intuitive ones among them. With only
these two parameters a porous cuboid with edge length a (and
cross-sectional area A = a2) consisting of

n = φ0 A

π r2
0

(
⇔ φ0 ≡ Vvoid

Vsample
= nπ r2

0 a

a3

)
(2)

cylindrical pores with radius r0 and length a can be con-
structed. Assuming the capillaries to be aligned in flow
direction the flow rate through the whole matrix is then given
by n times the single pore flow rate Eq. (1) with r = r0 and
� = a. However, so far this description still lacks information
on the orientation of the pores.

To account for the isotropy of the network as indicated in
Fig. 1 (left) it is necessary to introduce a third parameter, the
so-called tortuosity τ , along with the transformation

V̇ −→ 1

τ
V̇ (3)

of the volume flow rate Eq. (1). Pores totally aligned in the
flow direction would yield τ = 1, whereas isotropic distributed
pores would result in τ = 3. For a random orientation only
every third pore is subjected to the pressure gradient and hence
contributes to the flow. Therefore, the net flow rate has to be
divided by the factor three. But no correction is needed if all
pores are aligned in flow direction and as a result of this it
is τ = 1. In this way the tortuosity is a simple method for
accounting for the orientation of the pores with respect to the
direction of the pressure drop.

To date several techniques have been applied to extract the
tortuosity of the isotropic pore network in Vycor glass. Deduc-
ing the diffusion coefficient of hexane and decane by means of
small-angle neutron-scattering (SANS) measurements τ was
found to be in the range of 3.4–4.2 [99]. Gas permeation
measurements performed with an in-house apparatus resulted
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in τ = 3.9 ± 0.4 [94,100]. Finally, calculations based on
three-dimensional geometrical models yielded a value of
approximately 3.5 [101].

Interestingly, all values show a significant deviation from
τ = 3 as derived from the previous considerations. Accord-
ingly, there must be an additional aspect of the geometry that
has so far been neglected. Regarding Fig. 1 (right) this issue
is apparent: The pores are not straight but rather meandering.
In consequence, the length L of the path from any point A to
another point B is always larger than the length D of the direct
interconnection of the two points. To correct the pore length for
the larger flow path an additional factor of L

D
for the tortuosity

must be introduced. Assuming τ = 3.6 this consideration
yields for the Vycor pore network L ≈ 1.2 D. This result can
vividly be interpreted as follows: The shortest way from the
bottom of the previously introduced sample cuboid to its top is
about 20% longer than its edge length a. With all the preceding
considerations in mind one is able to derive an expression that
describes the flow of a liquid through a porous network. For a
given porous matrix with cross-sectional area A and thickness
d (along which the pressure drop �p is applied) the normalized
volume flow rate 1

A
V̇ is determined by

1

A
V̇ = K

η d
�p. (4)

This expression is also known as Darcy’s law [91]. The pro-
portionality constant K is the so-called hydraulic permeability
of the matrix. It is given by

K = φ0

8 τ
r2

0 . (5)

Note that the permeability is solely specified by the matrix’
internal structure and consequently it should be independent
of the liquid and of the temperature.

B. Influence of confinement

So far we have completely neglected that the mean pore
diameters of the pore network are orders of magnitude smaller
than characteristic in usual flow paths in common miniaturized
fluid manipulating applications. Indeed, the pore radii are
merely 10 to 100 times larger than typical molecular diameters
of simple liquids like water. For that reason it is evident that
some questions about the influence of the confinement on the
fluid dynamics arise. In the following the two most apparent
ones will be discussed.

1. Validity of continuum mechanical theory

Unitl now we have assumed the law of Hagen-Poiseuille to
be valid even in pores with diameters below 10 nm. However,
one must not forget that this law is based on the principles of
continuum mechanical theory, in which the behavior of a fluid
is determined by collective properties such as the viscosity η

and the surface tension σ . This assumption certainly holds for
ensembles of 1023 molecules. But within the pore confinement
such amounts are not reached. Assuming water molecules to
be spheres with a radius of 1.5 Å in a hexagonal close-packed
structure one arrives at only 1000 molecules per cross-sectional
area. As a consequence, the validity of the continuum theory
has to be put into question.

