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Mechanical impulse propagation in granular media depends strongly on the imposed confinement conditions.
In this work, the propagation of sound in a granular packing contained by flexible walls that enable confinement
under hydrostatic pressure conditions is investigated. This configuration also allows the form of the input impulse
to be controlled by means of an instrumented impact pendulum. The main characteristics of mechanical wave
propagation are analyzed, and it is found that the wave speed as function of the wave amplitude of the propagating
pulse obeys the predictions of the Hertz contact law. Upon increasing the confinement pressure, a continuous
transition from nonlinear to linear propagation is observed. Our results show that in the low-confinement regime,
the attenuation increases with an increasing impulse amplitude for nonlinear pulses, whereas it is a weak function
of the confinement pressure for linear waves.
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I. INTRODUCTION

Acoustic methods have been used for decades to char-
acterize the mechanical properties of the complex systems
that are commonly encountered in geological analyses for
mining, construction, and soil characterization [1–4], among
others. However, the physical mechanisms that govern sound
propagation in such systems remain under investigation and
are subject to debate.

Sound propagation though granular materials is a key aspect
of a myriad of industrial processes. Because of the complexity
of the contact networks in these materials, it is expected that
nonlinearity, confinement, and disorder should play important
roles in the propagation of mechanical energy through the
media. However, in most applications, it is necessary to
adopt various assumptions, such as a constant sound velocity,
homogeneous front propagation, and an effective medium
approximation; these assumptions have been tested and found
to result in discrepancies between experimental findings and
numerical simulations of model systems [5].

Extensive efforts have been devoted to describing the
propagation of mechanical energy in granular media. The
features of energy propagation in one-, two-, and three-
dimensional granular systems have been addressed, revealing
the importance of the formation of force chains, which has
motivated the study of pulse propagation in one-dimensional-
aligned spherical grains. With regard to this topic, a large
volume of important literature has been produced, beginning
with the theoretical developments of Nesterenko [6,7] and the
numerical results of Sen [8,9] and proceeding through the
experimental work of several groups [7,10–16].

When considering the propagation of linear waves in
three-dimensional granular media composed of perfect spheres
confined inside a rigid container, a continuum description leads
to a power-law dependence of the speed of sound c on the
confinement pressure P0 as c ∝ P

1/6
0 . This result is a direct

consequence of the Hertz force law for spheres in contact.
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However, this scaling is modified by various effects of practical
relevance, such as particle asperities [17] and moisture [18].
When the confining pressure is imposed by gravity, the same
continuum limit predicts a mirage effect because, as a result
of the increase in pressure with depth, sound travels faster
at deeper locations, resulting in the upward deflection of
the wavefront [19]. More detailed analysis indicates that this
particular feature leads to Rayleigh-Hertz waves [20].

The wavelength of the excitation is another parameter
that is important to propagation behavior and determines the
form of energy transport. If the wavelength is comparable
to the size of the individual grains, then the impulse is
scattered from contact to contact, giving rise to a diffusive
propagation mechanism [21–24]. In this case, the initial
impulse is propagated in two different modes: a coherent
ballistic pulse of short duration that propagates along a straight
line between the emitter and receiver and a scattered wave
that is the result of the superposition of the waves traveling
along various paths through the contact network. The coherent
pulse, also known as the P-wave, arrives first at the receptor
and is predominantly longitudinal, whereas the scattered wave,
or S-wave, is primarily attributable to shear components and
is highly sensitive to the internal structural configuration of
the packing; the latter has been proposed as a mechanism
for identifying changes in the contact network of a material
[25,26]. A propagating impulse can also destroy or create
weak contacts in the internal structure of a granular medium.
These weak contacts are highly nonlinear and can be probed
by small-amplitude perturbations [27]. The propagation of
larger amplitude impulses can sometimes destroy susceptible
contacts, thereby triggering the spontaneous emission of
secondary pulses, which act as point sources inside the
material; in recent work by Jia and Giacco [28,29], this
mechanism has been proposed as a trigger for earthquakes.

