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Conical wave propagation and diffraction in two-dimensional hexagonally packed granular lattices
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Linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices are explored in
the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical
particles arranged in a hexagonal packing configuration is analyzed. Upon identifying the dispersion relation of
the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic ar-
gument for the linear propagation of a wave packet and via asymptotic analysis leading to the derivation of a Dirac
system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression, i.e., near
the linear regime. For weak precompression, conical wave propagation is still possible, but the resulting expanding
circular wave front is of a nonoscillatory nature, resulting from the complex interplay among the discreteness,
nonlinearity, and geometry of the packing. The transition between these two types of propagation is explored.
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I. INTRODUCTION

Nearly two centuries ago, Hamilton predicted that under
certain conditions, a narrow beam of light entering a crystal
will spread into a hollow cone within the crystal [1]. This
phenomenon, termed conical diffraction, was observed later
by Lloyd [2]. Conical diffraction is possible in crystals with
dispersion surfaces that intersect at a singular point where
the group velocity is not uniquely defined [3]. This is often
referred to as the Dirac point or diabolical point. The geometry
of the dispersion in its vicinity is cone-like and is known as
a Dirac cone [1]. One notable example of a physical system
possessing Dirac cones that has renewed interest in the topic
is graphene. Graphene, which is a monolayer of graphite that
exhibits an extremely high electron mobility [4], can be used
in a host of applications including medicine, energy, sensing,
and electronics [5]. In the case of graphene, the atoms are
packed in a honeycomb structure. It is this packing geometry
that leads to Dirac points in the dispersion relation [6–8].
One important difference between Dirac points arising in
honeycomb structures and those studied by Hamilton [1] is
that, in the former, the Dirac points always lie at the vertices of
the Brillouin zone and, hence, are independent of the specific
parameters of the system, while in the latter the singularity
in k space arose due to polarization. In this sense, conical
diffraction is generic in systems with, e.g., a honeycomb
symmetry and indeed emerges due to the special symmetry
of the lattice. This has led to a burst of activity in the study of
Dirac points in other physical systems with honeycomb and
hexagonal symmetries, e.g., in photonics [3,9–17]—giving
rise also to the term photonic graphene—where it has been
shown that conical diffraction is possible [3,9]. More recently,
Dirac points have started to be explored in phononic systems,
where pressure waves are manipulated rather than light waves
[18–20]. The presence of Dirac points in such phononic
systems suggests that conical diffraction is possible there too,
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but this possibility has not been explored up to now, to the best
of our knowledge. Moreover, the presence of nonlinearity can
play a crucial role in the dynamics and, potentially, even lead
to a breakdown of the conical wave propagation in honeycomb
lattices as shown, e.g., in Refs. [21,22].

In the present work, we investigate conical diffraction
in a phononic lattice, emphasizing the near-linear limit, but
also considering varying degrees of nonlinearity. We chose a
system that is well within the realm of ongoing experimental
considerations, namely, a two-dimensional (2D) hexagonally
packed lattice of spherical particles that interact nonlinearly
through point contacts. Such systems have been termed
granular crystals [23–26] and have been proposed for a range of
applications including—but not limited to—shock and energy
absorbing layers [27–30], actuating devices [31], acoustic
lenses [32], acoustic diodes [33], and sound scramblers
[34,35]. Wave propagation has been studied extensively in
one-dimensional (1D) granular crystals, where robust highly
localized waves and variants thereof have been identified in
various configurations (see the reviews in Refs. [23–26]).
Higher-dimensional granular crystals have also been studied
[36–52], but to a far lesser extent than 1D ones. If the particles
are packed so that they are just touching, then the resulting
dynamics are purely nonlinear, and hence there is no disper-
sion. However, circular patterns in such systems have been
reported in Ref. [52], although the exact mechanisms for their
formation have not been identified. On the other hand, if one
compresses the lattice at the boundary, a static overlap between
adjacent particles will be induced, and hence the equations
become linearizable, leading to dispersion surfaces and the
possibility of Dirac points. In this paper, we study conical wave
propagation in a 2D hexagonal granular lattice as the nonlinear
response is tuned from linear and weakly nonlinear to strongly
nonlinear and the resulting transition between outward conical
diffraction and complex outward-propagating wave fronts.

