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Transport coefficients of solid particles immersed in a viscous gas
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Departamento de Fı́sica and Instituto de Computación Cientı́fica Avanzada (ICCAEx), Universidad de Extremadura, E-06071 Badajoz, Spain

William D. Fullmer† and Christine M. Hrenya‡

Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, USA

Xiaolong Yin§

Petroleum Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
(Received 13 November 2015; published 21 January 2016)

Transport properties of a suspension of solid particles in a viscous gas are studied. The dissipation in such
systems arises from two sources: inelasticity in particle collisions and viscous dissipation due to the effect of the
gas phase on the particles. Here we consider a simplified case in which the mean relative velocity between the
gas and solid phases is taken to be zero, such that “thermal drag” is the only remaining gas-solid interaction.
Unlike the previous, more general, treatment of the drag force [Garzó et al., J. Fluid Mech. 712, 129 (2012)],
here we take into account contributions to the (scaled) transport coefficients η∗ (shear viscosity), κ∗ (thermal
conductivity), and μ∗ (Dufour-like coefficient) coming from the temperature dependence of the (dimensionless)
friction coefficient γ ∗ characterizing the amplitude of the drag force. At moderate densities, the thermal drag
model (which is based on the Enskog kinetic equation) is solved by means of the Chapman-Enskog method
and the Navier-Stokes transport coefficients are determined in terms of the coefficient of restitution, the solid
volume fraction, and the friction coefficient. The results indicate that the effect of the gas phase on η∗ and μ∗ is
non-negligible (especially in the case of relatively dilute systems) while the form of κ∗ is the same as the one
obtained in the dry granular limit. Finally, as an application of these results, a linear stability analysis of the
hydrodynamic equations is carried out to analyze the conditions for stability of the homogeneous cooling state.
A comparison with direct numerical simulations shows a good agreement for conditions of practical interest.
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I. INTRODUCTION

High-velocity, gas-solid flows occur in a wide range of
practical applications like pneumatic transport lines and circu-
lating fluidized beds to name a few. The earliest continuum
descriptions of such multiphase flows (see, for example,
Ref. [1]) were based on their granular predecessors in which
the role of the gas phase is negligible. More specifically, an
empirical drag law was added to the solids momentum balance,
though the granular energy balance and solid-phase transport
coefficients were used without any gas-phase modifications. In
the decades since those pioneering efforts, the effect of the gas
phase on the granular energy balance (i.e., additional source
or sink terms) and solid-phase transport coefficients has been
incorporated with increasing rigor; see representative works in
Refs. [2–4] and a more detailed review in Ref. [5].

The most rigorous incorporation of gas-phase effects into
solid-phase descriptions occurs at the starting point for the
continuum derivation, namely the kinetic (Enskog) equation
for the solids phase. Numerous groups have taken such
an approach by assuming that the instantaneous drag force
appearing in the kinetic equation takes the same form as
the mean drag force, except that instantaneous velocities are
used in place of mean velocities (see Ref. [5] for overview).
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Recent work by Tenneti et al. [6], however, indicates that
such an ad hoc assumption does not correctly capture the
particle acceleration-velocity correlation observed via direct
numerical simulations (DNS). For the case of Stokes flow, the
acceleration-velocity correlation has been correctly captured
via analytical means [2], though extensions beyond the low-
Stokes limit are difficult due to inherent nonlinearities [7].
Moreover, previous analytical approaches have not accounted
for the effects of the gas phase on transport coefficients but
rather for the new sources or sinks of granular energy.

As an alternative to overcome past challenges with analyt-
ical approaches, Garzó et al. [5] proposed an instantaneous
particle acceleration based on a generalized Langevin model
that was extracted from DNS simulations. The model accounts
for three sources of particle acceleration due to the gas phase:
(i) mean drag (via a term involving a coefficient β and mean
gas and solid velocities), (ii) “thermal” drag (via a term
involving a coefficient γ and the granular temperature or
measure of particle velocity fluctuations), and (iii) particle
neighbor effects (via a term involving a coefficient ξ and
stochastic Wiener process increment). A benefit of using an
acceleration model derived from DNS simulations is that,
in principle, it is not limited to extremes of the parameter
space, unlike past analytical approaches. The new model was
then incorporated into the starting Enskog kinetic equation
to derive the balance equations and constitutive relations for
gas-solid flows. Attention was paid to the Stokes limit initially
in order to verify the correctness of the calculations but,
more importantly, to determine the effect of the gas phase
on transport coefficients, which had not previously been done
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in a rigorous manner. The results indicate that the effect of
the gas phase on both the shear viscosity and the Dufour-like
coefficients is non-negligible for industrially relevant portions
of the parameter space.

In the current effort, an extension of our previous study [5]
that more accurately accounts for the granular tempera-
ture dependence of the gas-phase effects on the transport
coefficients is undertaken. In our previous work [5], the
temperature dependence of two scaled parameters in the
particle acceleration model, namely γ ∗ and ξ ∗, were implicitly
neglected in order to obtain analytic (explicit) expressions
for the transport coefficients. Here the above temperature
dependence is considered for a simplified case, namely when
the mean relative velocities between the gas Ug and solid
U phases is zero, i.e., �U ≡ U − Ug = 0. More specifically,
in such a simplified system only the thermal drag remains;
i.e., mean drag and neighbor effects, which are proportional
to �U in the particle acceleration model, disappear. This
simplification is again motivated by a desire for analytic
expressions when the full granular temperature dependence
of γ ∗ is considered. It is worthwhile to note that the resulting
(thermal) drag model, which is linear in granular temperature,
has been recently employed [8–13] to model the effect of a
viscous gas in gas-solid suspensions.

The outline of the paper is as follows. In Sec. II the
simplified model (thermal drag only) allowing for the tem-
perature dependence of the (scaled) thermal drag coefficient
γ ∗ is introduced and the corresponding balance equations for
the densities of mass, momentum, and energy are derived.
Section III deals with the so-called homogeneous cooling
state (HCS) where a scaling solution is proposed that depends
on granular temperature T only through the dimensionless
velocity c = v/v0(T ), where v0(T ) = √

2T/m is the thermal
velocity. This solution is similar to the one obtained before
in previous works on dry granular gases [14]. The Chapman-
Enskog method is carried out in Sec. IV to solve the Enskog
kinetic equation up to first order in the spatial gradients,
i.e., Navier-Stokes order. In Sec. V, the resulting transport
coefficients are obtained and then compared to the previous
treatment [5] where the temperature dependence of the (scaled)
thermal drag coefficient γ ∗ was neglected but �U �= 0 was
allowed. With the exception of the shear viscosity and Dufour-
like coefficient for quite dissipative particles (coefficient of
restitution α � 0.7) and high values of γ ∗, the transport coeffi-
cients derived here match well with prior results [5], providing
confidence in the approximate but more general expressions
for which �U �= 0. Then, in Sec. VI, as an application of the
new theory, a linear stability analysis is performed using the
HCS as the basis state. Section VII provides some technical
details on the DNS performed here while the theoretical results
derived from the stability analysis are compared with DNS
results in Sec. VIII for conditions of practical interest. Good
agreement is found, providing quantitative validation of the
calculations carried out here. Finally, the paper is closed in
Sec. IX with some concluding remarks.

II. THERMAL DRAG MODEL FOR GAS-SOLID FLOWS

We consider a system of solid particles suspended in a
viscous gas. Under rapid flow conditions, particles are usually

modelled as a gas of smooth inelastic hard spheres or disks.
In this case, the inelasticity of collisions is characterized by a
constant (positive) coefficient of normal restitution α � 1. The
case α = 1 corresponds to elastic collisions. The suspension
is in the presence of the gravitational force mg, where m

is the particle mass and g is the gravity acceleration. For
moderate densities, it is assumed that the one-particle velocity
distribution function f (r,v; t) is accurately described by the
Enskog kinetic equation [15,16]

∂tf + v · ∇f + ∂

∂v
·
[(

Ffluid

m

)
f

]
+ g · ∂f

∂v
= J [f,f ], (1)

where v is the particle velocity and Ffluid denotes the fluid-solid
interaction force that models the effect of the viscous gas on
solid particles. In order to fully account for the influence of
the interstitial molecular fluid on the dynamics of grains, a
instantaneous fluid force model has been recently proposed [5].
In this model, the instantaneous impulse is given by

mdv = Ffluiddt = −β�Udt − γ Vdt + m
√

ξdW, (2)

where V = v − U is the particle fluctuation (or peculiar)
velocity, the vector dW is a Wiener process increment
(stochastic term), and the scalars β, γ , and ξ are the model
coefficients [5]. According to Eq. (2), the fluid-solid interaction
force present in high-velocity gas-solid flows is constituted by
three different terms: (i) a term proportional to the difference
between the mean velocities of gas and solid phases �U (mean
drag), (ii) an additional contribution to the drag force arising
from particle velocity fluctuations (thermal drag), and (iii) a
stochastic Langevin-like term that accounts for added effects
of neighboring particles (neighbor effect). Decomposing the
deterministic fluid force into mean and fluctuating components
allows for the distinct mean (β) and thermal (γ ) drag models.
DNS data have suggested that, beyond the dilute limit, the
concentration dependence of these two models is no longer
identical [4]. The first and third terms are proportional to
�U and, hence, they vanish for particular situations where
the mean velocity of solid particles follows the mean flow
velocity of fluid (like, for instance, in the simple shear flow
state [13,17,18]).