Meanwhile, in a weakly confined ensemble of spheres, the
continuum description and the Hertz law [7] together predict a
power-law dependence of the pulse velocity c on the impulse
amplitude P , c ∝ P 1/6, which has been corroborated in recent
experimental investigations [30]. In the present work, we study
the propagation of a single mechanical impulse in a dense
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granular packing under controlled confinement conditions.
The granulate is confined at constant pressure by evacuating
a cylindrical elastic container. The incident and propagated
signals are captured by suitable detectors. This enables the
measurement of the propagation speed of a pulse in both
the low- and high-confinement limits as well as accurate
measurement of the pulse attenuation. It is found that the
propagation speed is nearly independent of the pulse amplitude
in the high-pressure confinement limit, whereas it obeys a
power law that is consistent with the Hertz contact law at a
sufficiently low confinement pressure. Conversely, a ballistic
model combined with viscoelastic dissipation at the sphere
contacts captures the main features of the attenuation of high-
amplitude pulses propagating through the compact medium.
The same mechanisms of dissipation that are introduced in the
propagation equations for a relatively highly confined compact
medium also satisfactorily capture the attenuation behavior of
low-amplitude linear waves.

II. EXPERIMENTAL SETUP

In the setup (Fig. 1), a packing of approximately 1000
glass beads (density ρ0 = 2400 kg/m3) of radius R = 2.5 mm
is confined inside an elastic cylinder of length L = 15 cm
and diameter φ = 5 cm that was formed from a thin latex
sheet. The cylinder is hermetically sealed by clamping the latex
sheet at each end between two plastic rings that were specially
fabricated to allow the emergence of the accelerometer cable
and a vacuum hose. A controlled static pressure P0 is imposed
on the packing by evacuating the interstitial air using a vacuum
pump. This process ensures a constant hydrostatic pressure of
as high as P0 ≈ 93 kPa and a constant packing fraction of
approximately 0.63. A single short impulse is initiated at one
cap of the cylinder by the impact of a rigid pendulum head
against a force sensor (PCB Piezotronics model 208C01); the
amplitude of the impact is controlled through adjustment of the
initial release angle of the pendulum. The impact head of the
pendulum consists of a hexagonal brass head with a glass bead
mounted on the side that impacts the force sensor; its total mass
is 57 g, and the length of the pendulum is 21 cm. The impact
head was designed to permit modifications to the material and

To vacuum    
pump

Pendulum

L

Accelerometer

Force Sensor To signal 
  Conditioner

FIG. 1. Diagram of the experimental setup depicting the impact
pendulum and the sensor positioning. For the experiments presented
in Sec. III B, the pendulum and force sensor are replaced with a
vibration exciter and an accelerometer, respectively.

geometry, thereby allowing the duration and form of the input
excitation to be controlled. At the opposite end of the cylinder,
a miniature accelerometer (PCB Piezotronics model 352A24),
located at the center of the cap, records the outgoing pulse. The
mass and size of the accelerometer were chosen to be close to
those of an individual grain of the medium.

The signals from the force sensor and accelerometer are
conditioned and amplified by a signal conditioner (PCB
Piezotronics model 482C). The outputs of the conditioner
and the amplified signal from the pressure sensor (Honeywell
19C015PV5K with an INA114 low-noise amplifier) are ac-
quired by a computer via a simultaneous sampling acquisition
card.

III. RESULTS

Figure 2 shows several typical experimental signals of the input
force, F , (left column) and the acceleration, A, at P0 = 3.2 kPa
and P0 = 83 kPa (center and right columns, respectively).
The input pulse is much shorter than the output waveform;
after the passage of the main pulse, an oscillation remains in
the material. This oscillation is more important for the loose
packing (low confinement pressure) than for the compact one
and is relatively narrow in band.

To investigate the dynamic features of the impulse prop-
agation, we extract the frequency content of the initial and
propagated signals by taking their corresponding Fourier
transforms (Fig. 3). The amplitude of the Fourier transform of
the incident pulse (inset of Fig. 3) indicates that its frequency
content extends up to approximately 8 kHz, whereas that of
the propagated signal barely surpasses 1 kHz.