The paper is organized as follows. The model equation
and its linearization are introduced in Sec. II. We show
analytically in Sec. III that the dispersion features Dirac cones
and we present a heuristic argument for conical diffraction.
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FIG. 1. (a) Orientation of the index convention. The m axis represents the horizontal direction. The m axis and the n axis meet at an
angle of θ = π/3. In the absence of precompression, the equilibrium distance between the centers of adjacent beads is the bead diameter d .
(b) The hexagonal lattice is compressed uniformly on all boundaries, which induces a static overlap δ such that the equilibrium distance between
the centers of adjacent beads is d − δ. Under these compression conditions, the static equilibrium configuration has the hexagonal symmetry.
The amount of static force F0 required to induce the static overlap will depend on the number of beads in contact with the boundary. The
compression amount of the boundary is greatly exaggerated here for clarity.

This approach is corroborated by an asymptotic analysis in
Sec. IV demonstrating the relevance of a Dirac system for
describing the dynamics in the vicinity of the conical point.
The transition from linear to strongly nonlinear dynamics is
studied numerically in Sec. V. Concluding remarks and open
problems are given in Sec. VI.

II. MODEL AND LINEARIZATION

We consider a hexagonally packed lattice of spherical
particles. To that end, we define the lattice basis vectors e1 =
(1,0) and e2 = (1/2,

√
3/2). Let qm,n(t) = (xm,n(t),ym,n(t)) ∈

R2 represent the displacement from the static equilibrium
of the bead situated at position p = d(me1 + ne2) in the
plane, where d is the bead diameter [see Fig. 1(a)]. If the
lattice is precompressed by a static force [see Fig. 1(b)],
thereby inducing a static overlap δ between each adjacent bead
(when measuring the distances between their centers), then the
modified positions of the beads in equilibrium become

p = (d − δ)(me1 + ne2). (1)

Assuming deformations that are small relative to the bead
diameter, the magnitude of the force resulting from elastic
deformation of two spherical particles in contact is given by
the classical Hertz law [53,54],

V ′(r) = γ [d − r]3/2
+ , (2)

where r is the distance between the two center points of
the beads and the bracket is defined by [x]+ = max(0,x)
(indicating that there is no tensile force). γ is a parameter
depending on the elastic properties of the material and the
geometric characteristics of the beads [23]. For a uniform
lattice, we have γ = E

√
d

3(1−ν2) , where E is the elastic (Young’s)
modulus of the particle material and ν is the Poisson ratio.
By combining Eqs. (1) and (2) and ignoring all other forces,
such as plasticity, viscous damping and rotation dynamics
(an approximation that has been shown to be qualitatively
reasonable in comparison with experimental results, e.g., in
Ref. [52]), we can write the equations of motion strictly in
terms of the horizontal xm,n and vertical ym,n displacements
from the equilibrium position,

q̈m,n = F1(qm,n − qm−1,n) + F2(qm,n − qm,n−1) − F3(qm+1,n−1 − qm,n)

− F1(qm+1,n − qm,n) − F2(qm,n+1 − qm,n) + F3(qm,n − qm−1,n+1), (3)

which takes into account the six contact points resulting from the hexagonal symmetry. The vector-valued functions Fj (q) =
Fj (x,y) = [Fj,x(x,y),Fj,y(x,y)]T , j ∈ {1,2,3}, have the form

F1,x(x,y) = γ [d −
√

(d − δ + x)2 + y2 ]3/2
+

d − δ + x√
(d − δ + x)2 + y2

,

F2,x(x,y) = γ [d −
√

((d − δ) cos(θ ) + x)2 + ((d − δ) sin(θ ) + y)2 ]3/2
+

(d − δ) cos(θ ) + x√
((d − δ) cos(θ ) + x)2 + ((d − δ) sin(θ ) + y)2

,

F3,x(x,y) = γ [d −
√

((d − δ) cos(θ ) + x)2 + ((d − δ) sin(−θ ) + y)2 ]3/2
+

(d − δ) cos(θ ) + x√
((d − δ) cos(θ ) + x)2 + ((d − δ) sin(−θ ) + y)2

,

F1,y(x,y) = γ [d −
√

(d − δ + x)2 + y2 ]3/2
+

y√
(d − δ + x)2 + y2

,
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F2,y(x,y) = γ [d −
√

((d − δ) cos(θ ) + x)2 + ((d − δ) sin(θ ) + y)2 ]3/2
+

(d − δ) sin(θ ) + y√
((d − δ) cos(θ ) + x)2 + ((d − δ) sin(θ ) + y)2

,

F3,y(x,y) = γ [d −
√

((d − δ) cos(θ ) + x)2 + ((d − δ) sin(−θ ) + y)2 ]3/2
+

(d − δ) sin(−θ ) + y√
((d − δ) cos(θ ) + x)2 + ((d − δ) sin(−θ ) + y)2

,

where θ = π/3.