On this score especially the development of the SFA has
stimulated extensive studies over the past three decades. The
mobility of water and several hydrocarbons in extremely
confined films was examined by experiment [57,102,103]
and in theory [104]. These studies revealed a remarkable
robustness of the liquids’ fluidity down to nanometer and
even subnanometer spatial confinement. Moreover, the validity
of macroscopic capillarity conceptions at the mesoscale was
demonstrated [48,105–107]. The measurements presented be-
low will provide further hints regarding whether the concepts
of viscosity still remain valid in nanopore confinement.

2. Validity of the no-slip boundary condition

The law of Hagen-Poiseuille implies the no-slip boundary
condition. This means that the velocity of the fluid layers
directly adjacent to the restricting walls equal the velocity of
the walls themselves. Nowadays it is indisputable that this
assumption does not hold unreservedly. In the 1950s Debye
and Cleland introduced both slipping and sticking fluid layers
at the pore walls in order to interpret their seminal experiment
on liquid flow across porous Vycor [91]. In that way, they were
able to quantitatively account both for increased as well as
for decreased measured flow rates (compared to the predicted
ones) within their examinations of the flow of hydrocarbons
through porous Vycor.

The concepts of a sticking and of a slipping liquid compared
to the traditional no-slip boundary condition are exemplified
in Fig. 2 for a cylindrical tube with radius r0. The degree of
slip can be quantified by the slip length b with r0 ≡ rh − b.
The hydrodynamic pore radius rh measures the distance from
the pore center to the radius where the streaming velocity
reaches zero. In this representation the sticking layer boundary
condition is indicated by a negative slip length b, whereas a
positive slip length is typical of a slip boundary condition. The
standard no-slip condition yields b = 0 meaning r0 = rh.

FIG. 2. Illustration of the possible boundary conditions along
with the corresponding parabolic velocity profiles in a cylindrical tube
with radius r0. Mass transport takes place only where the streaming
velocity differs from zero. Left: The reduction of the net flow rate is
due to sticking layers at the pore walls, which do not participate in the
mass transport. In addition the maximum velocity in the pore center
is smaller than for no-slip boundary conditions (middle) because
of the smaller hydrodynamic pore radius rh < r0. This gives rise
to a further dramatic decrease in the flow rate. Right: In contrast,
a slipping liquid with a hydrodynamic pore radius rh > r0 causes
the highest streaming velocity and, consequently, the highest net
flow rate.
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Because of the modified boundary conditions one has to
substitute rh for r in Eq. (1). This procedure yields

K = φ0

8 τ

r4
h

r2
0

= φ0

8 τ

(r0 + b)4

r2
0

(6)

for the permeability of the membrane. Equation (6) illustrates
the high sensitivity of K on b, provided b is on the order
of or even larger than r0. Therefore, measuring the hydraulic
permeability gives direct access to the slip length b for a given
liquid under given conditions.

One has to keep in mind that boundary conditions and
fluid properties derived from measured flow rates are subject
to a central restriction: One cannot verify the predefined
parabolic shape of the velocity profile in the mesoscopic flow
geometry. This is because there is no direct access to the
profile itself but only to flow rates, which correspond to the
velocity profile integrated over the whole pore cross-sectional
area. Nevertheless, molecular dynamics simulations prove the
formation of parabolic flow profiles even down to channel radii
of three molecular diameters [108–110] and, hence, justify
inferences based on this major assumption.

C. Forced imbibition

In the case of forced imbibition, where an external pressure
is applied to induce liquid flow in a porous medium, the
dynamics of the flow through a host of thickness d and
cross-sectional area A (that is already completely filled with
the liquid) can directly be related to Darcy’s law Eq. (4) in
conjunction with the permeability K according to Eq. (6). For
a pore network with mean pore radius r0, porosity φ0, and
tortuosity τ and with the liquid’s viscosity η, in terms of the
volume flow rate this finally reads

V̇ = Aφ0

8 d η τ

r4
h

r2
0︸ ︷︷ ︸

CV

�p (7)

with �p denoting the (externally generated) pressure drop that
is applied along d. By determining the prefactor CV through
a measurement of V̇ (�p) the hydrodynamic pore radius rh is
easily accessible.