At a low confinement pressure, the transmitted wave
exhibits a relatively well-defined peak at a frequency of
approximately 150 Hz and a diffuse band up to 1 kHz. At
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FIG. 2. Typical input and propagated signals from the impact
and accelerometer sensors, respectively. Left column: input signals.
Middle column: propagated signals for P0 = 3.2 kPa. Right column:
propagated signals for P0 = 83 kPa. The rows correspond to different
force amplitudes of the incident pulse. Upper row: F = 1.1 N. Middle
row: F = 22.9 N. Lower row: F = 41.3 N.
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FIG. 3. Fourier transforms of the typical signal shown in Fig. 2,
for the acceleration ÃL, and the force F̃ (in the insets). Signals
are normalized to either the maximum acceleration or the force
amplitude.

a high confinement pressure and high excitation, an additional
relatively broad peak located near 400 Hz develops.

A. Pulse propagation speed

We begin by characterizing the pulse speed as a function
of relevant parameters. The maximum of the cross-correlation
between the pulse generated as a point source and the first
arriving pulse of the acceleration at the sample end (Fig. 2)
yields the time delay (flight time) between these signals, which
enables the measurement of the propagation speed. We can
then study the dependence of this speed on the amplitude of the
impact for various confinement pressures. Each measurement
is repeated three times, and the average is recorded; then the
same procedure is repeated for a different pressure P0.

In the logarithmic representation, it is apparent that the data
follow a power law and that for each data set, the exponent
changes for different values of P0, decreasing as the pressure
difference increases. The exponents of fits to a power law,
c = C0F

α , are shown in Fig. 4(b).
We observe a continuous variation from the known 1/6

exponent [7,16,31] to a near-zero value for a high confinement
pressure. These findings indicate that the medium undergoes
a transition from a nonlinear propagation regime to a linear
propagation regime, where the propagation velocity does not
depend on the amplitude of the impulse [32]. The crossover
in force associated with this transition has been well charac-
terized for front propagation at a relatively low confinement
pressure; see Fig. 3 in Ref. [30]. In our experiments, the range
of impulse amplitudes is only two decades, which limits the
full observation of the crossover.
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FIG. 4. (a) Impulse velocity as a function of the excitation force
amplitude for ◦: P0 = 0.5 kPa, �: P0 = 1.2 kPa, �: P0 = 14.9 kPa,
�: P0 = 23.1 kPa, �: P0 = 50.0 kPa and ∗: P0 = 92.0 kPa. Insert
(b) shows the exponent α from the fit to c = C0F

α .

B. Resonant modes

To understand the frequency content of the propagated
signals, we investigate the resonant modes of the granular
packing by imposing a continuous excitation on the sample.
We couple a vibration exciter (Bruel & Krajer model 4809 with
its corresponding power amplifier) to one end of the cylinder
and measure the longitudinal acceleration amplitude (AL) at
the opposite end. The radial component (AR) of the vibration
is recorded near the middle of the cylinder mantle by means
of an additional accelerometer. By varying the frequency
of excitation, we show that a radial mode appears close to
150 Hz (Fig. 5). We find no significant longitudinal mode at
the amplitude scale of the vibration exciter. Next, we test the
nature of the radial resonance by increasing the amplitude of
the sinusoidal driving signal. In Fig. 6 we plot the envelopes
of the power spectrum of the radial accelerometer signal for
two values of the confining pressure. We observe that the
fundamental frequency of the radial mode for low confinement
(solid black line) decreases as the wave amplitude increases,
resulting in a softer medium at higher amplitudes. However,
we do not observe the same behavior for the higher confining
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FIG. 5. (a) Acceleration amplitude in the radial direction (AR),
normalized to the excitation amplitude (Aext) for different sinusoidal
driving frequencies. (b) Normalized longitudinal component (AL) as
a function of the driving frequency.
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(continuous black lines) and P0 = 83 kPa (dotted red lines). Inset:
Frequency of the radial mode as a function of the static confinement
pressure P0; the dashed line represents the power law of exponent
1/6.

pressure (dotted red line), in which case the fundamental
frequency does not change with the impulse amplitude.