We remark that in order for the equations of motion, (3),
to be valid, any bead that a given bead is in contact with must
be one of its original six neighbors. The distance (in terms
of bead center) to the closest next-nearest neighbor of any
given bead at equilibrium is

√
3(d − δ). The corresponding

distance between the surfaces of the (uncompressed) beads
is thus

√
3(d − δ) − d. This simple observation leads to a

sufficient condition to guarantee that no bead is in contact
with its next-nearest neighbor:

∀m,n, |qm,n| <

√
3(d − δ) − d

2
. (4)

In experiments, typical displacements are small relative to the
bead diameter [52], and thus condition (4) would not be a
concern in such settings.

Assuming small strains, i.e.,

|qm±1,n − qm,n|
δ

�1,
|qm,n±1 − qm,n|

δ
� 1,

(5)
|qm±1,n∓1 − qm,n|

δ
�1,

we can make use of the Taylor expansion,

Fj (q) ≈ Fj (q0) + DFj (q0)q,

where DFj is the Jacobian matrix of Fj . Using this notation,
we write the linearized equations of motion:

q̈m,n = − DF1(qm+1,n + qm−1,n) − DF2(qm,n+1 + qm,n−1)

− DF3(qm−1,n+1 + qm+1,n−1)

+ 2(DF1 + DF2 + DF3)qm,n, (6)

where we use the following notation for the entries of the
Jacobian matrices:

DFi =
(

ai bi

ci di

)
, j ∈ {1,2,3},

with

a1 = − 3

2
(d̂ − δ̂), b1 = 0, c1 = 0, d1 = δ̂,

a2 = − 3

8
(d̂ − 3δ̂), b2 = −

√
3

8
(3d̂ − δ̂),

c2 = b2, d2 = 1

8
(11δ̂ − 9d̂),

a3 = a2, b3 = −b2, c3 = −c2, d3 = d2,

where

d̂ ≡ dγ
√

δ

d − δ
, δ̂ ≡ δγ

√
δ

d − δ
. (7)

III. DISPERSION RELATION, DIRAC POINTS,
AND CONICAL DIFFRACTION

Defining the 2D discrete transform,

x̂(k,�) =
∑
m,n

xm,n exp

(
i

(
km + n

2
(k +

√
3�)

))
,

(8)

ŷ(k,�) =
∑
m,n

ym,n exp

(
i

(
km + n

2
(k +

√
3�)

))
,

allows us to write the linear system in the frequency domain,

∂2
t x̂ = ωax̂ + ωbŷ ∂2

t ŷ = ωcx̂ + ωdŷ, (9)

where

ωa(k,�) = −2a1 cos(k) − 2a2 cos(k/2 +
√

3/2�)

− 2a3 cos(k/2 −
√

3/2�) + 2(a1 + a2 + a3),

ωb(k,�) = −2b1 cos(k) − 2b2 cos(k/2 +
√

3/2�)

− 2b3 cos(k/2 −
√

3/2�) + 2(b1 + b2 + b3),

ωc(k,�) = −2c1 cos(k) − 2c2 cos(k/2 +
√

3/2�)

− 2c3 cos(k/2 −
√

3/2�) + 2(c1 + c2 + c3),

ωd (k,�) = −2d1 cos(k) − 2d2 cos(k/2 +
√

3/2�)

− 2d3 cos(k/2 −
√

3/2�) + 2(d1 + d2 + d3).

For fixed k and � Eq. (9) is solved by ve−iωt , where v ∈ R2,

−ω2v = Hv, H :=
(

ωa ωb

ωc ωd

)
. (10)

The eigenvalues λ = −ω2 can be computed explicitly as

λ1 = ωa + ωd +
√

(ωa + ωd )2 − 4(ωaωd − ωbωc)

2
,

λ2 = ωa + ωd −
√

(ωa + ωd )2 − 4(ωaωd − ωbωc)

2
,

with associated eigenvectors v1 and v2. This results in four
frequencies:

ω±1(k,�) = ±
√

−λ1, ω±2(k,�) = ±
√

−λ2. (11)

See Fig. 2 for an example plot of the dispersion surfaces.
Upon inspection of Fig. 2, one can see regions where the
top and bottom dispersion surfaces form a downward- and an
upward-pointing cone, respectively; these are the Dirac cones.
The point where these two cones meet is the Dirac point. To
explicitly calculate the location of the Dirac points, we find
values of (k,�) where the two surfaces meet. In the case of
Eq. (11), the relevant condition is

0 = (ωa + ωd )2 − 4(ωaωd − ωbωc). (12)
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FIG. 2. The dispersion surface ω(k,�) as given by Eq. (11). Parameter values are d = M = γ = 1 and δ = 0.1. (a) Contour plot of the
bottom dispersion surface. The Brillouin zone is shown as the black line, and the Dirac points as black points. (b) Same as (a), but for the top
dispersion surface. (c) Both dispersion surfaces in (k,�,ω) space.