III. EXPERIMENTAL

A. Materials

The spatial restrictions in the nanometer range were
provided by the spongelike topology of porous Vycor glass
(Corning, code 7930). Vycor is virtually pure fused silica
glass permeated by a three-dimensional network of intercon-
nected, elongated pores [42,111–113]. The experiments were
performed with two types of Vycor significantly differing in
the mean pore radius r0 only, whereas they both coincide
in the volume porosity φ0 ≈ 0.3. The aspect ratio a = pore
diameter and pore length of Vycor glasses is between 5 and
7 [111–113]. For convenience, the two types will be termed V5
(r0 = 3.4 nm) and V10 (r0 = 5.0 nm) in the following. The
matrix properties have been determined by means of nitrogen
sorption isotherms performed at 77 K.

Prior to using, we subjected them to a cleaning procedure
with hydrogen peroxide and nitric acid followed by rinsing

in deionized Millipore water and drying at 200 ◦C in vacuum
for 2 days. This treatment ensures the removal of any organic
contamination on the large internal surface of the samples.
Until usage the samples were stored in a desiccator.

The Vycor membranes are highly hydrophilic. This is
a consequence of glass being a high-energy surface with
chemical binding energies on the order of 1 eV. Nearly
any liquid spreads on such surfaces. This behavior can be
comprehended considering the Young-Dupré equation [with
the indices solid (S), liquid (L), and vapor (V) of the interfacial
tension γ and the static contact angle θ0]

γSV = γSL + γLV cos θ0 . (8)

The empirical Zisman criterion predicts that any liquid
fulfilling γLV < γC (with the critical surface tension γC of
the surface) totally wets this surface. For glass it is γC ≈
150 mN

m [114]. Hence, even highly polarizable liquids like
water spread on silica surfaces (meaning θ0 = 0◦).

Moreover, silica substrates provide the simple opportunity
to alter the surface chemistry and thereby reduce the surface en-
ergy. This can be done by silanization [114]. Prior to silaniza-
tion the samples were flushed with trichloromethane (CHCl3)
several times. In the subsequent step they were exposed
to a 1:9 mixture of dimethyldichlorosilane [Si(CH3)2Cl2]
and trichloromethane for about 2 h. In the presence of
dimethyldichlorosilane low-energy methyl (CH3) groups were
substituted for the polar and, consequently, high-energy
hydroxyl (OH) groups at the glass surface. Afterwards the sam-
ples were again flushed with trichloromethane and methanol
several times.

It is important to perform this last step thoroughly since any
remainder of dimethyldichlorosilane in the sample potentially
reverses the silanization reaction in the presence of water,
e.g., from the humidity in the laboratory. In order to further
minimize the risk for such a reversal reaction the samples were
dried over a stream of dry nitrogen.

The samples were characterized again by means of nitrogen
sorption isotherms. They reveal a reduction in the mean pore
radius of approximately 4 Å, which is consistent with the
thickness of the attached methyl groups at the pore walls [115].
The porosity is likewise reduced. The values are listed in
Table I. We will denote the silanized samples sV5 and sV10,
respectively.

For the permeability experiments we employed deionized
Millipore water and n-hexane with a purity of 99% as delivered
from Merck.

B. Hydraulic permeability apparatus

The experimental setup for the forced throughput mea-
surements, the hydraulic permeability apparatus (HPA), is
illustrated in Fig. 3. All parts liquid containing are immersed
in a water bath, which can be heated up to 80 ◦C. The

TABLE I. Properties of the silanized Vycor batch as extracted
from isotherm measurements.

Sample batch Mean pore radius r0 Volume porosity φ0

sV5 (3.0 ± 0.1) nm 0.235 ± 0.02
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FIG. 3. Ray-tracing illustration of the hydraulic permeability
apparatus (HPA) consisting of a gas handling and the actual flow
system. The latter is temperature controlled in a water bath. The gas
handling can be evacuated by a vacuum pump and can be filled with
helium or argon gas.

external pressure is provided by a highly pressurized gas. For
this purpose the flow system is connected to a gas handling,
which supplies the gas via valves 5 and 4. The valves 1, 2,
and 3 permit an initial evacuation of the handling; during the
measurements they are normally closed thereby separating the
(right) high-pressure side from the (left) low-pressure side. The
complete setup is manufactured inhouse and made of stainless
steel. This allows for maximum pressures of up to 70 bar,
which can be measured with a capacitive pressure transducer.
The pressure beyond the capacitor is fixed to the upper limit
of 1 bar by means of a blow off valve.