The diminution of the frequency of a mode with increasing
amplitude has been observed in several systems [26,33–35],
and it has been attributed to nonlinear effects arising from
the asymmetry of the mechanical response of the system. At
a low confinement pressure and high amplitude excitation,
the system is softer in tension and harder in compression. In
addition, we observe that the radial resonant mode increases in
frequency with increasing P0. In the insert of Fig. 6, we plot the
frequency of this mode for various values of P0, observing that
the frequency increase is consistent with a power law of the
confinement pressure with an exponent of 1/6. This scaling
suggests that there is a simple dispersion relation involving
the sound speed that is a function of P

1/6
0 and a geometrical

scaling related to the sample diameter; thus, f0 ∝ P
1/6
0 .

Moreover, we observe that this low-frequency peak is wider
for a low confinement pressure and narrows as confinement
increases, indicating that it is strongly affected by a dissipation
that decreases with increasing P0 (see the next section). This
dissipation is expected to be dominated by grain-grain friction
at low P0 and low-frequency excitation. However, as shown
in the following section, at the confinements and excitations
explored in this work, the viscous effect of the material is the
primary mechanism of energy dissipation [36].

C. Attenuation

The geometric features of the boundary conditions in our
experiments, i.e., the lack of rigid ends at both cylindrical
caps, permit the measurement of the attenuation of the pulse
amplitude after propagation through the compact medium. The
ratio of the output energy to the input energy, Ẽout/Ẽin, is
estimated from the time averages of the force and acceleration
at the input and output boundaries, respectively. To model the
energy dissipation, we begin by considering the energy lost
between the nth and n + 1-th layers of the material in the low-
confinement (LC) case, where grains barely touch one another.
The difference between the maximum potential energies U

in these layers is the the work done by the dissipative force
at the layer contacts. In the nonlinear propagation of pulses
along linear chains of spheres consisting of a variety of

materials, it has been shown that the dissipation is dominated
by viscoelasticity [16,36]. Thus, we write

Un − Un+1 = δηκ∂tδ
3/2, (1)

where η is a material constant. The elastic potential energy
is Un = (2/5)κδ5/2, and the total force is F = κδ3/2, where
κ−1 = (2θ )(2/R)1/2 and θ = 3(1 − ν2)/4Y (ν and Y are
the Poisson ratio and Young’s modulus, respectively, of the
material). Thus, the local restitution coefficient in the LC case,
εLC , can be written as follows:

1 − εLC ≈ 5
4ηκ2/3F 1/6. (2)

We calculate the force propagated from layer to layer as

Fn+1 = (1 − εLC)Fn (3)

and use the expression obtained in Eq. (2) to write the con-
tinuum differential equation: dF

dx
= −CηF

7/6, whose solution
is written as F 1/6(L) − F 1/6(0) = CηL/12R, where 0 and
L indicate the positions of the input and output sensors,
respectively. Then, this result can be combined with Eq. (1) to
obtain the restitution coefficient in the LC limit,(

Eout

Ein

)1/2

=
[
U (L)

U (0)

]1/2

= 1[
1 + CηL

12R
F (0)1/6

]5
, (4)

which leads to (Eout
Ein

)
1/2 ≈ CF (0)−5/6 in the high-amplitude

LC limit. The dashed red line in Fig. 7 shows the fit result,
(Eout/Ein)1/2 ≈ 0.23F (0)−5/6, from which we extract the
value of the characteristic viscoelastic relaxation time for glass,
η ≈ 0.041 μs. We notice that an alternative expresion of the
viscoelastic force which is independent of beads deformations
is proposed in [37] and it can be considered for the analysis
of the viscous attenuation in the LC limit. However, better
agreement with our experimental data is obtained through the
use of the viscous force expressed in Eq. (1).