Direct inspection of the linear coefficients reveals that

a2 = a3, d2 = d3, b1 = c1 = 0, b2 = c2 = −b3 = −c3,

and

a1 − d1

a2 − d2
= −2. (13)

Thus, we have that

ωa(k,�) = 4a1 sin2(k/2) + 4a2(1 − cos(k/2) cos(
√

3/2 �)),

ωd (k,�) = 4d1 sin2(k/2) + 4d2(1 − cos(k/2) cos(
√

3/2 �)),

ωc(k,�) = ωb(k,�) = 4b2 sin(k/2) sin(
√

3/2�).

With these simplifications Eq. (12) becomes

0 = (ωa − ωd )2 + 4ω2
b, (14)

which is equivalent to the set of equations

−a1 − d1

a2 − d2
= 1 − cos(k/2) cos(

√
3/2 �)

sin2 (k/2)
, (15a)

0 = sin(k/2) sin(
√

3/2�). (15b)

Equation (15) along with Eq. (13) reveals six nontrivial
solution points, which, as expected, are situated on the vertices
of the Brillouin zone: (kd,�d ) = (±4π/3,0) and (kd,�d ) =
(±2π/3,±2π/

√
3). We now verify that the shape of the

dispersion surface is conical near the Dirac point. To that
end, we Taylor expand the functions ωa, ωb, ωc, and ωd about
the Dirac point (kd,�d ), substitute into Eq. (11), and ignore
higher-order terms, yielding

ω(k,�) ≈ ±
√

ω2
cr ±

√
3(a1 − a2)2(k − kd )2 + 9b2

2(l − ld )2,

(16)

where ωcr = ω(kd,ld ) is the frequency at the Dirac point.
Making use, once again, of the symmetries of the sys-
tem, one can show via a direct calculation that a1 − a2 =√

3b2. Defining the polar coordinates η cos(θ ) = k − kd ,
η sin(θ ) = � − �d and Taylor expanding about η = 0 yields

ω(k,�) ≈ ±(ωcr ± αη) = ±(ωcr ± α
√

(k−kd )2+(l − ld )2).

(17)

Thus, to first order, the dispersion surfaces form upward- and
downward-pointing cones with slope α = 3b2

2ωcr
that meet at
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FIG. 3. (a) Zoom-in of the dispersion surface near the Dirac point (kd,�d ) = (4π/3,0). The transparent layers are the first-order
approximations given by ωcr ± α

√
(k − kd )2 + (l − ld )2, where the slope is α = 3b2/2ωcr. (b) Zoom-in of the dispersion surface near the Dirac

point (k0,�0) = (0,0). Here, there are four cones meeting at the Dirac point rather than two, as in (a). Note that no first-order approximation is
shown in (b).

the Dirac point ωcr; a zoom-in of a particular case example is
shown in Fig. 3(a).

Equation (15) along with Eq. (13) also admits a “trivial”
solution (k0,�0) = (0,0) which is located at the center of the
Brillouin zone. Near this point the functions ωa,b,c,d have the
leading-order expansions

ωa = a1k
2 + a2(k2+3�2)/2, ωd = d1k

2 + d2(k2 + 3�2)/2,

ωb = ωc =
√

3b2k�, (18)

or, in terms of d̂ and δ̂,

ωa + ωd =1

2
(5δ̂ − 3d̂)

3(k2 + �2)

2
,

ωa − ωd =1

4
(−δ̂ + 3d̂)

3(−k2 + �2)

2
, (19)

ωb = ωc =3

8
(δ̂ − 3d̂)k�.

Therefore the dispersion surface is again locally conical but
this time consists of four cones with two group speeds α±:

ω2 = α2
±(k2 + �2), α2

± = 3

4

(
1

2
(3d̂ − 5δ̂) ± 1

4
(3d̂ − δ̂)

)
(20)

[see Fig. 3(b) for a zoomed-in view].
In the linear limit 0 < δ̂/d̂ = δ/d � 1, these two group

speeds are, respectively, α− = 3
√

d̂/4 and α+ = √
3α−. In

the nonlinear regime, while α± are both purely real for
δ/d < 1/3, α− and α+, respectively, become purely imaginary
for δ/d > 1/3 and δ/d > 9/11. The existence of purely
imaginary eigenvalues implies that the system is linearly
unstable in this long-wave regime, with saturation arising
in the nonlinear regime. Examples of stable and unstable
propagation are considered via numerical simulations in
Sec. V. It is noteworthy that experimentally relevant values
of the precompression would typically satisfy these stability
conditions.