For the most general condition of �U �= 0, the kinetic
equation for gas-solid suspensions is given by [5]

∂tf + v · ∇f − β

m
�U · ∂f

∂V
− γ

m

∂

∂V
· Vf

− 1

2
ξ

∂2f

∂V 2
+ g · ∂f

∂V
= JE[r,v|f,f ], (3)

where

JE[r,v1|f,f ] = σd−1
∫

dv2

∫
dσ̂ �(σ̂ · g12)(σ̂ · g12)

× [α−2χ (r,r − σ )f (r,v′
1; t)f (r − σ ,v′

2; t)

−χ (r,r + σ )f (r,v1; t)f (r + σ ,v2; t)] (4)

is the Enskog collision operator. Like the Boltzmann equation,
the Enskog equation neglects velocity correlations among
particles that are about to collide, but it takes into account the
dominant spatial correlations due to excluded-volume effects.
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According to Eq. (3), gas-phase effects appear in terms
involving β (mean drag), γ (thermal drag), and ξ (neighbor
effects). In Eq. (4), d is the dimensionality of the system
(d = 2 for disks and d = 3 for spheres), σ = σ σ̂ ,σ̂ being a
unit vector and σ the particle diameter, � is the Heaviside
step function, g12 = v1 − v2, and χ [r,r + σ |{n(t)] is the
equilibrium pair correlation function at contact as a functional
of the nonequilibrium density field n(r,t) defined by

n(r,t) =
∫

dvf (r,v,t). (5)

For the case of spheres (d = 3) considered in this work, the
Carnahan-Starling approximation [19] for χ is given by

χ (φ) = 1 − 1
2φ

(1 − φ)3
, (6)

where

φ = πd/2

2d−1d�
(

d
2

)nσd (7)

is the solid volume fraction. The primes on the velocities in
Eq. (4) denote the initial values {v′

1,v
′
2} that lead to {v1,v2}

following a binary collision:

v′
1 = v1 − 1

2 (1 + α−1)(σ̂ · g12)σ̂ , (8a)

v′
2 = v2 + 1

2 (1 + α−1)(σ̂ · g12)σ̂ . (8b)

Moreover, in Eq. (3), we recall that �U = U − Ug , where Ug

is the (known) mean flow velocity of the gas phase and

U = 1

n(r,t)

∫
dv vf (r,v,t) (9)

is the mean particle velocity. The model coefficients β, γ , and
ξ are extracted from DNS simulations [5]. Accordingly, these
coefficients depend on constant parameters (particle mass and
diameter, gas viscosity) as well as on the hydrodynamic (mean)
variables (solids concentration, gas and solid velocities, and
granular temperature). In particular, in the case of low
mean-flow Reynolds numbers, Rem = (1 − φ)σρg|�U|/μg ,
the expressions of γ and ξ for hard spheres (d = 3) are

γ = m

τg

Rdiss(φ), (10)

ξ = 1

6
√

π

σ |�U|2

τ 2
g

√
T
m

S∗(φ), (11)

where τg = m/(3πμgσ ) is the viscous relaxation time, μg is
the gas-phase dynamic (shear) viscosity, and

T (r,t) = 2

dn(r,t)

∫
dv V 2 f (r,v,t) (12)

is the granular temperature. In Eqs. (10) and (11), Rdiss(φ)
and S∗(φ) are only functions of the solid volume fraction φ.
Approximate forms for Rdiss(φ) [see Eq. (73)] and S∗(φ) can
be found in the literature [2,4,20].

It is quite apparent that in the suspension kinetic model
defined by Eqs. (3) and (4), the form of the Enskog collision
operator JE[r,v|f,f ] is the same as for a dry granular gas

and, hence, the collision dynamics do not contain any effects
related to the interstitial fluid. As has been previously discussed
in several papers [2,17,18,20], the above assumption requires
that the mean-free time between collisions is much less than the
time taken by the fluid forces to significantly affect the motion
of solid particles (i.e., the viscous relaxation time). Under these
conditions, it is expected that the suspension model defined by
Eq. (3) will accurately describe situations where the stresses
exerted by the interstitial fluid on particles are sufficiently
small so they only have a weak influence on the dynamics of
grains. As the particle-to-fluid density ratio decreases (e.g.,
glass beads in liquid water), the above assumption may not be
reliable and, hence, one may need to consider the effect of the
interstitial fluid on the collision operator.

The macroscopic balance equations for the densities of
mass, momentum, and energy can be exactly derived from
the Enskog equation (3). The are given by [5]

Dtn + n∇ · U = 0, (13)

DtU + ρ−1∇ · P = − β

m
�U + g, (14)

DtT + 2

dn
(∇ · q + P : ∇U) = −2T

m
γ + mξ − ζ T . (15)

In the above equations, Dt = ∂t + U · ∇ is the material
derivative and ρ = mn ≡ ρsφ is the mass density (ρs is
the material density of a particle). The presence of the gas
phase gives rise to three new terms: mean drag [first term
on the right-hand side of Eq. (14)], thermal drag [first term
on the right-hand side of Eq. (15)], and associated neighbor
effects [second term on the right-hand side of Eq. (15)]. In
addition, the cooling rate ζ is proportional to 1 − α2 and is
due to dissipative collisions. The pressure tensor P(r,t) and
the heat flux q(r,t) have both kinetic and collisional transfer
contributions, i.e., P = Pk + Pc and q = qk + qc. The kinetic
contributions are given by

Pk =
∫

dvmVVf (r,v,t), (16)

qk =
∫

dv
m

2
V 2Vf (r,v,t), (17)

and the definition of the collisional transfer contributions Pc

and qc are given by Eqs. (4.11) and (4.12), respectively, of
Ref. [5]. Since the forms of the collisional contributions to Pc

and qc are not affected by the inclusion of the temperature
dependence of γ ∗, their Navier-Stokes expressions (first order
in spatial gradients) are the same as those derived before in
Ref. [5]. The cooling rate is given by

ζ = (1 − α2)

4dnT
mσd−1

∫
dv1

∫
dv2

∫
dσ̂�(σ̂ · g12)

× (σ̂ · g12)3f (2)(r,r + σ ,v1,v2; t), (18)

where

f (2)(r1,r2,v1,v2,t) = χ (r1,r2|n(t))f (r1,v1,t)f (r2,v2,t).

(19)

Needless to say, the hydrodynamic balance equations
(13)–(15) are not a closed set of equations for the

012905-3
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hydrodynamic fields unless the pressure tensor, the heat flux,
and the cooling rate are expressed as functionals of the fields
n, U, and T . This task can be accomplished by solving the
corresponding kinetic equation by means of the Chapman-
Enskog method [21]. This perturbation method was used in
Ref. [5] to determine the pressure tensor P

(1)
ij and the heat flux

q(1) to first- order in spatial gradients. Their expressions are

P
(1)
ij = −η

(
∂iUj + ∂jUi − 2

d
δij∇ · U

)
− λ∇ · U, (20)

q(1) = −κ∇T − μ∇n, (21)

where η is the shear viscosity, λ is the bulk viscosity, κ is
the thermal conductivity coefficient, and μ is a Dufour-like
coefficient. While η, κ , and μ have kinetic and collisional
contributions, λ has only a collisional contribution. The
Navier-Stokes transport coefficients can be written as

η ≡ η0η
∗, λ ≡ η0λ

∗, κ ≡ κ0κ
∗, μ ≡ T κ0

n
μ∗, (22)

where η0 = nT/ν(T ) is the shear viscosity of a molecular
(dry) dilute gas and

κ0 = d(d + 2)

2(d − 1)

η0

m
(23)

is the thermal conductivity of a molecular (dry) dilute gas. In
addition,

ν(T ) = 8

d + 2

π (d−1)/2

�
(

d
2

) nσd−1

√
T

m
(24)

is the collision frequency associated with the shear viscosity
of a dilute elastic gas.

