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Mechanism of chirality conversion by periodic change of temperature: Role of chiral clusters
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By grinding crystals in a solution, the chirality of crystal structure (and the molecular chirality for the case
of chiral molecules as well) can be converted, and the cause of the phenomenon is attributed to crystal growth
with chiral clusters. We show that the recently found chirality conversion with a periodic change of temperature
can also be explained by crystal growth with chiral clusters. With the use of a generalized Becker-Döring model,
which includes enantio-selective incorporation of small chiral clusters to large solid clusters, the change of cluster
distribution and the mass flow between clusters are studied. The chiral clusters act as a reservoir to pump out
the minority species to the majority, and the exponential amplification of the enantiomeric excess found in the
experiment is reproduced in the numerical calculation.
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I. INTRODUCTION

Several years after Viedma’s discovery of chirality con-
version of NaClO3 crystals by grinding in a solution [1],
Noorduin et al. successfully applied the grinding method to
organic crystals, where the chirality conversion of crystals
simultaneously implies conversion of the molecular chirality
[2]. In these experiments, the crystal enantiomeric excess
(CEE: relative excess of one of the crystal chiral species)
grows exponentially in time [1–12], although some exceptions
have been found [11,13]. Steendam et al. attributed the
exceptional linear behavior to the existence of impurities [11].
The common exponential behavior suggests that a nonlinear
autocatalytic process is involved.

In order to find the mechanism of chirality conversion,
several theoretical models have been proposed. Uwaha [14,15]
used reaction-equation-type models by assuming a steady
distribution of crystal sizes and showed the exponential growth
of CEE. The essential idea of the model is that chiral growth
units (small chiral clusters) contribute to the growth of crystals
of the same chirality [16]. Grinding helps to produce such
chiral clusters and keeps the steady size distribution. The
assumption of a steady size distribution was confirmed [17]
with the use of a generalized Becker-Döring (BD) model
(classical nucleation model) [18]. Dissociation into monomers
and nonlinear effect due to the cluster incorporation to
crystals correspond to Saito and Hyuga’s general conditions for
realizing homochirality [19]. The time-evolution of cluster size
distribution was studied from different view points [20–24] and
all proved the role of chiral clusters to provide the exponential
amplification of CEE.

Several other mechanisms have been proposed. One of the
famous mechanisms in chiral symmetry breaking is a mutual
inhibition. Its specific case by a geometrical shadowing effect
in crystal growth [25–27] can be a cause of autocatalysis.
Catalytic conversion of molecular chirality at the crystalline
surface [28] is also the candidate. These models that reproduce
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the exponential increase of CEE are based on the idea of
competition between nonlinearly growing chiral modes. The
idea goes back to the Frank model [29], and has been applied
to the experiment of spontaneous chiral symmetry breaking
in NaClO3 crystallization [30,31]. (See Refs. [32,33] for
subsequent generalization of Franks idea.) Ostwald ripening
is an important factor [34], but it is not capable of producing
autocatalytic evolution [17,35,36]. Fluctuation of the system
may also play a role, but it cannot give the exponential
amplification and is effective only in very small systems
[35–38].

Despite that experimental identification of the key mecha-
nism is very difficult, ingenious experiments have revealed
several features that may be significant to the chirality
conversion. For a system of chiral molecules that racemize
in a solution, Noorduin et al. indirectly showed that the
enantiomeric excess in the solution is opposite to that in
the solids [39]. The experiment supports enantioselective
incorporation of clusters although other models are not totally
excluded. Hein et al. [8] reported that during the period of
the exponential amplification of CEE the size distribution
of powder crystals becomes wider than that in other period
of the grinding experiment. It was also noted that the initiation
time of the exponential amplification is very diverse in this
system. The authors suggested that an incidental formation
and preservation of large crystals instigates the accelerated
chirality conversion. It is not clear whether the change of
the size distribution is a necessary condition for the chirality
conversion because a steady size distribution is maintained
during the amplification period in the generalized BD model
[17]. Using NaBrO3, Viedma et al. demonstrated that even
macroscopic crystals of the same chirality may coagulate and
form a large crystal [40]. It is also not clear how large clusters
(or crystals) can coalesce to form a larger single crystal in real
systems.