For most measurements the liquid was pressurized with
high-purity helium gas (6.0). This choice was made in order
to lessen the impact of a major flaw in the measuring method:
The liquid stands in direct contact with the highly pressurized
gas. Some imaginable consequences will be discussed in the
next section. However, with the usage of an inert gas at least
chemical reactions can be prevented. What is more, helium is
the gas that is, at room temperature, the least soluble in wa-
ter [116]. In order to study a possible influence of the solubility
of the gas on the dynamics argon (purity 5.7) was used as well.

Via the supply channel the pressurized liquid in the reservoir
reaches the cell with the cylindrical sample of typically
d = 4 mm thickness and a diameter of 6 mm. The latter is thor-
oughly glued into a copper sample holder using the two com-
ponent, thermally conductive epoxy encapsulant Stycast 2850
with the catalyst 24LV from Emerson and Cuming. With this
procedure one must not only accomplish the task of fixing the
sample but also that of sealing the sample’s side facets in order
to guarantee the flow through the top and bottom facets only;
or, equivalently, the procedure should ensure that the pressure
drop is applied along the complete sample thickness d.

Beyond the sample cell the cylindrical capacitor is attached.
Due to the liquid flow through the sample the liquid level in
the capacitor rises thereby changing the capacitance. The latter
can accurately be ascertained employing a multifrequency

0 2 4 6 8
0

200

400

600

800

FIG. 4. Calibration measurements of the cylindrical capacitor
for water (open symbols) and n-hexane (filled symbols) at selected
temperatures. The capacitance C was measured as a function of the
liquid amount V filled into the capacitor. For the empty capacitor it
is C ≈ 15 pF.

LCR meter (HP 4275A) at the frequency f = 500 kHz. This
value was chosen with regard to water’s high dielectric loss
within the microwave range (roughly between 1 GHz and
1 THz), which would entail additional inaccuracies due to
the strong f dependency of the permittivity. For f = 500 kHz
the dielectric constant only shows the persistent dependence
on the temperature T .

For a direct relation between the shift in the capacitance C

and the related change in the liquid volume V in the capacitor
the latter was calibrated. For this purpose its capacitance was
measured while it was stepwise filled with specific amounts
of the respective liquid. Since the permittivity is a function of
the temperature this procedure was performed for all relevant
T . In general, each calibration was repeated at least 5 times.
Some of the resultant C(V ) curves are exemplarily shown in
Fig. 4.

The plots confirm the above-mentioned good applicability
of water because of its high dielectric constant as compared
with n-hexane. Additionally, the influence of the temperature
is clearly recognizable: With increasing T the polarizability
decreases due to the enhanced microscopic mobility of the
molecules. Macroscopically this behavior is expressed in terms
of a decreasing permittivity of the liquid.

One is now able to connect a certain change in C with an
equivalent change in V via a calibration factor Ccal that is the
slope of the shown calibration curves: dC

dV
≡ Ccal [115]. The

flow of n-hexane was measured at 50 ◦C instead of 60 ◦C (as
for water) because of the increasing noise in the proximity of
its boiling point at 69 ◦C.

Using Eq. (7) this finally results in a relationship between
the measured variation of the capacitance C as a function of
the time t (at a given applied pressure gradient �p) and the
flow dynamics in confinement,

Ċ = Ccal V̇ = Ccal CV �p, (9)

expressed in terms of the prefactor CV [see Eq. (7)]. The
most accurate way to deduce CV is to extract the slope of a
V̇ (�p) = Ċ(�p)

Ccal
plot.
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0 800 1600 2400
0.0

0.3
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FIG. 5. Time-dependent variation in the capacitance C of the
cylinder capacitor due to the flow of water through V10 at 25 ◦C for a
series of applied external pressures. The arrow indicates the direction
of increasing �p. The shown measurements correspond to 8 bar, 16
bar, 24 bar, 31 bar, 37 bar, 45 bar, 54 bar, and 70 bar. The data density
is reduced by a factor of 20.