The (scaled) transport coefficients η∗, λ∗, κ∗, and μ∗ are
nonlinear functions of the solid volume fraction φ, the coef-
ficient of restitution α, and the (dimensionless) coefficients,

γ ∗ ≡ γ

mν(T )
, ξ ∗ ≡ mξ

T ν(T )
. (25)

For the sake of simplicity, the expressions of the kinetic
contributions to η∗, κ∗, and μ∗ were derived in Ref. [5] by
neglecting the temperature dependence of γ ∗ and ξ ∗. Thus,
a natural question is whether, and, if so, to what extent, the
conclusions drawn before [5] may be altered when the above
new ingredient is accounted for in the theory.

Nevertheless, the determination of the Navier-Stokes trans-
port coefficients by considering the dependence of γ ∗ and ξ ∗
on T by starting from the (complete) Langevin-like model (3)
is very complex, especially if one wants to provide explicit
expressions for the above coefficients. Thus, in order to gain
some insight into the general problem, we consider here a
simplified version of the model (3) where the mean flow
velocities of solid particles and gas phase are assumed to
coincide (�U = 0) and hence, according to Eq. (11), ξ = 0. In
other words, the mean drag and neighbor effects are assumed to
be negligible. As we will show below, the use of this simplified
model allows one to get analytical results for the transport
coefficients for general unsteady conditions.

Therefore, in the case �U = 0, the kinetic equation (3)
reads

∂tf + v · ∇f − γ

m

∂

∂V
· Vf + g · ∂f

∂V
= JE[r,v|f,f ], (26)

while the momentum and energy balance equations (14) and
(15) become, respectively,

DtU + ρ−1∇ · P = g, (27)

DtT + 2

dn
(∇ · q + P : ∇U) = −2T

m
γ − ζ T . (28)

The objective now is to solve the simplified kinetic equation
(26) for states close to the HCS. As mentioned in the
Introduction, it must be noted that the same kinetic equa-
tion (26) has been previously used to study simple shear
flows in gas-solid suspensions [13,17,18], particle clustering
due to hydrodynamic interactions [22], steady states of
particle systems driven by a vibrating boundary [8], and more
recently [9–12] to analyze the shear rheology of frictional
hard-sphere suspensions.

III. HOMOGENEOUS COOLING STATE

The HCS is an ideal first test of the simplified kinetic
equation since the mean motion of each phase (gas and
solids) is zero, and thus �U = 0. In this case, we consider
an isolated gas (g = 0) where the density n is constant and
the time-dependent temperature T (t) is spatially uniform.
Consequently, the Enskog equation (26) for the homogeneous
distribution fh becomes

∂fh

∂t
− γ

m

∂

∂v
· vfh = χJB[fh,fh], (29)

where here JB[fh,fh] is the Boltzmann collision operator for
inelastic collisions, namely

JB[f,f ] = σd−1
∫

dv2

∫
dσ̂ �(σ̂ · g12)(σ̂ · g12)

× [α−2f (v′
1)f (v′

2) − f (v1)f (v2)]. (30)

The balance equations for the HCS yield ∂tn = 0,∂tU = 0 and

∂tT = −
(

ζ + 2

m
γ

)
T . (31)

Upon deriving Eq. (31) we have accounted for that the heat
flux vanishes and the pressure tensor is diagonal, namely Pij =
pδij , where [5]

p = nT [1 + 2d−2(1 + α)χφ] (32)

is the hydrostatic pressure. Note that the presence of the gas
phase does not enter in the constitutive relation for pressure.
The solution to Eq. (31) can be written as [23]

T (t)

T0
= 4γ ∗2

0 e−2γ ∗
0 t∗

[2γ ∗
0 + ζ ∗(1 − e−γ ∗

0 t∗ )]2
. (33)

Here T0 ≡ T (0) is the initial temperature, γ ∗
0 ≡ γ /[mν(T0)],

and ζ ∗ ≡ ζ/ν(T ) where ν(T ) is defined by Eq. (24). Moreover,
in Eq. (33), t∗ ≡ ν(T0)t . In order to get the explicit dependence
of T (t)/T0 on the coefficient of restitution α and the friction
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coefficient γ , one has to determine the (reduced) cooling
rate ζ ∗.

In the hydrodynamic regime, since the time dependence of
fh only occurs through the granular temperature T , then

∂fh

∂t
= ∂fh

∂T

∂T

∂t
= −

(
ζ + 2

m
γ

)
T

∂fh

∂T
, (34)

and Eq. (29) becomes

−
(

ζ + 2

m
γ

)
T

∂fh

∂T
− γ

m

∂

∂v
· vfh = χJB[v|fh,fh]. (35)

In the absence of the viscous drag force (γ = 0), Eq. (35)
admits the solution [14]

fh(v) = nv−d
0 ϕh(c), (36)

where the scaling distribution ϕh is an unknown function of
the dimensionless velocity

c = v
v0

, (37)

where v0 = √
2T/m is the thermal velocity. When γ �= 0,

according to the previous results derived for driven granular
gases [24–26], the scaled distribution ϕh could have an addi-
tional dependence on the granular temperature through the di-
mensionless friction coefficient γ ∗ = γ /[mν(T )]. On the other
hand, it can be seen by direct substitution that the form (36)
is still a solution of Eq. (35) and hence ϕh does not explicitly
depend on γ ∗. This conclusion is consistent with the results
obtained in Ref. [27] where it has been shown that the drag
force term ∂v · vf arises from a logarithmic change in the time
scale of the hard-sphere system without external force.

Thus, according to the scaling (36), one has the property

T
∂fh

∂T
= −1

2

∂

∂v
· vfh, (38)

and Eq. (35) reduces to

1

2
ζ

∂

∂v
· vfh = χJB[fh,fh]. (39)

Equation (39) is fully equivalent to the one obtained in the
HCS of a dry granular gas (namely when γ ∗ = 0).

To confirm the scaling (36), let us analyze the evolution of
the kurtosis or fourth-cumulant

a2 = 1

d(d + 2)

m2

nT 2

∫
dv v4fh(v) − 1. (40)

Although the exact form of the homogeneous distribution
function is not known, the knowledge of a2 provides an indirect
information of the deviation of ϕh from its Gaussian form.
In order to determine a2(t), we multiply Eq. (29) by v4 and
integrate over velocity. Neglecting nonlinear terms in a2, the
result can be written as [14]

∂a2

∂τ
+ Xa2 = Y, (41)

where

X = 1 + α

64d
[9 + 24d − α(41 − 8d) + 30α2(1 − α)]χ, (42)

Y = (1 − α2)(1 − 2α2)

4d
χ, (43)

and we have introduced the dimensionless time scale

τ (t) =
∫ t

0
dt ′ν(t ′). (44)

The parameter τ is therefore an average number of collisions
per particle in the time interval between 0 and t . The solution
to Eq. (41) is

a2(τ ) = a2(0) e−Xτ + a2,dry, (45)

where a2(0) denotes the initial value of a2 and

a2,dry = 16(1 − α)(1 − 2α2)

9 + 24d − α(41 − 8d) + 30α2(1 − α)
(46)

is the value of a2 in the case of a dry granular gas [14]. Since
X > 0 in the entire range of values of α, then a2 → a2,dry and
the results obtained for the (scaled) fourth-degree moment of
fh in the presence or in the absence of the drag force are the
same. To first order in a2, the collisional cooling rate ζ can be
written as

ζ = d + 2

4d
(1 − α2)χ

(
1 + 3

16
a2,dry

)
ν. (47)

Once the cooling rate is known, it is interesting to write the
solution of Eq. (31) in terms of the (dimensionless) time τ .
The physical solution compatible with the dry granular limit
case (no gas phase) is given by

T (τ )

T0
= [2γ ∗

0 − e−ζ ∗τ (2γ ∗
0 + ζ ∗)]2

ζ ∗2
. (48)

In the case of elastic collisions (ζ ∗ = 0), Eq. (48) leads to
T (τ ) = T0(1 − 2γ ∗

0 τ )2 while in the absence of the gas phase
(γ ∗

0 = 0), Eq. (48) yields T (τ ) = T0 exp(−2ζ ∗τ ). The latter
expression is consistent with the results derived for granular
gases [14]. The relationship between the real time t∗ and the
(reduced) time variable τ can be easily obtained from the
identity

τ = 1

2

∫ t

0
ν[T (t ′)]dt ′ = 1

2

∫ t∗

0

√
T (t∗)

T0
dt∗. (49)

The integration of Eq. (49) gives

τ = ln[−ζ ∗ + eγ ∗
0 t∗ (2γ ∗

0 + ζ ∗)] − γ ∗
0 t∗ − ln(2γ ∗

0 )

ζ ∗ . (50)

Note that when t∗ → ∞, then τ → τ0 where

τ0 = 1

ζ ∗ ln

(
1 + ζ ∗

2γ ∗
0

)
. (51)

Figure 1 illustrates the time dependence of the temperature for
hard spheres (d = 3) with φ = 0.2 and α = 0.8. Three values
of γ ∗

0 have been considered, including the dry granular limit
case (γ ∗

0 = 0). As expected, the temperature decays in time
more slowly in the dry limit case than in the case of viscous
suspensions. In addition, this decay is more pronounced as
the effect of viscous gas increases. It must be noted that the
analytical result (33) compares quite well (before the onset
of vortex instability) with DNS results [23] in conditions of
practical interest.
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FIG. 1. Temperature versus (dimensionless) time t∗ for a three-
dimensional system with φ = 0.2 and α = 0.8. Three different
values of the initial dimensionless friction coefficient γ ∗

0 have been
considered: γ ∗

0 = 0.2 (dashed red line), γ ∗
0 = 0.1 (solid line), and the

dry granular case γ ∗
0 = 0 (blue dash-dotted line).