In the meanwhile, new experiments that show the expo-
nential behavior without grinding appeared. Inspired by the
experiment of El-Hachemi et al. [40], which showed a chiral
symmetry breaking in the NaClO3 crystallization in a boiling
solution, Viedma and Cintas [41] found that a homochiral solid
phase can be realized by simply boiling a solution containing
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a racemic mixture of crystals [42]. The complexity of the
experimental system hindered developing a theoretical model
to study mechanism of the amazing phenomenon. Recently,
Suwannasang et al. have performed a controlled experiment
using an organic substance [43], and showed that periodic
change of temperature of a solution with racemic powder
crystals produces a homochiral state of crystals. Characteristic
features of the experiment are: (1) the system was kept uniform
by gentle stirring without grinding, (2) an exponential increase
in CEE similar to that in Viedma ripening was observed,
(3) the rate of the exponential increase was not sensitive to
the period of the temperature cycle, and the increase almost
stopped during a long period of constant temperature. It is
a challenge for all existing physical models to explain the
chirality conversion by the periodic change of temperature.

The purpose of the present paper is to study the possibility
that the mechanism of enantioselective incorporation of clus-
ters into chiral crystals can reproduce the chirality conversion
without grinding and the above experimental features.

II. MODELS FOR CLUSTER GROWTH

In this section we briefly review several proposed models
for chirality conversion. Most models that can reproduce
the exponential autocatalytic behavior relies on nonlinear
processes like enantioselective incorporation of chiral clusters
(or agglomeration of chiral crystals) [14,15,17,20–24,35,36],
catalytic conversion of molecular chirality at the surface [28],
geometrical mutual inhibition [25–27] if models are correctly
interpreted [44]. Since we are interested in the role of chiral
clusters in the present paper, we restrict ourselves to the first
ones.

The simple reaction-equation-type models
[11,14,15,37,39] are easy to treat and interpret.
Mathematically, a product term of the masses of chiral
clusters and crystals, which represents incorporation of chiral
clusters to solids of the same chirality, is the source of
nonlinearity. The incorporation of chiral clusters accelerates
the growth of major chirality and results in the exponential
amplification of CEE. The simple models use only five or six
components (monomers, chiral clusters, chiral solids), and the
relative size distribution of crystals is assumed to be steady
thanks to grinding [17]. Since intense grinding is necessary
to keep the distribution steady, the reaction-equation-type
models cannot be used for explaining the process of periodic
change of temperature, in which the crystal size distribution
changes with temperature (and time).

To study the size distribution of crystals, two different
mean-field approaches have been adopted. One is gener-
alization of the BD model (classical nucleation model),
which takes account of the detailed balance condition for
elementary processes to guarantee correct equilibrium states
[17,18,21,23,45]. The other is generalization of a population-
balance (PB) model, which is more versatile and commonly
used in chemical engineering [22,24,46]. Taking the contin-
uum limit of the BD equation, one obtains a Fokker-Plank
equation, which has a drift term and a diffusion term in the size
space [47]. The PB model corresponds to the Fokker-Planck
equation without the diffusion term that is essential to study
nucleation phenomena [18,48]. The PB model is useful when

(macroscopic) breakage and agglomeration of crystals are
important. For the use of such models care should be taken to
use physically acceptable form of the terms in the PB equation.
In any case, these models reproduce the exponential behavior,
and at the moment we do not know the relevant size of clusters
in real systems.

Another approach to study the size distribution is to follow
the size change of each cluster using Monte Carlo (MC)
dynamics [35,36]. These models can take the effect of fluctu-
ations into account and demonstrated the role of fluctuation
and that of clusters successfully. To obtain good statistics
with changing conditions, however, the computational load
is extremely heavy. MC lattice models developed by Saito
and Huga [26–28] automatically include the cluster growth
but have the same computational problem. Also separating the
effect of cluster growth seems not easy in the lattice models.
Therefore, in the present paper, we adopt the generalized BD
model to study the possibility of chirality conversion by the
periodic change of temperature.