Meanwhile, for the high-confinement (HC) limit, the
pressure P0 imposes a constant deformation δ0 on the contacts.
We begin by taking the linear limit of the dynamic equation
for the nth grain in a one-dimensional chain with viscoelastic
coupling [36]:

m∂ttun = κδ
3/2
+ − κδ

3/2
− + ηκ∂tδ

3/2
+ − ηκ∂tδ

3/2
− , (5)
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FIG. 7. Square root of the ratio between the outgoing energy Ẽout

and the input energy Ẽin as a function of the input force for different
values of the confining pressure P0. The dashed line corresponds to
the LC limit, given in Eq. (4), whereas the solid lines correspond to
the HC limit, given in Eq. (9). The symbols are defined as follows: ◦:
P0 = 0.5 kPa, �: P0 = 23.1 kPa, �: P0 = 50.0 kPa.
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where ∂t and ∂tt are the first- and second-order time deriva-
tives, respectively, and δ+ = δ0 + δ̃+ is the total deformation
between the n-th and (n + 1)-th grains [δ− is the corresponding
deformation with respect to the (n − 1)-th grain]. We assume
that the confinement deformation satisfies δ0 � δ̃ and take the
Taylor approximation for each term in Eq. (5).

In the continuum limit, we take un = u(x,t) and (δ̃+ −
δ̃−)/(4R)2 = ∂xxu(x,t) as a second-order spatial derivative.
Then Eq. (5) becomes a continuous linear wave equation with
a dissipative term:

∂ttu(x,t) = c2
0∂xxu(x,t) + ηc2

0∂t∂xxu(x,t), (6)

c2
0 = 9

2

κδ
1/2
0

πRρ0
. (7)

By assuming a traveling wave solution of the form u(x,t) =
u0e

i(kx−ωt), we find that

k = ω

c0
(1 + η2ω2)−1/4eiφ/2, (8)

where φ = arctan (ηω). Given that η ≈ 4 × 10−8 s (for glass)
and that the range of frequencies experimentally observed in
our system is relatively low (f < 104 Hz), ηω � 1, such that
arctan (φ) ≈ ηω. Then the real part of k, which corresponds to
the dispersion relation, yields the sound velocity c0 = cvP

1/6
0 ,

where we have taken the force at the contact with a bead to be
equal to the area of the sphere multiplied by the hydrostatic
pressure P0 applied to the packing. In our case, the constant
cv ≈ 100 Pa−1/6 m/s is a function of the material properties of
the beads. We calculate the attenuation of the wave as follows:

(
Eout

Ein

)1/2

= ∂tu(x,t)x=L

∂tu(x,t)x=0
≈ e

− ηω2

2c0
L ≈ 1 − ηω2

2cvP
1/6
0

L. (9)

As shown in Fig. 7 for high P0, the restitution coefficient
is independent of the impulse amplitude and increases with
increasing confinement pressure. Also, attenuation increases
rapidly with frequency, as ω2. For low P0, attenuation exhibits
a scaling compatible with F−5/6 as obtained in Eq. (4).

IV. CONCLUSIONS

Through experimental evidence, we verified that the prop-
agation of mechanical impulses in granular media strongly
depends on both the confinement pressure applied to the
packing and the amplitude of the impulse. We tested the
dependence of the propagation speed as a function of the
static confinement pressure (P0) and the dynamic pulse
amplitude (F ), and we found that the impulse velocity follows
a power law proportional to F 1/6 in the low-confinement
case, consistent with the nonlinear propagation described by
Ref. [7]. Moreover, the impulse velocity becomes independent
of the pulse amplitude in the high-confinement case, in
which the velocity dependence follows a power law of
P

1/6
0 , also consistent with previous experimental evidence.

In addition, we studied the resonant modes of the packing
by imposing a continuous sinusoidal input driving signal and
measuring the radial and longitudinal output accelerations;
we found no distinguishable longitudinal mode up to the
amplitude limit of the driver, whereas a radial mode was
observed that weakened with increasing driving amplitude at
low confinement pressures and became independent of the
excitation at high confinement. Consistently, the frequency of
the radial mode increased with increasing P0, with the same
dependence as that of the sound speed. Finally, we tested the
nature of the dissipation mechanism using a viscoelastic model
[36] in both the high- and low-confinement conditions. We
first used a ballistic approximation to calculate the restitution
coefficient for a low confinement pressure and obtained a
power-law dependence of the coefficient, in agreement with
our experimental evidence. Finally, in the high-confinement
case, we linearized the dynamic one-dimensional equation for
a chain of grains to obtain the propagation velocity and the
dissipation of the propagating wave, thereby showing that the
dissipation is independent of the wave amplitude and that it
increases rapidly with ω2 and decreases slowly with P

−1/6
0 .
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