IV. CHAPMAN-ENSKOG METHOD

We assume now that we slightly perturb the HCS analyzed
in Sec. III by small spatial gradients. In this case, there are
nondiagonal contributions to the pressure tensor, the heat flux
differs from zero, and, hence, one can identify the relevant
Navier-Stokes transport coefficients of the suspension. The
evaluation of these coefficients as functions of both the
coefficient of restitution α and the friction coefficient γ is
the main goal of this paper.

Since the strength of the spatial gradients is small, the
Enskog equation (26) is solved by means of the Chapman-
Enskog method [21] adapted to dissipative dynamics. The
Chapman-Enskog method assumes the existence of a normal
solution such that all space and time dependence of the
distribution function occurs through the hydrodynamic fields,

f (r,v,t) = f [v|n(r,t),T (r,t),U(r,t)]. (52)

The notation on the right-hand side indicates a functional
dependence on the density, temperature, and flow velocity.
For small spatial variations (i.e., low Knudsen numbers), this
functional dependence can be made local in space through an
expansion in gradients of the hydrodynamic fields. To generate
it, f is written as a series expansion in powers of the gradients
of n, U, and T :

f = f (0) + f (1) + f (2) + · · · , (53)

where the approximation f (k) is of order k in spatial gradients.
Moreover, we assume that collisional dissipation and spatial
gradients are not coupled and, hence, we consider situations
where the spatial gradients are sufficiently small (low Knudsen
number). Moreover, in ordering the different level of approx-
imations in the kinetic equation, one has to characterize the
magnitude of the external forces relative to the gradients as
well. The scaling of the forces depends on the conditions
of interest. Here, as in our previous paper [5], the friction
coefficient γ will be taken to be of zeroth order in gradients
since it does not induce any flux in the system. On the other

hand, as for molecular gases [21], gravity must have a different
consideration and its magnitude is at least of first order in
perturbation expansion.

According to the expansion (53) for the distribution
function, the Enskog collision operator and time derivative
are also given in the representations

JE = J
(0)
E + J

(1)
E + · · · , ∂t = ∂

(0)
t + ∂

(1)
t + · · · . (54)

The coefficients in the time-derivative expansion are identified
by a representation of the fluxes and the collisional cooling
rate in the macroscopic balance equations as a similar series
through their definitions as functionals of f . In addition,
given that collisional dissipation and gradients are uncoupled,
the different approximations f (k) are nonlinear functions
of α, regardless of the applicability of the corresponding
hydrodynamic equations truncated at that order. In this paper,
we will restrict our calculations to the Navier-Stokes hydro-
dynamic order (first order in spatial gradients). The Burnett
hydrodynamic equations (second-order in spatial gradients)
for a dry granular gas have been recently obtained [28].

Zeroth-order solution: Local version of the HCS

To zeroth order, the Enskog equation (26) becomes

∂
(0)
t f (0) − γ

m

∂

∂V
· Vf (0) = J

(0)
E [f (0),f (0)], (55)

where J
(0)
E [f (0),f (0)] ≡ χJB[f (0),f (0)]. Note that in Eq. (55)

all spatial gradients are neglected at this lowest order.
Moreover, as discussed before, upon writing Eq. (55) it has
been assumed that g is taken to be of first-order in spatial
gradients. The macroscopic balance equations at this order
give ∂

(0)
t n = ∂

(0)
t Ui = 0 and

∂
(0)
t T = −2T

m
γ − ζ (0)T , (56)

where ζ (0) is the cooling rate to zeroth order. A good estimate
of ζ (0) is given by Eq. (47). Since f (0) qualifies as a normal
solution, then

∂
(0)
t f (0) = ∂f (0)

∂n
∂

(0)
t n + ∂f (0)

∂Ui

∂
(0)
t Ui + ∂f (0)

∂T
∂

(0)
t T

= −
(

2γ

m
+ ζ (0)

)
T

∂f (0)

∂T
, (57)

where in the last step we have taken into account that f (0)

depends on U through its dependence on V. Substitution of
Eq. (57) into Eq. (55) yields

1

2
ζ (0) ∂

∂V
· Vf (0) = J

(0)
E [f (0),f (0)]. (58)

Upon deriving Eq. (58) use has been made of the relation (38).
A solution to Eq. (58) is given by the local version of the
time-dependent distribution function (36).

V. FIRST-ORDER SOLUTION: NAVIER-STOKES
TRANSPORT COEFFICIENTS

The analysis to first order in the Chapman-Enskog expan-
sion is quite similar to the one worked out in Ref. [5]. We
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only display in this section the final results for the fluxes and
the collisional cooling rate, with some details being given
in Appendix A. To first order, the expressions of the pressure
tensor P

(1)
ij and the heat flux q(1) are given by Eqs. (20) and (21),

respectively, where the transport coefficients can be expressed
in the forms (22). The (scaled) transport coefficients η∗, λ∗, κ∗,
and μ∗ are nonlinear functions of the solid volume fraction φ,
the (dimensionless) friction coefficient γ ∗, and the coefficient
of restitution α. They are given by [5]

η∗ = η∗
k

[
1 + 2d−1

d + 2
φχ (1 + α)

]
+ d

d + 2
λ∗, (59)

λ∗ = 22d+1

π (d + 2)
φ2χ (1 + α)

(
1 − a2

16

)
, (60)

κ∗ = κ∗
k

[
1 + 3

2d−2

d + 2
φχ (1 + α)

]
+ 22d+1(d − 1)

(d + 2)2π
φ2χ

× (1 + α)

(
1 + 7

16
a2

)
, (61)

μ∗ = μ∗
k

[
1 + 3

2d−2

d + 2
φχ (1 + α)

]
. (62)

According to Eqs. (59)–(62), the collision contributions to the
Navier-Stokes transport coefficients do not explicitly depend
on the friction coefficient γ ∗ [defined by the first identity
in Eq. (25)] and, hence, their forms are the same as those
obtained for a dry granular fluid [29,30]. On the other hand,
as we will show below, the kinetic contributions η∗

k and
μ∗

k (which are given in terms of the solutions of first-order
nonlinear differential equations) present in general a complex
dependence on γ ∗ while the (hydrodynamic) expression of κ∗

k

is the same as the one found for dry granular fluids [29,30].
The results obtained for η∗

k and μ∗
k contrast with the ones

derived in Ref. [5] where the dependence of γ ∗ on the granular
temperature T was neglected and, hence, the above kinetic
contributions obey simple algebraic equations. Let us consider
each kinetic contribution separately.