III. GENERALIZED BECKER-DÖRING MODEL

The model we use in the present paper is a generalization
of our previous model for Viedma ripening [17,18,45]. The
following features are added to the standard BD model:
(1) Monomers and clusters are distinguished by molecular
chirality, and monomers can be transformed to the opposite
chirality molecules. (2) Not only monomers but also small
clusters up to a certain size, jmax-mers, can be incorporated to
large clusters of the same chirality. The rates of incorporation
and dissociation satisfy the detailed balance condition. The
following reactions of clusters are considered:

R1 � L1, Ri + Rj � Ri+j ,

Li + Lj � Li+j , (for 1 � j � jmax), (1)

where Ri and Li represent an i-mer of the right-handed and
left-handed molecule, respectively [49]. The reaction in the
first line is spontaneous and at a constant probability for a
molecule. The reactions to the right in the second line are
proportional to the collision rate, and those to the left are such
that they produce the canonical equilibrium distribution.

Thus we divide the molecules and the clusters into six
groups according to their chirality and the size (monomers,
small clusters, and large clusters). We will derive, in Sec. V,
the mass flow between these groups during low- and high-
temperature periods. The result is schematically depicted in
Fig. 1. As explained in Sec. V, accelerated crystallization of
the majority clusters causes surplus of the minority monomers,
which leads to the chirality conversion from the minority to
the majority species. The detail of the generalized BD model
is as follows.

The number of right (R) or left (L)-handed (denoted as
α = R or L) large clusters of size i (>jmax) obeys the equation

ṅα
i =

min{jmax,[(i+1)/2]}∑
j=1

σi−j,j n
α
i−j n

α
j −

jmax∑
j=1

σi,j n
α
i nα

j

+
jmax∑
j=1

λi+j,j n
α
i+j −

min{jmax,[(i+1)/2]}∑
j=1

λi,jn
α
i , (2)
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(a) (b)

FIG. 1. Schematic mass flow at (a) low and (b) high temperatures.

where [· · · ] in the upper limit of the summation is the floor
function. The coefficient σi,j represents the collision and
coalescence of an i-mer and a j -mer, and is proportional to
the collision cross-section. It is determined by the molecular
cross sections and assumed to have the form

σi,j = a i2/3j 2/3, (3)

where a is a constant proportional to the thermal velocity and
the cross section of a monomer. The decay rate λi+j,j of an
(i + j )-mer to an i-mer and a j -mer is determined from the
detailed balance condition

λi+j,j n
α eq
i+j = σi,j n

α eq
i n

α eq
j , (4)

where n
α eq
i is the equilibrium number of (chiral) i-mers. Note

that n
R eq
i = n

L eq
i ≡ n

eq
i with racemization. The equilibrium

number of i-mers is related to that of monomers as

n
α eq
i = n

eq
1 e−ᾱ(i2/3−1), (5)

where ᾱ = (4π )1/3�2/3α/kBT is an effective surface tension
(�: molecular volume, α: surface tension). Therefore, we
have

λi+j,j = σi,j n
eq
1 eᾱ((i+j )2/3−i2/3−j 2/3+1). (6)
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FIG. 2. (a) Change of masses of monomers, clusters, and solids by temperature cycling in the generalized BD model with φ(0) = 0.1 at
t = (l + 1

2 )P . (b) Enlargement of the small mass part. (c) Enlargement at t = lP . Red (dark) squares are hidden by green (light) squares. (d)
Semilog plot of CEE calculated from Eq. (10).
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FIG. 3. (a) Change of CEE in the period 400 � t � 410 (40th cycle). Size distribution of clusters at (b) t = 401, (c) t = 403, (d) t = 405,
(e) t = 407, (f) t = 409. The right side and the left side on abscissa represent cluster size of R and L, respectively.