IV. RESULTS AND DISCUSSION

A. Hydraulic transport across hydrophilic Vycor
with native silica surfaces

In this first part we will present results obtained from forced
throughput measurements on untreated Vycor. The raw data
signal of the capacitance change C as a function of the time t

is exemplarily shown in Fig. 5 for the flow of water in V10 at
T = 25 ◦C and for selected applied pressures generated with
helium gas. It is evident that with increasing �p the variation
in C with t , that is, the slope Ċ, increases gradually. This result
can directly be interpreted in terms of an increasing volume
flow rate V̇ = Ċ

Ccal
with increasing pressure.

In Fig. 6 some of the resultant volume flow rates V̇ of water
in both V5 and V10 at three different temperatures are plotted

0

6

12

18

24

0 10 20 30 40 50 60 700

3

6

9

12

FIG. 6. Volume flow rates V̇ of water in V10 (upper panel) and V5
(lower panel) as a function of the applied external pressure difference
�p at three different temperatures: 25 ◦C (square), 40 ◦C (circle), and
60 ◦C (triangle).

0
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16

24

32

40

0 10 20 30 40 50 60 700

4

8

12

16

FIG. 7. Volume flow rates V̇ of n-hexane in V10 (upper panel)
and V5 (lower panel) as a function of the applied external pressure
difference �p at three different temperatures: 25 ◦C (squares), 40 ◦C
(circle), and 50 ◦C (triangle).

as a function of the applied external pressure �p. The same
was done for the flow of n-hexane. Some of the corresponding
results are shown in Fig. 7. However, due to the rather low
calibration factor of n-hexane as compared with that of water,
the measuring time had to be increased in order to gain a
proper signal with sufficient resolution. For that reason the
overall data density is markedly reduced for n-hexane.

In principle all data sets show a linear relation compliant
with Eq. (9). The comparison between different temperatures
implies—at least for water—a distinct T dependence of
the proportionality constant CV: The latter increases with
increasing temperature. According to Eq. (7) this behavior
is solely determined by the temperature dependence of
the liquid’s viscosity. Qualitatively this is true: At higher
temperatures the lower viscosities cause an increase in CV.
But in the temperature region of interest the T dependency of
the viscosity of water is more distinctive than that of n-hexane.
This behavior renders the effect more pronounced for water.

In a subsequent step the values of the hydrodynamic pore
radii rh were calculated from the extracted slopes CV. Based
on the matrix properties stated earlier and on the known
sample dimensions A and d one arrives at the slip lengths
b = rh − r0 listed in Table II. The error margins in b represent
standard deviations. Some of the volume flow rate data do not
extrapolate to zero for zero pressure difference. This may result
from an underestimation of the error margins and/or systematic
errors in the tiny flow rates at small pressure differences, e.g.,
by small gas leaks in the setup or temperature drifts in the
pressure gauges. Along with the error bars in the CV data it
results in the comparably large error margins in b. Since the
slip lengths should principally be independent of the respective
liquid and the measuring temperature they allow for a more
quantitative analysis and comparability of the results.

First, nearly all extracted slip lengths are negative, sug-
gesting a sticking layer boundary condition in agreement with
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TABLE II. Slip lengths b (in Å) of water and n-hexane flowing
through V5 and V10, respectively, as extracted from forced through-
put measurements at three different temperatures T (in ◦C). The
liquids were pressurized with helium.