A. Kinetic contribution η∗
k

The kinetic coefficient η∗
k obeys the first-order differential

equation

−1

2
(2γ ∗ + ζ ∗

0 )

(
η∗

k − γ ∗ ∂η∗
k

∂γ ∗

)
+ (2γ ∗ + ν∗

η )η∗
k

= 1 − 2d−2

d + 2
(1 + α)(1 − 3α)φχ, (63)

where ζ ∗
0 ≡ ζ (0)/ν and

ν∗
η = 3

4d
χ

(
1 − α + 2

3
d

)
(1 + α)

(
1 + 7

16
a2

)
. (64)

Note that the term γ ∗∂∗
γ η∗

k in Eq. (63) comes directly from the
temperature dependence of γ ∗ since

T
∂η∗

k

∂T
= −1

2
γ ∗ ∂η∗

k

∂γ ∗ . (65)

The differential equation (63) becomes a simple linear alge-
braic equation when one neglects the term γ ∗∂γ ∗η∗

k . In this

case, the form of η∗
k is

η∗
k,approx = 1 − 2d−2

d+2 (1 + α)(1 − 3α)φχ

ν∗
η − 1

2 (ζ ∗
0 − 2γ ∗)

. (66)

The approximated expression (66) for η∗
k was already derived

in Ref. [5]. When the term γ ∗∂γ ∗η∗
k is not neglected, the general

solution to Eq. (63) can be written as

η∗
k = Cη∗

k,0 + η∗
k,hyd, (67)

where C is a constant to be determined from the initial
conditions,

η∗
k,0 = exp

{
2

ζ ∗
0

[
ν∗

η ln
2γ ∗ + ζ ∗

0

2γ ∗ + ζ ∗
0

2
ln

2γ ∗

(2γ ∗ + ζ ∗
0 )2

]}
(68)

and

η∗
k,hyd = 2ζ ∗

0

[
1 − 2d−2

d+2 (1 + α)(1 − 3α)φχ
]

ν∗
η (2γ ∗ + ζ ∗

0 )2(2ν∗
η − ζ ∗

0 )

×
[
ν∗

η (2γ ∗ + ζ ∗
0 ) + γ ∗

(
1 + 2γ ∗

ζ ∗
0

)2ν∗
η /ζ ∗

0

(2ν∗
η − ζ ∗

0 )

× 2F1

(
2ν∗

η

ζ ∗
0

,
2ν∗

η

ζ ∗
0

,1 + 2ν∗
η

ζ ∗
0

, − 2γ ∗

ζ ∗
0

)]
, (69)

where 2F1 (a,b; c; z) is the hypergeometric function [31].
When γ ∗ = 0, Eq. (69) for η∗

k,hyd is consistent with the
expression of the kinetic shear viscosity of a dry granular
gas [29,30].

A hydrodynamic expression (independent of the initial
conditions) for the shear viscosity η∗

k,hyd is expected to hold
after a transient period. To analyze whether the system reaches
a hydrodynamic regime where η∗

k = η∗
k,hyd we have to see if, for

given values of α, φ, and γ ∗
0 , the ratio η∗

k,0/η
∗
k,hyd goes to zero

for long times [which means γ ∗ ∝ (T/T0)−1/2 → ∞ because
ν(T ) → 0 when t → ∞ since ν ∝ √

T ]. Although not illus-
trated here, our results show that the ratio η∗

k,0/η
∗
k,hyd → 0 for

sufficiently long times and, hence, one can neglect the initial
term in Eq. (67). Moreover, the functions η∗

k,0 and η∗
k,hyd depend

both on (dimensionless) time t∗ through their dependence on

γ ∗(t∗) = γ

mν(t)
= γ ∗

0√
T (t∗)/T0

, (70)

where T (t∗)/T0 is given by Eq. (33). The (dimensionless)
coefficient γ ∗

0 can be expressed in terms of typical dimen-
sionless numbers of suspensions, such as the ratio of the
material densities of the solid and the gas phases ρs/ρg

and the Reynolds number ReT0 based on the initial granular
temperature T0:

ReT0 = σρg

μg

√
T0

m
. (71)

Note that here ReT0 is defined in terms of the initial temperature
T0 and not in terms of the time-dependent temperature T (t) as
in our previous work [5]. The expression of γ ∗

0 as a function
of the Reynolds number ReT0 can easily be obtained when
one takes into account Eqs. (10) and (71). In the case of hard
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spheres (d = 3), the result is

γ ∗
0 = 15

16

√
π

φ

ρg

ρs

Rdiss(φ)

ReT0

, (72)

where ρs = 6m/πσ 3 for spheres. The (dimensionless) viscous
dissipation function Rdiss was evaluated by Sangani et al. [18]
as

Rdiss(φ) = 1 + 3

√
φ

2
+ 135

64
φ ln φ

+ 11.26φ(1 − 5.1φ + 16.57φ2 − 21.77φ3)

−φχ (φ) ln εm. (73)

Equation (73) approaches the expression given previously
by Koch [2] in the dilute limit. In Eq. (73), εmσ can be
interpreted as a length scale characterizing the importance
of noncontinuum effects on the lubrication force between two
smooth particles at close contact. Typical values of the factor
εm are in the range 0.01–0.05. However, since the term εm

only contributes to Rdiss(φ) through a weak logarithmic factor,
its explicit value does not play a significant role in the final
results. Here we take the typical value εm = 0.01.

Given that the the time dependence of the shear viscosity
η∗

k is encoded through its dependence on the (reduced) friction
coefficient γ ∗, to illustrate that η∗

k achieves a hydrodynamic
form, Fig. 2(a) shows η∗

k versus γ ∗ for fixed values of φ and α

and three different initial conditions [namely, different values
of γ ∗

0 and η∗
k (γ ∗

0 )]. It is clearly seen that all the curves converge
towards the universal curve η∗

k,hyd, which is identified as the hy-
drodynamic expression of the shear viscosity η∗

k . Similar con-
clusions have been recently found [32] for inelastic Maxwell
models of gas-solid flows. As a complement of the above plot,
Fig. 2(b) shows the time dependence of the hydrodynamic form
η∗

k,hyd for φ = 0.2, ReT0 = 5, and ρs/ρg = 1000. Two different
values of the coefficient of restitution have been considered.
The values of the (scaled) friction coefficient γ ∗ at t∗ = 800
(the longest time considered in the plot) are γ ∗ 
 8.5 and
γ ∗ 
 15.5 for α = 0.9 and 0.8, respectively. Thus, the same
time scales are considered in Figs. 2(a) and 2(b). It is quite
apparent that the kinetic contribution η∗

k,hyd decreases in time,
being more noticeable as the collision dissipation increases.

Once the hydrodynamic form of the kinetic contribution
η∗

k,hyd to the shear viscosity has been obtained, it is interesting
to assess the impact of the gas phase (measured through γ ∗)
on the (total) shear viscosity η∗. Its expression is given by
Eq. (59) with the replacement η∗

k → η∗
k,hyd. First, Fig. 3(a)

shows the dependence of the ratio η∗(α,γ ∗)/η∗(1,γ ∗) on γ ∗
for two different values of α. The theoretical results obtained
in Ref. [5] by using the simple form (66) for the kinetic
contribution η∗

k is also plotted for comparison. We observe
that the predictions given by the simple expression (66) agree
qualitatively well with those derived in this paper. On the
other hand, at a more quantitative level, it is apparent that
the approximated results [5] for η∗ slightly underestimate the
predictions found here. As a complementary plot, Fig. 3(b)
shows the ratio η∗(α,γ ∗)/η∗(α,0) versus α for different values
of γ ∗. As before, the agreement between the present results
with those reported in our previous work [5] is quite good.
Finally, to assess the effect of density on the discrepancies
between the results derived here and those obtained before [5],

FIG. 2. (a) Plot of the kinetic contribution η∗
k to the (dimension-

less) shear viscosity as a function of the (reduced) drag coefficient
γ ∗ for d = 3, φ = 0.2, and α = 0.8. Three different initial conditions
are considered: γ ∗

0 = 1 and η∗
k (γ ∗

0 ) = 0.9 (red dashed line), γ ∗
0 = 1

and η∗
k (γ ∗

0 ) = 0.5 (blue dotted line), and γ ∗
0 = 5 and η∗

k (γ ∗
0 ) = 0.3

(green dashed-dotted line). The (black) solid line corresponds to the
dimensionless function η∗

k,hyd (hydrodynamic shear viscosity). (b) Plot
of η∗

k,hyd(t∗)/η∗
k,hyd(0) versus the (dimensionless) time t∗ for d = 3,

φ = 0.2, ReT0 = 5, and ρs/ρg = 1000. The solid and dashed lines
are for α = 0.9 and α = 0.8, respectively.

Fig. 4 shows the ratio η∗/η∗
approx as a function of the volume

fraction φ for α = 0.8 and three different values of γ ∗.
Since the kinetic contribution to η∗ (which is the only source
of disagreement between both theories) dominates over its
collisional contribution when φ → 0, then the discrepancies
between η∗ and η∗

approx increase as flows become more dilute.
On the other hand, the above discrepancies reduce consider-
ably as the suspension becomes denser so the results obtained
in Ref. [5] turn out to be more accurate at moderate densities.