For small clusters, 2 � i � jmax, incorporation to any clusters
is possible, and Eq. (2) is modified to

ṅα
i =

[(i+1)/2]∑
j=1

σi−j,j n
α
i−j n

α
j −

∞∑
j=1

(σi,j + δi,j σi,i)n
α
i nα

j

+
∞∑

j=1

(λi+j,j + δi,j λ2i,i)n
α
i+j −

[(i+1)/2]∑
j=1

λi,jn
α
i . (7)

For monomers, i = 1, Eq. (7) applies with the additional
racemization term

ṅ
R,L
1 = −2σ1,1

(
n

R,L
1

)2 −
∞∑

j=2

σ1,j n
R,L
1 n

R,L
j + 2λ2,1n

R,L
2

+
∞∑

j=2

λj+1,j n
R,L
j+1 + r

(
n

L,R
1 − n

R,L
1

)
. (8)

Note that our system in the present paper satisfies the detailed
balance condition and there is no process, such as grinding,
that breaks the detailed balance.

From now on we call clusters of the size 2 � i � jmax small
clusters or simply clusters, and clusters of the size jmax < i

large clusters or solids. Then the masses of monomers, clusters,
and solids are defined by

Mα
1 = nα

1 ,

Mα
c =

jmax∑
j=2

j nα
j ,

Mα
s =

∞∑
j=jmax+1

j nα
j , (9)

respectively. It should be remembered that the present nomen-
clature is only provisional. We define the order parameter of
the system by

φ = MR
s − ML

s

MR
s + ML

s

. (10)

In the present paper we assume that the majority species is
always R, then the definition of CEE is also given by Eq. (10).
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FIG. 4. Change of masses in one cycle: (a) R and L monomers, (b) R and L clusters, (c) R and L solids.

IV. NUMERICAL CALCULATION

A. Setup of numerical calculation

The basic setup of the numerical calculation is similar to
our previous study of the chirality conversion with grinding
[17], and the following features are added. We assume, for
simplicity, that the change of temperature T is stepwise and
cyclic with a period P :

T = Tl for lP � t �
(

l + 1

2

)
P,

T = Th for

(
l + 1

2

)
P � t � (l + 1)P, (11)

where the cycle number l is zero or a positive integer. We
assume the incorporation rate σi,j does not change and set
a = 1 to fix the unit of time. Temperature-dependent physical
parameters are the equilibrium monomer density n

eq
1 , the

effective surface tension ᾱ, and the racemization rate r . In
the present paper, the values for low and high temperatures are
as follows: (1) n

eq l
1 = 10−3,n

eq h
1 = 10−2 (high solubility at

high T ), (2) ᾱl = 10,ᾱh = 10−2 (low effective surface tension
at high T ), (3) r l = 1,rh = 10 (high racemization rate at high
T ). These values are chosen for easiness of the simulation and
not necessarily correspondent to the real system.

The number of clusters is normalized to make the total mass
(total number of molecules) unity

∑
α

∞∑
i=1

i nα
i = 1, (12)

except in Sec. VI C. The initial system consists of racemic
solid powder and the saturated solution. We have tried several
different initial distributions, and have confirmed that the
results are not too sensitive to the form of initial distributions.
We adopt the following initial condition in most of our
calculations:

n
R,L
i (0) = n

eq l
i + δi,is

1 − 2
∑∞

i=1 i n
eq l
i

is

1 ± φ(0)

2
, (13)

where the superscripts R and L correspond to the signs + and
−, respectively: the initial system consists of large clusters of
the size is with the initial CEE φ(0) and a racemic solution
saturated at Tl.