V5 V10

T Water n-Hexane Water n-Hexane

25 −2.6 ± 1.6 −3.8 ± 1.8 −0.1 ± 2.2 −2.8 ± 2.6
40 −1.8 ± 2.1 −4.5 ± 2.2 −0.3 ± 2.9 −1.9 ± 2.9
50 −3.5 ± 2.4 −3.2 ± 2.8
60 −1.3 ± 2.3 0.7 ± 3.6

previous spontaneous imbibition experiments on water and
n-alkanes [92,96,117]. This indicates a compartmentation of
the imbibed liquid into (1) an interfacial layer whose dynamics
are mainly determined by the interaction between liquid and
substrate and (2) an inner (away from the interface) region that
shows the classical behavior as predicted from collective liquid
properties like viscosity or surface tension. This conclusion
is supported by molecular dynamics studies on the glassy
structure of water boundary layers in Vycor [118,119] or,
more generally, on layering and increased viscosities at
silica [120–122] and hydrophilic surfaces [123–127], by
structural studies documenting a partitioning of water in a
core and a surface water contribution in silica pores [128,129],
and by tip-surface measurements in purified water [130]. It
is also consistent with beam-bending experiments on water
permeability of Vycor [131,132] as well as pecularities in
the measured thermal expansion and diffusivities of aquaous
solutions confined in Vycor [121,122].

This immobile shell in the case of hexane is in agreement
with the pioneering experiments on forced imbibition of
n-alkanes by Debye and Cleland [91], mentioned above, as
well as experimental and theoretical studies regarding the thin-
ning of n-alkane films in the surface force apparatus [51–55].

Moreover, x-ray reflectivity studies indicate one strongly
adsorbed, flat lying monolayer of hydrocarbons on silica [133–
136]. Quasielastic neutron-scattering measurements, which
are sensitive to the center-of-mass self-diffusion of the
n-alkanes in the pores and thus the liquid’s viscosity, also
indicate a partitioning of the diffusion dynamics of the
molecules in the pores in two species: one component with
a bulklike self-diffusion dynamics and a second one which
is immobile and sticky on the time scale probed in the
neutron-scattering experiment [137–140].

However, by means of gravimetrical capillary rise measure-
ments [92,117] and beam-bending experiments [121,131,132],
a thickness of the sticky layer of approximately 5 Å and
6 Å, respectively, for water in Vycor were inferred. But the
values stated in Table II all deviate towards lower values and
eventually b turns even positive for water in V10. For water
there seems also to be a marginal increase in b with T , whereas
there is no systematic dependency for n-hexane. Contrasting
the results for water with the results for n-hexane it turns
out that the slip lengths for water are always higher than
those for the alkane. Furthermore, the values for V10 are
systematically increased as compared with V5.

The bottom line of these results is that the forced
imbibition dynamics are generally increased as com-
pared to previously reported spontaneous imbibition exper-
iments [47,92,96,115,117]. Additionally, there are configu-
rations regarding the flowing liquid and the substrate that
seemingly facilitate higher slip lengths. This observation can
be condensed as follows:

b(hexane) < b(water)

b(V5) < b(V10) .

The increase of b with increasing temperature for water is only
vague but should not remain unmentioned at this point.

In the forced imbibition measurements the liquid stands in
direct contact with the highly pressurized gas. Consequently,
it is unavoidable that gas is dissolved in the liquid and thereby
possibly influences the flow experiments. It has often been
reported that dissolved gas modulates slip [85,86]. For New-
tonian fluids enhanced dynamics were found to be consistent
with a two-layer-fluid model, in which a layer <1 nm thick,
but with viscosity 10–20 times less than the bulk fluid, adjoins
each solid surface [78]. A potential mechanism to explain the
genesis of this layer was discussed by Vinogradova [141] and
formalized by de Gennes [142], who hypothesized that shear
may induce nucleation of vapor bubbles; once the nucleation
barrier is exceeded the bubbles grow to cover the surface,
and the liquid flow takes place over this thin gas film rather
than the solid surface itself. Hence, the segregation of gas
at the near-surface region seems to facilitate some kind of
low-density surface regions, but the nature of these is not
understood well at this time.

SFA measurements on tetradecane performed by Granick
et al. impressively elucidate this theory [85]. The experiments
showed that whereas no-slip behavior was obeyed when
the tetradecane had been saturated with carbon dioxide gas,
massive deviations from this prediction were found when the
tetradecane was saturated with argon. Argon possesses only
low solubility in tetradecane what may have made it more
prone to segregate at the surfaces.

According to these results and considerations the shear
rate and the solubility of the gas (hereinafter denoted as S)
determine the possible influence of such segregation at a
near-surface region. In the following we will assess whether
a process like this can be responsible for the observed
peculiarities.