B. Kinetic contributions κ∗
k and μ∗

k

The kinetic contribution κ∗
k of the (scaled) thermal conduc-

tivity coefficient verifies the differential equation

(ν∗
κ − 2ζ ∗

0 )κ∗
k + 1

2

(
2γ ∗ + ζ ∗

0

)
γ ∗ ∂κ∗

k

∂γ ∗

= d − 1

d

{
1 + 2a2 + 3

2d−3

d + 2
φχ (1 + α)2

× [2α − 1 + a2(1 + α)]

}
, (74)
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FIG. 3. (a) Plot of the ratio η∗(α,γ ∗)/η∗(α,0) versus the (dimen-
sionless) friction coefficient γ ∗ for d = 3,φ = 0.2 and two different
values of the coefficient of restitution α: α = 0.8 (A) and α = 0.6
(B). (b) Plot of the ratio η∗(α,γ ∗)/η∗(1,γ ∗) versus the coefficient
of restitution α for d = 3,φ = 0.2 and two different values of the
(dimensionless) friction coefficient γ ∗: γ ∗ = 0.5 (A) and γ ∗ = 1
(B). In both panels, the solid lines correspond to the theoretical
results derived here from Eq. (69) while the dashed lines are the
(approximated) results obtained in Ref. [5] by using Eq. (66).

where

ν∗
κ = 1 + α

d
χ

[
d − 1

2
+ 3

16
(d + 8)(1 − α)

+296 + 217d − 3(160 + 11d)α

256
a2

]
. (75)

If one neglects the term ∂κ∗
k /∂γ ∗ in Eq. (74), then one gets the

solution κ∗
k,approx ≡ κ∗

k,dry where

κ∗
k,dry = d − 1

d
(ν∗

κ − 2ζ ∗
0 )−1

{
1 + 2a2 + 3

2d−3

d + 2
φχ (1 + α)2

× [2α − 1 + a2(1 + α)]

}
. (76)

FIG. 4. Plot of the ratio η∗/η∗
approx versus the solid volume fraction

φ for a dilute (a) and a moderately dense suspension (b) in the case
of spheres (d = 3) with α = 0.8 and three different values of the
(dimensionless) friction coefficient γ ∗: γ ∗ = 2 (A), γ ∗ = 1 (B), and
γ ∗ = 0.5 (C). In both panels, η∗ is given by Eq. (69) while η∗

approx is
the (approximated) result obtained in Ref. [5] by using Eq. (66).

Note that the expression (76) does not depend on the friction
coefficient γ ∗. This means that the presence of the gas phase
does not enter in the form of the thermal conductivity and,
hence, its expression is the same as the obtained in the
dry granular case [29,30]. This result is consistent with one
obtained in the Langevin-like model [5]. The general solution
to the differential equation (74) can be written as

κ∗
k = Cκ∗

k,0 + κ∗
k,dry, (77)

where C is a constant to be determined from the initial
conditions, κ∗

k,dry is given by Eq. (76), and

κ∗
k,0 = exp

[
− 2

ζ ∗
0

(ν∗
κ − 2ζ ∗

0 ) ln
2γ ∗

2γ ∗ + ζ ∗
0

]
. (78)

As in the case of the shear viscosity, it is easy to see that, after
a few collision times, the ratio κ∗

k,0/κ
∗
k,dry tends to zero so the

hydrodynamic form is κ∗
k = κ∗

k,dry.
In the case of the Dufour-like coefficient, μ∗

k obeys the
differential equation

(
ν∗

κ − 3

2
ζ ∗

0

)
μ∗

k + 1

2
(2γ ∗ + ζ ∗

0 )γ ∗ ∂μ∗
k

∂γ ∗ − 2κ∗
k γ ∗φ∂φ ln Rdiss(φ) = κ∗

k ζ ∗
0

(
1 + φ∂φ ln χ

) + d − 1

d
a2

+ 3
2d−2(d − 1)

d(d + 2)
φχ (1 + α)

(
1 + 1

2
φ∂φ ln χ

)[
α(α − 1) + a2

6
(10 + 2d − 3α + 3α2)

]
. (79)

012905-9
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As for the previous coefficients, if one neglects the term ∂γ ∗μ∗
k in Eq. (79) one gets the solution [5]

μ∗
k,approx =

(
ν∗

κ − 3

2
ζ ∗

0

)−1{
2κ∗

k γ ∗φ∂φ ln Rdiss(φ) + κ∗
k ζ ∗

0 (1 + φ∂φ ln χ ) + d − 1

d
a2

+3
2d−2(d − 1)

d(d + 2)
φχ (1 + α)

(
1 + 1

2
φ∂φ ln χ

)[
α(α − 1) + a2

6
(10 + 2d − 3α + 3α2)

]}
. (80)

The general solution to the differential equation (79) is

μ∗
k = Cμ∗

k,0 + μ∗
k,hyd, (81)

where C is a constant,

μ∗
k,0 = exp

[
− 2

ζ ∗
0

(
ν∗

κ − 3

2
ζ ∗

0

)
ln

2γ ∗

2γ ∗ + ζ ∗
0

]
, (82)

and the explicit form of μ∗
k,hyd can be found in Appendix B.

Note that upon deriving the solution (81) we have assumed
that the thermal conductivity has reached its hydrodynamic
form κ∗

k,dry. As before, for long times, μ∗
k,0/μ

∗
k,hyd → 0 and,

hence, the hydrodynamic expression of the (dimensionless)
kinetic contribution to the Dufour-like coefficient is given by
Eqs. (B1) and (B2). As in the case of η∗

k,hyd, the expression of
μ∗

k,hyd agrees with the one derived for a dry granular gas when
γ ∗ = 0.

Note that if one neglects the dependence of γ on the solid
volume fraction φ in Eq. (10) [which is equivalent to assume
Rdiss ≡ const and so the quantity B = 0 in Eq. (B3)], then
the form of μ∗

k,hyd is the same as the one obtained for a dry
granular gas [29,30]. This result is consistent with the mapping
proposed in Ref. [27] when γ is an arbitrary constant since in
this simple case the expressions of κ∗

k,hyd and μ∗
k,hyd with and

without the drag force are the same. However, even in this case
(γ ≡ const) the hydrodynamic form of the (dimensionless)
kinetic contribution to the shear viscosity [see Eq. (69)] still
presents a complex dependence on γ ∗ and, hence, there is
not an exact equivalence between both descriptions (with and
without the external drag force). A possible reason for the
discrepancy between our results for η∗

k and those obtained in
Ref. [27] could stem from the different form of the drag force
since the latter work considered a drag force proportional to
the particle velocity v instead of the peculiar velocity V(r,t) =
v − U(r,t) considered here. In fact, previous results [33,34]
derived for ordinary (elastic) gases under uniform shear flow
have shown that a drag force of the form −γ V generally does
not play a neutral role in the nonlinear rheological properties of
the gas (except for the special case of Maxwell molecules) and,
hence, these properties differ from those derived in the absence
of the drag force. On the other hand, it could be perhaps
possible that the explicit dependence of η∗

k on γ ∗ of Eq. (69)
could be eliminated by employing the coordinates proposed
in Ref. [27] (such as the logarithmic time scale introduced
in this paper) instead of the the conventional (reduced) time
scale t∗ ≡ ν(T0)t . Here we have preferred to use the original
form of the dynamics in order to maintain consistency with
the simulation results presented in Secs. VII and VIII.

Another interesting limit is φ → 0 (very dilute suspen-
sions). In this case, the collisional contribution to μ∗ vanishes

and, hence, μ∗ 
 μ∗
k = μ∗

k,hyd where

μ∗
k,hyd = κ∗ζ ∗

0 + d−1
d

a2

ν∗
κ − 3

2ζ ∗
0

. (83)

Equation (83) coincides with the dilute limit of the approx-
imated form (80), which is also independent of the (scaled)
friction coefficient γ ∗.

Figures 5(a) and 5(b) show a comparison between the
results derived here for μ∗ with those obtained by using
Eq. (80). The explicit form of μ∗ is given by Eq. (62) with
the change μ∗

k → μ∗
k,hyd. As in the case of the shear viscosity

(see Fig. 3), we observe that the simple expression (80) for μ∗
captures qualitatively well the dependence of this coefficient
on both α and γ ∗. However, at a more quantitative level, it is

FIG. 5. (a) Plot of the ratio μ∗(α,γ ∗)/μ∗(α,0) versus the (dimen-
sionless) friction coefficient γ ∗ for d = 3,φ = 0.2 and two different
values of the coefficient of restitution α: α = 0.8 (a) and α = 0.6
(b). (b) Plot of the ratio μ∗(α,γ ∗)/μ∗(1,γ ∗) versus the coefficient
of restitution α for d = 3,φ = 0.2 and two different values of the
(dimensionless) friction coefficient γ ∗: γ ∗ = 0.5 (a) and γ ∗ = 1 (b).
In both panels, the solid lines correspond to the theoretical results
derived here from (B1) while the dashed lines are the (approximated)
results obtained in Ref. [5] by using Eq. (80).
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FIG. 6. Plot of the magnitude of the first-order contribution ζU to
the cooling rate versus the (dimensionless) friction coefficient γ ∗ for
a three-dimensional system with φ = 0.2 and α = 0.8. The solid line
is the result derived here while the (red) dashed line corresponds to
the expression (B16) obtained in Ref. [5].

quite apparent that there are significant discrepancies between
both theoretical predictions especially for high values of γ ∗.