In the numerical calculation, the maximum cluster size of
calculation is limited to imax, and the reaction which includes
clusters larger than imax is neglected: formation of clusters
larger than imax is forbidden. Since the number of clusters of
this size in the most calculated time is so small, the resultant
error is negligible. The maximum size is imax = 200 in the
calculations of Sec. V, and imax = 1000 in the calculations
of Sec. VI. With the above parameter values, the equilibrium
mass in solution at Tl is

∑
i in

eq l
i = 2.01 × 10−3, and most

of the molecules are initially in the solid clusters of i = is.
Values of other parameters are the period of cycle P = 10,
the maximum size of solidifying small clusters jmax = 5, and
the initial size of the solid cluster is = imax unless mentioned
otherwise.
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FIG. 5. Change of mass flow in one cycle: (a) from monomers to small clusters, (b) from monomers to solids, (c) from small clusters to
solids, (d) from L monomers to R monomers.

B. Time change of the masses

Change of the masses calculated from a solution of the
generalized BD Eqs. (2)–(8), are shown in Fig. 2 with the initial
EE φ(0) = 0.1. The mass of each component is monitored
at the end of the low-temperature period in the cycle: t =
(l + 1

2 )P [Figs. 2(a) and 2(b)], and at the end of the high
temperature: t = lP [Fig. 2(c)]. The masses of solids, MR

s
and ML

s , show an exponential amplification of EE as shown
in Fig. 2(d). The mass of the minority L monomers, ML

1 , is
appreciably more than that of the majority R, MR

1 , during the
strong amplification period. This is a necessary condition for
conversion of chirality [15], and observed (though indirectly)
in the experiment of chirality conversion with grinding [39].
The mass of L clusters, ML

c , increases and much more than MR
c

during the amplification. At the end of the high-temperature
period in the cycle t = lP , the mass of R monomers is almost
the same as that of L, and the mass of R clusters is more
than that of L [Fig. 2(c)]. Such features seem characteristic
of chirality conversion by temperature cycling, and this is the
important key to understand the mechanism as discussed in
the following section.

V. ANALYSIS OF MASS FLOW AND THE ROLE
OF CLUSTER GROWTH

By looking at the solution of the generalized BD model in
more detail, we now study the role of cluster growth behind
the scenes. In A we analyze the size distribution and mass

flows between clusters during a typical temperature cycle in
the period of exponential change of CEE and discuss the role of
small clusters. In B the size of clusters relevant to the chirality
conversion is identified.

A. Role of small clusters

In Fig. 3, the change of CEE and the size distribution in
the 40th temperature cycle are plotted. The CEE decreases
in the low-temperature period, 400 < t � 405, and increases
in the high-temperature period, 405 < t � 410 [Fig. 3(a)].
The amount of the latter exceeds the former, and the CEE is
amplified in one cycle. In Figs. 3(b)–3(f), the right side of the
abscissa represents the cluster size of the majority type (R), and
the left side represents that of the minority (L). The ordinate
is the logarithm of the number of clusters. It is evident that
the distribution of small clusters changes remarkably during
the cycle: dips in the logarithmic plot at low temperatures and
shoulders at high temperatures.

In order to see the change of each component more
quantitatively, the masses of chiral monomers (i = 1), small
clusters (2 � i � 5), and solids (5 < i) are plotted in Fig. 4,
and to find the origin of the change, the mass flow between
these components is shown in Fig. 5. The key feature of the
chirality conversion is that the mass of the majority R clusters
MR

c is much more than ML
c in the high-temperature period but

less in the low-temperature period [Fig. 4(b)]. The mass flow
between small clusters and solids is in accordance with our
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FIG. 6. (a) Change of CEE with various maximum size, jmax, of clusters that contribute to growth. (b) Amplification rate of CEE with
various jmax.

common sense [Fig. 5(c)]: small clusters incorporate to large
ones in the low-temperature period, and large ones melt to
become small clusters in the high-temperature period. Since
such mass flow with small clusters is much more effective
than that of monomers [note that the magnitude in Fig. 5(c)
is one order larger than in Figs. 5(a) and 5(b)], the behavior
of small clusters controls the whole flow. In the beginning of
low-temperature period, R clusters solidify twice as fast as L
clusters [Fig. 5(c)], since R solid is twice as much as L solid
[Fig. 4(c)]: the mass of R clusters decrease very rapidly to
become less than ML

c [Fig. 4(b)].
The mass flow from monomers to small clusters is positive

in the high-temperature period and negative in the low-
temperature period [Fig. 5(a)]. At the high temperature,
monomers form small clusters because of the small effective
surface tension [see Eq. (5)]. The mass of L monomers
ML