A. Heuristic argument for conical diffraction

It has been shown in various contexts that conical diffraction
is possible in systems with Dirac cones in the dispersion
relation [1,3,9]. A suitable initial condition in order to observe
the relevant phenomenology is a localized function (such as a
Gaussian) that is modulating a Bloch wave with a wave number
near the Dirac point. The resulting conical diffraction evolution
will dynamically yield an expanding ring with a constant width
and amplitude around the ring (however, the amplitude decays
as the ring expands). In this subsection we present a heuristic
calculation that partially explains why such an initial condition
can lead to conical diffraction. The calculation is adapted from
[3] for a discrete system. The general solution of the linearized
equation, Eq. (6), has the form

xm,n(t) =
∑

j∈{−2,−1,1,2}
Ij

for the xm,n component (and likewise for the ym,n component),
where we make use of the inverse transform of Eq. (8),

Ij = 1

2
√

3(2π )2

∫ 2π/
√

3

−2π/
√

3

∫ 2π

0
exp

(
−i

(
km + n

2
(k + �

√
3)

))

× Cj (k,�,v|j |)eiωj (k,�)t dkdl,

where ωj (k,�) is given by Eq. (11). The coefficients Cj

depend on the initial data qm,n(0), wave numbers (k,�), and
eigenvectors v1,v2. We pick an initial displacement that is a
localized function (such as a Gaussian) modulating a Bloch
mode with a wave-number pair (kd,�d ) that is near the Dirac
point. Since the dispersion surface is cone-like near the Dirac
point, we have ω(k,�) ≈ α

√
k2 + �2, where α = 3b2/2ωcr,

as we saw above. For notational simplicity, we have made
a change of variable to shift the cone to the origin. With these
assumptions, we can write

Ij ≈ 1

2
√

3(2π )2

∫ 2π/
√

3

−2π/
√

3

∫ 2π

0
exp

(
−i

(
km + n

2
(k + �

√
3)

))

× Cj (k,�,v|j |) exp(αi
√

k2 + �2 t)dkdl.
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The initial condition consists of a plane wave modulated
by a radially symmetric function (such as a Gaussian) that has
a long wavelength relative to the underlying lattice spacing
[see, e.g., the large width parameter in Eq. (29)]. Under
the assumption of a long wavelength, it is reasonable to
approximate the Fourier transform of the initial amplitude with
a radially symmetric function that is compactly supported in a
circle of radius π . Thus, we make use of the polar coordinates
k = η cos(θ ), � = η sin(θ ) in order to rewrite the above integral
as

Ij ≈ 1

2
√

3(2π )2

∫ π

0
Cj (η,v|j |) exp(iαηt)η

×
∫ π

−π

exp

(
−iη

(
cos(θ )m + n

2
(cos(θ )

+ sin(θ )
√

3)

))
dθdη.

If we use the identity

cos(θ )(m + n/2) + sin(θ )n
√

3/2

=
√

m2 + n2 + nm sin(θ + φ), (21)

where φ = tan−1 (m+n/2
n
√

3/2
), then we have

Ij ≈ 1

2
√

3(2π )2

∫ π

0
Cj (η,v|j |) exp(iαηt)η

∫ π

−π

e−iηρ sin(θ)dθdη,

where we have dropped the phase shift φ since the second
integration is over an entire period and where we have
defined ρ = √

n2 + m2 + nm. Note that within the hexagonal
coordinate frame, the expression ρ is radially symmetric. The
second integral is a zeroth-order Bessel function and so we
have

Ij ≈ 1

4
√

3π

∫ π

0
Cj (η,v|j |) exp(iαηt)ηJ0(ηρ)dη.

For Gaussian initial data there is no closed-form expression
for this integral. However, if we assume that each component
of the initial data q(η,0) has the form of an exponential with
decay rate g > 0 and that the eigenvectors do not vary much
in the vicinity of the Dirac point, then Cj will be a linear
combination of exponential functions, which we write as Cj =
Bj (v1(kd,�d ),v2(kd,�d ))e−gη. Therefore, we have

Ij ≈ Bj

4
√

3π

∫ ∞

0
exp(−η(g − iαt))ηJ0(ηρ)dη

− Bj

4
√

3π

∫ ∞

π

exp(−η(g − iαt))ηJ0(ηρ)dη.