C. Collisional cooling rate

To close this section, it is important to recall that the colli-
sional cooling rate ζ has a first-order contribution proportional
to the divergence of flow velocity ∇ · U. To first order in spatial
gradients, the collisional cooling rate is given by

ζ = ζ (0) + ζU∇ · U, (84)

where ζ (0) is defined by Eq. (47). The expressions of the Euler
transport coefficient ζU is given by Eq. (B17). Note that ζU

vanishes in both for dilute suspensions (φ = 0) and for elastic
particles (α = 1). Figure 6 illustrates the γ ∗ dependence of
the magnitude ζU . The approximated result (B17) obtained in
Ref. [5] is also plotted. It is quite apparent that the impact of
the gas phase on |ζU | is very tiny since the magnitude of this
coefficient does not change appreciable with γ ∗. Moreover,
the performance of the approximated expression (B16) (the
form of which is much more simple than Eq. (B17)) is quite
good in the entire range of values of γ ∗ studied.

VI. STABILITY OF THE LINEARIZED
HYDRODYNAMIC EQUATIONS

When the expressions of the pressure tensor, the heat
flux, and the cooling rate are substituted into the balance
equations (13), (27), and (28) one gets the corresponding
Navier-Stokes (closed) hydrodynamic equations for the num-
ber density n, the flow velocity U, and the granular temperature
T . In the absence of gravity (g = 0), they are given by

Dtn + n∇ · U = 0, (85)

DtUi + (nm)−1∇ip

= (nm)−1∇j

[
η

(
∇iUj + ∇jUi − 2

d
δij∇ · U

)
+ λδij∇ · U

]
,

(86)

n

(
Dt + 2γ

m
+ ζ (0)

)
T + 2

d
p∇ · U = 2

d
∇ · (κ∇T + μ∇n)

+ 2

d

[
η

(
∇iUj + ∇jUi − 2

d
δij∇ · U

)
+ λδij∇ · U

]
∇iUj

− nT ζU∇ · U. (87)

Note that consistency would require to consider up to second
order in the gradients in the expression (84) for the cooling rate,
since this is the order of the terms in Eq. (87) coming from
the pressure tensor and the heat flux. However, it has been
shown for a granular dilute gas that the contributions from the
cooling rate of second order are negligible as compared with
the corresponding contributions from Eqs. (20) and (21) [35].
A similar behavior is expected in the case of suspensions at
moderate densities.

As analyzed in Sec. III, the hydrodynamic equations
(85)–(87) admit a simple solution which corresponds to the so-
called HCS. Nevertheless, this homogeneous time-dependent
state is expected to be unstable with respect to long-enough
wavelength perturbations as some computer simulations have
previously shown for granular [36–43] and gas-solid [22]
flows. We want here to analyze the stability of the HCS of the
suspension by using the drag model (26). In order to study this
problem it is convenient to carry on a (linear) stability analysis
of the nonlinear hydrodynamic equations (85)–(87) with
respect to the homogeneous state for small initial excitations.
As expected, the linearization of the Navier-Stokes hydrody-
namic equations about the homogeneous solution yields partial
differential equations with coefficients that are independent of
space but depend on time since the reference state is cooling.
However, in contrast to previous stability analysis [35,44,45]
for (dry) granular gases, the time dependence of the above
coefficients cannot completely be eliminated after changing
the time and space variables and scaling the hydrodynamic
fields due essentially to the different time scale of the drag
parameter γ and the remaining time dependent parameters
involved in the problem. As will show, this fact introduces
additional difficulties not present in previous works [35,44,45].

Let δyβ (r,t) = yβ(r,t) − yHβ (t) denote the deviation of
{n,U,T } from their values in the HCS. In this case, the
hydrodynamic fields can be written as

n(r,t) = nH + δn(r,t), U(r,t) = δU(r,t), (88a)

T (r,t) = TH (t) + δT (r,t), (88b)

where the quantities in the homogeneous state verify ∇nH =
∇TH = 0 and the granular temperature TH is given by Eq. (33)
[or Eq. (48) in terms of τ ]. If the spatial perturbation is
sufficiently small, then for some initial time interval these
deviations will remain small and the hydrodynamic equations
(85)–(87) can be linearized with respect to δyβ(r,t). As in
previous studies [35,44,45], we consider the (dimensionless)
time variable τ defined by the relation (44) and introduce the
(dimensionless) space variable

s = 1

2

νH (t)

vH (t)
r, (89)

where νH (t) is defined by Eq. (24) and vH (t) = √
TH (t)/m.

According to Eq. (89), the unit length νH (t)/vH (t) is
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proportional to the effective time-independent mean free path
1/nH σd−1.

A set of Fourier transformed dimensionless variables are
then introduced by

ρk(τ ) = δnk(τ )

nH

, wk(τ ) = δUk(τ )

vH (τ )
, θk(τ ) = δTk(τ )

TH (τ )
, (90)

where δykα ≡ {δnk,wk(τ ),θk(τ )} is defined as

δykα(τ ) =
∫

ds e−ik·sδyα(s,τ ). (91)

Note that in Eq. (91) the wave vector k is dimensionless.
As expected, the transverse velocity components wk⊥ =

wk − (wk · k̂)̂k (orthogonal to the wave vector k) decouple
from the other three modes and hence can be obtained more
easily. Their evolution equation is

∂wk⊥
∂τ

−
(

2γ ∗ + ζ ∗
0 − 1

2
η∗k2

)
wk⊥ = 0, (92)

where ζ ∗
0 ≡ζ

(0)
H /νH ,γ ∗≡γ /(mνH ) and η∗ ≡ ηH/(nHTH/νH ).

All these quantities are understood that they are evaluated in
the reference base state (HCS). Note that in Eq. (92), γ ∗ and
η∗ are still time-dependent functions. In the granular limit

case (γ ∗ = 0), η∗ is independent of time and Eq. (92) becomes
a simple (linear) differential equation whose solution is

wk⊥,dry(τ ) = wk⊥(0) exp
[(

ζ ∗
0 − 1

2η∗k2
)
τ
]
. (93)

Equation (93) shows that there exists a critical wave number
k

dry
c,⊥ = √

2ζ ∗
0 /η∗ such that the transversal shear modes become

unstable when k < k
dry
c,⊥. On the other hand, beyond the granu-

lar limit case, the differential equation (93) must numerically
be integrated. Although decoupled, the transverse velocity
mode is set as the fourth component of the perturbation vector
and solved alongside the remaining (longitudinal) modes for
numerical convenience.

The longitudinal modes correspond to ρk,θk, and the
longitudinal velocity component of the velocity field, wk|| =
wk · k̂ (parallel to k). These modes are coupled and obey the
equation

∂δykα(τ )

∂τ
= Mαβδykβ(τ ), (94)

for the first three components of the perturbation vector which
now denotes the set δykα(τ ) = {ρk,θk,wk||} and M is the square
matrix,

M =

⎛⎜⎝ 0 0 −ik

−2(ζ ∗
0 g + 2γ ∗

n ) − d+2
4 μ∗k2 −ζ ∗

0 − d+2
4 κ∗k2 −ik

(
2
d
p∗ + ζU

)
−ikp∗Cρ −ikp∗ ζ ∗

0 + 2γ ∗ − (
d−1
d

η∗ + 1
2λ∗)k2

⎞⎟⎠. (95)

As before, it is understood that η∗, λ∗, κ∗, μ∗, ζ ∗
0 , and ζU are

evaluated in the HCS. Furthermore, the quantities p∗, g(φ),
γ ∗

n , and Cρ(α,φ) are given, respectively, by

p∗ ≡ pH

nHTH

= 1 + 2d−2(1 + α)χφ, (96)

g(φ) = 1 + φ
∂

∂φ
ln χ (φ), (97)

γ ∗
n (φ) = γ ∗φ

∂

∂φ
ln Rdiss(φ), (98)

Cρ(α,φ) = 1 + g(φ)
p∗(α,φ) − 1

p∗(α,φ)
. (99)

In the absence of the gas phase (γ ∗ = 0), the matrix equation
(94) is consistent with previous results derived for granular
gases [44]. In addition, in this limit case, the longitudinal
modes become unstable for k < k

dry
c,|| where

k
dry
c,|| =

√
4

d + 2

2g − Cρ

Cρκ∗ − μ∗ . (100)

As in the case of the transversal shear modes, the time
dependence of the longitudinal modes must be obtained by
numerically integrating Eq. (94). The standard four-step,
fourth-order Runge-Kutta method is used for numerical in-
tegration with four modes solved together.