First, an impact of the shear rate can indeed be noticed.
Since for a given applied pressure difference the maximum
shear rate in a channel increases with the fifth power of the
channel radius, one may conclude that gas segregation, and
therefore enhanced flow dynamics, are more likely in V10 than
in V5. This behavior could explain the higher slip lengths in
V10 as compared to V5. Note that in the case of water flowing
through V10, our data would even be fully compatible with
the assumption of b = 0. This finding would not be compatible
with the assumption that the slip length is solely determined
by adsorbed molecular layers and thus by the fluid-wall
interactions, since they are identical for both matrices.

A potential effect caused by the gas’ solubility in the
respective liquid can be assessed considering the solubilities
listed in Tables III and IV. It is obvious that for a given

013102-7



GRUENER, WALLACHER, GREULICH, BUSCH, AND HUBER PHYSICAL REVIEW E 93, 013102 (2016)

TABLE III. Solubilities S (in mmol
�

) of helium and argon in
water [116,143] and n-hexane [144–146] at 1 bar for selected
temperatures (in ◦C).

Helium Argon

T Water n-Hexane Water n-Hexane

20 0.36 1.55
25 1.98 1.40 19.50
40 0.32 2.40 1.15 18.30
60 0.27 0.94

temperature the solubility of helium is higher in n-hexane
than in water. According to the above-mentioned segregation
of gas and the enhanced flow dynamics should be more likely
for water than for n-hexane. This prediction coincides with the
observed systematically higher slip lengths for water. Even the
vague increase in b with the temperature T is consistent with
the slight decrease in S with increasing temperature. Granick’s
conjecture is in accord with the observed behavior.

For an additional test some forced imbibition experiments
in V10 were also carried out with argon instead of helium.
According to Table III its solubility in water is about 4 times
higher than that of helium; in n-hexane it is even up to 10 times
higher. Accordingly, for both experiments one would expect
smaller slip lengths as compared to the measurements with
helium. For water there is indeed a slight decrease in b; see
Table V. Although, for n-hexane the result is rather ambiguous.

Note, however, that the experiments with argon rule out
the possibility that the dissolved gas results in an “apparent”
b reduction mediated by a decrease in viscosity of the liquid
in the pore center by the gas. Upon changing from helium
to argon a pronounced viscosity drop and thus increase in b

would be expected in this case because of the 10-fold higher
solubility of argon in the liquid. However, by contrast, rather,
a b decrease is found, in agreement with the smaller tendency
for gas separation at the solid-liquid interface.

Of course, important information could be gained from
experiments where the fluid is completely separated from the
gas, e.g., by a flexible but gas-impermeable membrane. Despite
the fact that we tried a variety of flexible membranes with
varying chemical constitution, we always noticed a final gas
permeability. Still, for the future it would be interesting to com-
pare experiments with and without such membranes. A sizable
reduction of the gas dissolution could in particular be possible
for argon, since for the large argon atom (in comparison to
helium) flexible membranes with smaller gas permeability
are available, e.g., based on polyvinylidene chloride [147].
However, already the experiments by Debye and Cleland [91]
are in this respect an important reference for the present
study, since they performed forced imbibition studies on native

TABLE IV. Solubilities S (in mmol
�

) of helium in water at 25 ◦C
for selected pressures p (in bar) [143].

p 1 3 5 7.5 10 25 50 75

S 0.36 1.09 1.77 2.7 3.53 8.78 17.5 26.3

TABLE V. Slip lengths b (in Å) of water and n-hexane flowing
through V10 pressurized by two different gases, namely helium (He)
and argon (Ar).

Liquid Temperature He Ar

Water 25 ◦C −0.1 ± 2.2 −1.2 ± 3.3

n-Hexane
25 ◦C −2.8 ± 2.6 −2.3 ± 3.1
40 ◦C −1.9 ± 2.9 −1.6 ± 3.5

Vycor glass without the application of pressurized gases.
In agreement with the spontaneous imbibition experiments
discussed above, they found a smaller slip length for n-hexane
in V10 than in our experiments performed under inert gas
pressure, i.e., b = −5 Å. Hence, also a comparison with their
experiments corroborates our considerations with regard to a
gas-dissolution-induced increase in hydraulic permeability of
Vycor glass.