Assuming that the contribution of the second integral is small
with respect to the first (which can be computed formally by
setting s = g − iαt and computing the Laplace transform of
the function f (η) = J0(ηρ)η), we finally have a closed-form
approximation of the integral,

Ij ≈ Bj

4
√

3π

(g − iαt)

((g − iαt)2 + ρ2)3/2
. (22)

The solution xm,n(t) will be a linear combination of the real
and imaginary parts of the Ij , where each has the form of an
expanding ring as t increases for all αt � ρ. Note that the

key aspect of this calculation was representing the dispersion
surface ω(k,�) as α

√
k2 + l2, which, along with the fact that

the initial condition is localized in Fourier space, allowed us
to write an approximate linear solution in terms of a radially
symmetric function in physical space.

While there were numerous heuristic assumptions in our
calculation above, we also now give a more systematic asymp-
totic analysis of the linear dynamics, utilizing a multiple-scale
expansion in the vicinity of the Dirac point, in order to
complement and corroborate the above argument.

IV. DERIVATION OF A DIRAC SYSTEM

We start by considering the multiple-scale ansatz,

qm,n(t) = εφP (T )E + c.c., E = ei(km+ n
2 (k+√

3�))eiωt ,

P = ε

(
m + n

2
,
n
√

3

2

)
, T = εt, (23)

where φP (T ) ∈ C2. Here, E represents a plane wave; φ. the
slow envelope; and P and T , the slow evolution variables in
space and time, respectively. Substituting the above ansatz into
Eq. (6) and ignoring O(ε3) terms and higher yields,

ε22iω
dφP

dT
− εφP ω2

= ε2(DF1 + DF2 + DF3)φP

−ε
(
DF1

(
φP+εv1e

iκ·v1 + φP−εv1e
−iκ·v1

)
+DF2

(
φP+εv2e

iκ·v2 + φP−εv2e
−iκ·v2

)
+DF3

(
φP+εv3e

iκ·v3 + φP−εv3e
−iκ·v3

))
,

where κ = (k,�) and v1 = (1,0), v2 = (1/2,
√

3/2), v3 =
(1/2,−√

3/2). We now make use of the Taylor-series expan-
sion,

φP±εvj
≈ φP ± εDφP vj , j = 1,2,3,

where

φP = φ(X,Y ) =
(

α(X,Y )
β(X,Y )

)
, Dφ =

(
∂Xα ∂Y α

∂Xβ ∂Y β

)
,

which yields

ε22iω
dφP

dT
− εφP ω2

= ε2(DF1+DF2+DF3)φP −ε(DF1((φP +εDφP v1)eiκ·v1

+(φP − εDφP v1)e−iκ·v1 ) + DF2((φP + εDφP v2)eiκ·v2

+(φP − εDφP v2)e−iκ·v2 ) + DF3((φP + εDφP v3)eiκ·v3

+(φP − εDφP v3)e−iκ·v3 )).

Then, at order ε we have

0 = −ω2φP − 2(DF1 + DF2 + DF3 − DF1 cos(κ · v1)

−DF2 cos(κ · v2) − DF3 cos(κ · v3))φP , (24)
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while at order ε2 we have

iω
dφP

dT
= DF1(DφP v1)i sin(κ · v1)

+DF2(DφP v2)i sin(κ · v2)

+DF3(DφP v3)i sin(κ · v3). (25)

The solutions to these linear PDEs have the form φP (T ) =
φ(X,Y,T ) = ṽei(k̃X+�̃Y+μT ). In Fourier space, Eqs. (24) and
(25), respectively, become Eq. (10) at O(1) and O(ε). The
former requires that ω2 = ω2

cr. If we evaluate the wave number
at the Dirac point, the latter becomes a linear Dirac equation.
For example, if we take κ = (4π/3,0), then we have

− 2μωṽ = H̃ṽ, H̃ :=
(

k̃
√

3(a2 − a1) 3b2�̃

3b2�̃ k̃
√

3(d2 − d1)

)
(26)

or, back to physical space,

∂T φP (T ) = ± 1

2ωcr

(√
3(a2−a1)∂X 3b2∂Y

3b2∂Y

√
3(d2−d1)∂X

)
φP (T ).

(27)
The dispersion relation of the Dirac equation is

μ = ± 3b2

2ωcr

√
k̃2 + l̃2,

where we have made use of the fact that −(d1 − d2) = a1 −
a2 = √

3b2. Note the connection to the approximation given
in Eq. (16) through the relation ω ≈ ±(ωcr + μ).