1 (= nL
1 ) is appreciably higher than MR

1 (= nR
1 ) in most

of the low-temperature period [Fig. 4(a)] because the fast
solidification of R clusters leaves more L clusters, which
dissociate to L monomers. Therefore, the chirality conversion
at the molecular level from L to R takes place mainly in the
low-temperature period [Fig. 5(d)] when the CEE decreases
[Fig. 3(a)]. It is noteworthy that monomers are always super-
saturated [Fig. 4(a)]: monomers of both chiralities increase
in the low-temperature period high above the equilibrium
value n

eq
1

l = 10−3, and decrease in the high-temperature period

toward the equilibrium value, n
eq
1

h = 10−2. Then the mass
flow from monomers to solids is positive for most of the
temperature cycle [Fig. 5(b)]: monomers solidify even at the
high temperature when solids melt into small clusters. Such
excess of monomers at high temperature prohibits an increase
in nR

1 (MR
1 ), which would have induced chirality conversion

from R to L.
The whole process is depicted schematically in Fig. 1. In

the low-temperature period, R clusters solidify much faster
than L clusters since there are more R solids. Large numbers
of R clusters are consumed by the solidification, and soon
the mass of L clusters exceeds that of R (ML

c > MR
c ). The

clusters dissociate into monomers, resulting in the surplus
of L monomers (ML

1 > MR
1 ). The considerable excess of L

monomers is maintained in most of the period, and it is
the origin of the molecular chirality conversion. In the high-

temperature period, rapid solid melting to small clusters takes
place, and R clusters are formed more than L (MR

c > ML
c ),

while the number of monomers of both chiralities are roughly
the same [Fig. 4(a)] because of the fast racemization. The
increase of the CEE occurs in high-temperature melting, but
the molecular chirality conversion takes place mainly in the
low-temperature period.

B. Maximum size of clusters that contribute to growth

To find the size of clusters that promote the chirality
conversion we performed numerical calculation with various
values of jmax, which is the maximum size that contributes
to growth. The change of CEE with various jmax is shown in
Fig. 6(a), and the exponential amplification rates of these data
are plotted in Fig. 6(b). The amplification rate ω is defined as

φ(t) = φ(0)eωt , (14)

and determined from the slopes in Fig. 6(a). Without cluster
incorporation, jmax = 1, no change of CEE is seen. With
jmax = 2 and 3, the very weak amplification occurs. In contrast,
the amplification is remarkable with jmax = 4 and 5. The
amplification rate ω increases with jmax but becomes saturated
above jmax = 5. In the chirality conversion by grinding, the
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FIG. 7. Change of CEE with an interruption of temperature
cycling in 400 < t < 800.
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FIG. 8. Change of CEE for different periods of temperature cycling P . (a) as a function of cycles and (b) as a function of time.

exponential amplification of CEE is possible merely with the
chiral dimer incorporation [17]. (The effect of larger clusters,
jmax > 2, is not studied in Ref. [17].) Without grinding,
incorporation of larger clusters to solids seems necessary, but
clusters larger than j = 5 do not accelerate the process much.
Note that we have assumed the detailed balance condition
Eq. (6).

VI. CHARACTERISTIC FEATURES IN THE EXPERIMENT

In the temperature cycling experiment [43] several inter-
esting features were observed. In this section, we test whether
our model can reproduce these experimental features.

A. Interruption of temperature cycling

In the experiment [43] the exponential amplification of CEE
is suspended when the cycling is interrupted for a considerable
duration. To test if our model shows such a behavior, the
temperature cycling was interrupted in the period 400 < t <

800. The result is shown in Fig. 7. The amplification is
suspended during the interruption period. Only a very slow
increase in the CEE is observed, which is in accordance with
the experiment (Fig. 4 of Ref. [43]). Interruptions of other
durations show similar behaviors.