B. Hydraulic transport across hydrophobic Vycor with
silanized silica surfaces

As outlined in the Introduction the high significance of the
liquid-substrate interaction in restricted geometries has been
pointed out several times so far. In particular, the boundary
conditions are markedly influenced by the wettability of the
substrate [63–71]. This encourages measurements on the flow
dynamics through porous Vycor with a modified surface
chemistry.

The results from the measurements on silanized Vycor
compared to the values from the respective untreated sample
are shown in Table VI in terms of slip lengths. The value
for water in sV5 is not available since even for the highest
pressures applied (70 bar) no flow through the sample could
be detected. Contrary to this collapse in the dynamics of water
the flow of n-hexane seems to have been even enhanced.

It is obvious that the modified surface chemistry of the
porous Vycor samples significantly influences the dynamics
of both liquids. Some basic discoveries are in high accordance
with an NMR study of water and several alcohols in similarly
treated Vycor glass [148]. The inability of water to penetrate
the sV5 sample must be traced back to the modified wettability
of the substrate. Spontaneous imbibition could be observed for
neither sV5 nor sV10. In consequence, a capillary depression
caused by a contact angle θ0 > 90◦ is substituted for the
capillary rise mechanism. One can estimate a lower bound
for θ0 from the finding that even pressures up to 70 bar cannot

TABLE VI. Slip lengths b (in Å) of water and n-hexane flowing
through untreated and surface silanized Vycor, respectively. The
liquids were pressurized with helium.

System Temperature Untreated Silanized

Water in (s)V5 25 ◦C −2.6 ± 1.6 n/a

25 ◦C −3.8 ± 1.8 0.3 ± 2.7
Hexane in (s)V5 40 ◦C −4.5 ± 2.2 0.4 ± 2.8

50 ◦C −3.5 ± 2.4 0.4 ± 3.8
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overcome the counteracting Laplace pressure:

cos θ0 < −�p r0

2 σ
, (10)

thus it is θ0 > 98◦. Depending on the actual methyl density of
the silanized surface, water can have contact angles up to 120◦
corresponding to a Laplace pressure of ∼240 bar. Therefore,
the complete blocking of water penetration of the sV5 sample is
not surprising at all [149]. It is rather a preeminent elucidation
of the magnitude of surface forces.

The results on the flow of n-hexane in sV5 (the same sample
that was used in the water experiment) can be explained by the
reduction of the surface energy of Vycor due to silanization. It
weakens the attractive interaction between the surface and the
alkane. This is expressed by the distinct disappearance of the
sticking layer in favor of a classical no-slip boundary condition
although, according to the Zisman criterion, the liquid should
still totally wet the surface.

V. CONCLUSIONS

To summarize, we performed experiments on the pressure-
driven flow of water and n-hexane across monolithic
nanoporous Vycor. The hydraulic flow rates can be rational-
ized if one assumes a negative velocity slip length, i.e., a
sticking molecular layer. The thickness of this layer is thinner
than inferred from spontaneous imbibition experiments. This
observation is traced to an increased slippage at the pore wall

resulting from the partial dissolution of the gases used to drive
the flows. Moreover, we verified that the wettability of the
substrate deeply influences the flow dynamics and boundary
conditions. The observed effects range from increasing slip
lengths for n-hexane to complete blocking of the flow for water.
Especially for the alkane we observe that, by silanization of the
pore wall, we can achieve a vanishing of the sticking boundary
layer.

For the future, the study of longer alkanes, which possess
higher surface tensions, would permit more detailed exami-
nations of the influence of the wettability. Also experiments
on silanized samples with larger pore diameter than examined
here are planned, since they should allow us to overcome
the pressure barrier for water flow in the pores and thus to
study water transport in hydrophobic pores. Furthermore, the
surface coating with fluorinated groups (instead of methyl
groups) causes reductions of the critical surface tension down
to ∼6 mN

m [114]. By these means the interplay of surface
wettability (solid-liquid interactions) and confinement and
its impact on flow at the continuum limit could be further
explored [40].
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