Near (k0,�0) = (0,0), the envelope equation can be obtained
by expanding Eq. (6) to O(ε3). Alternatively, we can expand
the dispersion relation, (10), to O(ε2) and replace (k,�,ω)
with −iε(∂X,∂Y ,∂T ). The resulting envelope equation is the
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FIG. 4. Conical-like diffraction in a hexagonal lattice. Images from left to right show the dynamical evolution. The color intensity
corresponds to the magnitude of the displacement. The position of the bead in each panel corresponds to the position in physical space
(see also Fig. 1). Parameter values are the same as in Fig. 2. The initial conditions are a superposition of Bloch modes at the Dirac points
(kd,�d ) = (0,4π/3) and (kd,�d ) = (2π

√
3,2π/3); see Eq. (29). Images from top to bottom correspond to increasing initial intensity. (a)–(c)

Evolution with a low-amplitude excitation (the maximum strain is 0.6% of the static overlap δ), thus inducing near-linear dynamics. (d)–(f)
Weakly nonlinear evolution (the maximum strain is 10% of the static overlap δ). (g)–(i) Strongly nonlinear evolution (the maximum strain is
53% of the static overlap δ).
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FIG. 5. Exciting the quadruple Dirac point (k0,�0) = (0,0). Parameter values are the same as in Fig. 2. Note that the stability condition
δ/d < 1/3 is satisfied. The color intensity corresponds to the magnitude of the displacement. (a) The initial condition with a low-amplitude
(i.e., near-linear) excitation (the maximum strain is 0.6% of the static overlap δ). (b) Given sufficient evolution time, two rings propagating
at different speeds will form. (c) Surface map of the magnitude of the displacement along the n = 0 axis. Solid and dashed lines are the
approximations of the group speeds α− and α+, respectively.

following vector-wave equation:

∂T T φP (T ) = −
(

a1∂XX + a2(∂XX + 3∂YY )/2
√

3b2∂XY√
3b2∂XY d1∂XX + d2(∂XX + 3∂YY )/2

)
φP (T ). (28)

We now turn to numerical computations in order to explore
the validity of the above considerations in the linear limit, as
well as to extend them in the nonlinear regime.

V. NUMERICAL STUDY OF THE TRANSITION BETWEEN
LINEAR AND NONLINEAR CONICAL WAVE

PROPAGATION

To test the conclusion in the previous sections, namely, that
conical diffraction is possible in discrete granular systems,
such as the hexagonally packed granular lattice, we perform
numerical simulations on a 156 × 156 packing of beads
with static overlap δ = 0.1. All other parameters are set
to unity. The initial condition is a localized superposition
of Bloch modes near the Dirac points. More specifically,

we use

(
xm,n(0)
ym,n(0)

)
= (ξ1 cos (4πm/3 + 2πn/3)ṽ1

+ ξ2 cos(2πm/3 + 4πn/3)ṽ2)Ae−(n2+m2+nm)/β,

(29a)(
ẋm,n(0)
ẏm,n(0)

)
= (ξ1ω̃1 cos(4πm/3 + 2πn/3)ṽ1

+ ξ2ω̃2 cos(2πm/3+4πn/3)ṽ2)Ae−(n2+m2+nm)/β,

(29b)

where ω̃1 := ω(0,4π/3), which has the associated eigenvector
ṽ1 := v(0,4π/3), and ω̃2 := ω(2π

√
3,2π/3), which has the

t = 0
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FIG. 6. Exciting the quadruple Dirac point (k0,�0) = (0,0), with parameters as in Fig. 2 with the exception of the precompression, which
has the value δ = 0.4. The stability condition δ/d < 1/3 is violated (i.e., α− is purely imaginary). (a) The initial condition with a low-amplitude
(i.e., near-linear) excitation (the maximum strain is 0.6% of the static overlap δ). The color intensity corresponds to the magnitude of the
displacement. (b), (c) The amplitude grows exponentially since the group speed α− is purely imaginary. The condition for validity of the model
[which for these parameter values is (

√
3(d − δ) − d)/2 ≈ 0.02] is exceeded at t ≈ 9.7.
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FIG. 7. (a) Evolution of a low-amplitude Gaussian modulating a Bloch function at an arbitrary wave number. The characteristic features of
conical diffraction are absent, while hyperbolic structures can be discerned. (b) Evolution after exciting four particles at the center of a purely
nonlinear chain.

associated eigenvector ṽ2 := v(2π
√

3,2π/3). A is an ampli-
tude parameter and β = 100 is the width parameter. For ξ1 =
ξ2 = 1 the Dirac points (0,4π/3) and (2π

√
3,2π/3) are excited

(see Fig. 4). The case where the single Dirac point (kd,�d ) =
(0,4π/3) is excited (ξ1 = 1,ξ2 = 0) or the Dirac point
(kd,�d ) = (2π