B. Dependence on the period

Another feature of the experiment [43] is that the amplifi-
cation rate of CEE is not sensitive to the period P . In Fig. 8
the changes of CEE for P = 10,P = 20, and P = 30 are
shown. They roughly collapse to a single exponential curve
as a function of time, whereas they show a large difference if
plotted as a function of the cycle number. Figure 8 corresponds
to the experimental result (Fig. 5 of Ref. [43]), although the
temperature profiles are not identical and the comparison is
only qualitative.

C. Dependence on the mass of crystals

When the total mass of crystals is increased in the
experiment [43], the time necessary for complete conversion is
increased accordingly. We performed several simulations with
different mass of crystals by changing the initial amount of
large clusters of the size is in Eq. (13), and the result is shown in
Fig. 9(a) for the mass ratio 0.5, 1, 1.5, with P = 25. The mass
ratio R is defined as the ratio of the initial solid mass to that
in the previous numerical calculations. The amplification rate
decreases when the mass is increased. As shown in Fig. 9(b),
the time necessary for the complete chirality conversion is
roughly proportional to the mass of crystals in accordance
with the experiment (Fig. 6 in Ref. [43]).
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FIG. 9. (a) Change of CEE and (b) the amplification rate ω for different amounts of crystals. Mass ratio R is the amount of the initial solid
mass to that in the previous calculation. In (b), the solid line represents R−1.
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s by temperature cycling with φ(0) = 0.1
at t = (l + 1

2 )P . (b) Enlargement of the small mass part.

VII. SYSTEM OF ACHIRAL MOLECULES

So far, we have studied the model system that corresponds
to the experiment with chiral molecules [43]. Similar effects
have been observed for the case of NaClO3 [40,41]. Since
systems of achiral molecules such as NaClO3 and NaBrO3 can
be considered as systems of chiral molecules with extremely
fast racemization, the same mechanism should work to realize
nonlinear chirality conversion. We modify our model to have
one type of achiral molecules and two types of small chiral
clusters and chiral solid clusters, and the result is shown in
Fig. 10. Masses of each component changes similarly to those
in Fig. 2 as expected.

VIII. SUMMARY

The chirality conversion with the periodic change of
temperature [43] can be explained by the same processes
that explains Viedma ripening [14,17]: incorporation of small
chiral clusters to solids of the same chirality and the disso-
ciation of chiral clusters into monomers. We demonstrated
the exponential amplification of an initial small CEE with
the use of the generalized BD model [17,23], in which all
elementary processes satisfy the detailed balance condition.
The analysis in Sec. V shows that the small clusters work
as a reservoir, which induces the chirality conversion. Solid-
ification of the majority species is accelerated by the small
clusters. The majority small clusters are consumed rapidly,
and the minority small clusters, whose number soon exceeds
the majority, dissociate into monomers (because of the large

effective surface tension at low temperature) to produce more
minority monomers. Then the surplus minority monomers
are transformed into the majority monomers. As a whole,
the temperature cycling transforms the minority species to
the majority by using the chiral cluster state as a pump.

There are two theoretical explanations [23,50] relating
the chirality amplification with temperature change. The
first one considers mass exchange between high- and low-
temperature systems, which may explain the experiment of
steady circulation [41] but not the experiment of temperature
cycling [43]. The second one [50] introduces an arbitrary
assumption that the majority species crystallizes faster than the
minority, which, we think, is not justifiable. Thus, the present
scheme is the first reasonable explanation of the experiment
with periodic change of temperature [43]. The choice of the
parameter values adopted in the numerical calculation is rather
arbitrary and sometimes a little extreme. The reason may
be that the system size in the calculation is very limited.
The maximum cluster size in the calculation is 103, and the
simulation result should not be taken as quantitatively real
but only as qualitative. It is important that both chirality
conversions with grinding and with temperature cycling are
explained by the same mechanism: incorporation of chiral
clusters to solids and dissociation of clusters to monomers.
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