√
3,2π/3) is excited (ξ1 = 0,ξ2 = 1) yields

qualitatively similar results and thus is not presented here.
To induce a linear response, we pick A = 0.001. In this

case, as predicted by the linear theory, a ring forms and
expands throughout the lattice, maintaining its width [see
Figs. 4(a)–4(c)]. Behind this bright ring, there exists a dark ring
which is also predicted within the realm of conical diffraction
theory and is termed Poggendorff’s dark ring [9,55]. After the
dark ring, there exists a second weaker (inner) bright ring,
again as expected from the theory of conical diffraction. Note,
also, that there is a very faint (low-amplitude) larger ring that
expands outward in the form of a nonoscillating swell. To
investigate whether the conical diffraction is hindered by the
nonlinearity, we now increase the amplitude of the excitation
to A = 0.015. In this case, we observe a similar set of ring
structures, however, the outer swell is of higher amplitude [see
Figs. 4(d)–4(f)]. The uniform nature of the thick ring is also
somewhat altered. In the linear case, the amplitude of the thick
ring is (radially) constant (at a fixed time), however, in the
weakly nonlinear case, the amplitude varies slightly. Finally,
we induce a strongly nonlinear response by picking A = 0.08.
In this case the outer swell is of the highest amplitude,
and the inner, oscillating ring structure is destroyed, as is
Poggendorff’s dark ring. Although we do not elaborate further
on the latter features (as it is beyond the scope of the present
work which gives an illustrative example of the prototypical
possibility of the granular lattice to sustain conical diffraction),
we do note that understanding the role of nonlinearity would
be an extremely interesting topic for future studies of this
phenomenology. We also considered the trivial wave number
(k0,�0) = (0,0), where there are four Dirac cones meeting at
the origin [see Fig. 3(b)]. This results in two propagating
rings, each propagating at a different speed [see Figs. 5(a)
and 5(b)]. The derived approximations of the group speeds

α− = 3
√

d̂/4 and α+ = √
3α− based on the multiple-scale

analysis predict quite well the numerically observed group
speeds [see Fig. 5(c)]. If the stability condition δ/d < 1/3

is violated, the excitation amplitude grows exponentially and
the model’s validity condition, (4), is quickly exceeded (see
Fig. 6).

For the sake of comparison, we also simulate an initial
condition for a Bloch wave at the arbitrary wave number
(k,�) = (−4,0) at low amplitude [see Fig. 7(a)]. Near this
wave number, the local dispersion surface takes a saddle
shape. In this case, conical diffraction is not observed, but
hyperbolic structures can be seen to develop. In addition, we
performed the simulation in the purely nonlinear case (δ = 0)
by exciting four beads at the center. Namely, we considered an
initial condition where all entries are 0 with the exception of
ẋ0,0 = ẏ1,−1 = −0.2 and ẋ0,1 = ẏ0,1 = −0.2. In this case, the
wave front is hexagonal, but as the front becomes larger, the
shape becomes gradually more circular. Nevertheless, none of
the conical diffraction characteristic features are observed.

VI. CONCLUSIONS AND FUTURE CHALLENGES

In summary, in the present work, we have provided a
prototypical formulation of the precompressed problem of
granular crystals in a hexagonal configuration. By examining
the linear and weakly nonlinear regimes (as well as briefly
also venturing into the more strongly nonlinear one), we have
obtained in an analytical form the linear spectrum, illustrated
the existence of Dirac points, and explored the possibility
of conical diffraction in their vicinity. We found that in the
vicinity of these points, and indeed in the vicinity of the
linear limit, the principal characteristics of conical diffraction
can be both derived theoretically (through heuristic analytics,
as well as through more systematic multiple-scale analysis)
and observed numerically. As nonlinearity becomes gradually
more important (or as we depart from these points), this
phenomenology gets progressively modified and eventually
it appears to break down in the presence of most substantial
nonlinear interactions.

Naturally, a considerable volume of possibilities emerges
from this initial study. Perhaps one of the most interesting
aspects is to explore in further detail both the weakly and
the strongly nonlinear regimes. In the former, although
technically rather cumbersome, it would seem to be very
worthwhile to explore the nonlinear version of the Dirac
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equation that a multiple-scale analysis should produce. From
an experimental perspective, these systems appear to be well
within reach since either in the realm of beads [51,52] or even
in the more recent setup of magnets [56], it should be possible
to construct a system tantamount to the one considered here,
bearing in mind the considerable insights that their optical
(even linear) analogs have offered (for a recent example, see
[57]). Finally, this realization, in turn, would pave the way
for additional intriguing features such as potential acoustic
realizations [58] of topological edge states (cf. [59–62]),
among others. These themes are currently under study and
will be reported in future publications.
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