Before analyzing the general case, it is instructive to
consider first the solutions to Eqs. (92) and (94) in the extreme

long-wavelength limit (i.e., k = 0). It can be seen from Eq. (92)
that the long-wavelength limit gives the most unstable solution.
This situation corresponds to evolution of the suspension due
to uniform perturbations of the HCS, i.e., a global change in
the HCS parameters. In this limit case (Euler hydrodynamics),
the density ρk(τ ) ≡ const, and the transverse and longitudinal
velocity modes are degenerate [wk⊥(τ ) = wk||(τ ) ≡ wk(τ )]
and given by

wk(τ ) = wk(0)
ζ ∗

0 eζ ∗
0 τ

2(1 − eζ ∗
0 τ )γ ∗

0 + ζ ∗
0

, (101)

while the temperature θk(τ ) is

θk(τ ) = θk(0)e−ζ ∗
0 τ . (102)

Note that upon deriving Eq. (102) we have taken the initial
condition ρk(0) = 0 for the sake of simplicity. Equation (102)
clearly shows that the temperature is a decaying mode and,
hence, it is stable. On the other hand, an analysis of the time
dependence of the shear modes shows that both modes are un-
stable. The analytical Euler expressions are compared with the
numerically integrated solutions of a large system in Fig. 7 for
hard spheres (d = 3) with φ = 0.2, ReT0 = 5, ρs/ρg = 1000,
and α = 0.8. In Fig. 7, the numerically integrated solution
for transverse mode is almost completely coincident with its
Euler limit form (101), while the longitudinal mode grows
at a slightly lower rate. The temperature mode begins to
follow the form (102), but beyond t∗ 
 20 the k-dependent
numerical solution begins to diverge. The time period for
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FIG. 7. Dependence of the (dimensionless) perturbation variables
on the (dimensionless) time t∗ for a large (L∗ = 100) three-
dimensional system (d = 3) with φ = 0.2, ReT0 = 5, ρs/ρg = 1000,
and α = 0.8. The numerical solutions for the transverse velocity
(black solid line), the longitudinal velocity (red dashed line), and
the temperature (green dash-dotted line) modes are compared to
the analytical Euler limit (thin lines), i.e., L∗ → ∞, see Eqs. (101)
and (102). Note that the transverse velocity mode has collapsed to its
Euler limit and is indistinguishable in the plot.

which the numerical solution agrees with the analytical
solution increases with increasing the (scaled) system size,
L∗ ≡ L/σ .

In a system of finite size with periodic boundary conditions,
the smallest allowable wave number is 2π/L, where L is the
largest system length, or, in dimensionless units,

kmin = 2vH (t)

νH (t)

2π

L
= π3/2(d + 2)

2d d
(φL∗)−1. (103)

Since the smallest allowable wave number is the most unstable
wave number, kmin is the only wave number considered in our
analysis.

Opposite the Euler limit, in the case of vanishing domain
size (k → ∞) the system becomes stable as clearly shown
in Eq. (92). The goal then is to determine the wave number
(system size) at which critical or neutral stability is achieved.
However, unlike in the granular system, the perturbation
variables are time-dependent functions and, hence, stability
cannot be simply determined from the behavior at τ = 0.
As shown in Eq. (70), γ ∗ is inversely proportional to the
granular temperature so γ ∗ increases with time. In terms of
linear stability, increasing γ ∗ causes systems that are stable at
τ = 0 to be unstable at a later time.

The time dependence of the (scaled) friction coefficient γ ∗
also has the unfortunate consequence of causing even unrealis-
tically small systems (i.e., L < σ ) to becomes unstable at some
point in time. In addition, the solid shear viscosity also depends
on time through its dependence on the γ ∗; however, this effect
is considerably smaller than the changes to γ ∗ directly and only
exacerbates the problem. This challenge is overcome by noting
that the linear stability analysis is expected to be reliable only in
the first stages of the evolution of the system. While lubrication

forces were considered in the DNS simulations conducted
in deriving the thermal drag model, at a specified particle
separation distance the lubrication force model is truncated to
avoid the singular limit at contact. The effect of this separation
distance appears in the resulting thermal drag model as εm, see
Eq. (73). To understand what happens very close to particle
contact, one must consider noncontinuum effects. Using the
linearized Boltzmann equation for incompressible molecular
flows, Sundararajakumar and Koch [46] have determined a
critical Stokes number below which colliding particles will
not have enough inertia to overcome the lubrication force
and return to their original positions. In other words, there
is another condition external to the present stability analysis
that will effectively end the HCS at a finite t∗. By taking the
relative velocity of colliding particles to be twice the thermal
speed, i.e., 2

√
2T/m, the critical Stokes number is given by

StT ,crit = 1

2
√

2

[
ln

(
εmσ

2�g

)
− 1.28

]
, (104)

where �g is the mean free path of the interstitial molecular gas
and

StT ≡ 2
√

mT

3πμgσ 2
= 1

9

ρs

ρg

ReT (105)

is the thermal Stokes number. In Eq. (105), ReT is given by
Eq. (71) by replacing T0 → T .

Considering conditions relevant to circulating fluidized bed
applications, we take the fluidizing medium to be air, �g = 68
nm, and a range of practical grain sizes to be σ = 0.1–1 mm.
Then, taking εm = 0.01 as before, Eq. (104) gives a range of
critical Stokes numbers of 0.25–1.07. The value of the (scaled)
friction coefficient γ ∗ at StT = StT ,crit can be determined by
rearranging Eq. (105) and inserting into Eq. (70). Taking the
more conservative (i.e., breakdown occurs sooner) value of
StT ,crit = 1, the critical value γ ∗

crit of the friction coefficient
becomes

γ ∗
crit = 5

√
π

48

Rdiss(φ)

φ
. (106)

Since γ ∗
crit depends only on the concentration, it is also

possible to determine its minimum value, 3.6, which occurs at
approximately φ = 0.23. Even at this minimum critical value,
this appears to be a sufficiently long time for the collapse
of the time-dependent shear viscosity into its hydrodynamic
solution, as evidenced by Fig. 2(a). Therefore, the stability of
a given system will be classified based on its behavior at this
critical time, i.e., when γ ∗ = γ ∗

crit.
In contrast to the dry granular case where the stability of

a system was classified at the initial state, now stability is
determined at the final state. While there are now several
options for stability criteria, we choose a simple one: that
the magnitude of a perturbation mode be larger than its initial
value at the critical time. In other words, a system is said
to be unstable if δykα(τ ) � δykα(0) when StT (τ ) � StT ,crit

(or, equivalently, when γ ∗ � γ ∗
crit) and neutrally stable at

the coincidence of their equalities. One such neutrally stable
system is shown in Fig. 8 for the same conditions as in
Fig. 7, for which L∗

crit ≈ 7.4. For this case and in the following
analysis, the initial condition of each mode is set to unity.
As in the dry granular case [41,44], the transverse velocity
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FIG. 8. Dependence of the (dimensionless) perturbation variables
on the (dimensionless) time t∗ for a critical (L∗ = L∗

crit) three-
dimensional system (d = 3) with φ = 0.2, ReT0 = 5, ρs/ρg = 1000
and α = 0.8. The numerical solutions for the transverse velocity
(black solid line), the longitudinal velocity (red dashed line), the
temperature (green dash-dotted line), and the density (blue dotted
lines) modes are compared.

component is the most unstable mode. While the longitudinal
velocity mode is slightly larger than its initial value for a
very short time, it quickly becomes stable and decays with the
remaining longitudinal modes. Similar results were obtained
throughout the parameter space. Therefore, only the transverse
velocity mode is considered for the onset of instability in
the following analysis. Qualitatively, the transverse velocity
mode is connected with the velocity vortex instability (i.e.,
coherent particle motion) and not with the clustering instability
(inhomogeneous particle distribution).

VII. DIRECT NUMERICAL SIMULATIONS

Previously, molecular dynamics (MD) simulations have
been used to validate the theoretical predictions of the
linear stability analysis of the hydrodynamic equations in
dry granular systems [41–43]. In particular, the theoretical
predictions of the velocity vortex instability showed excellent
agreement with the numerical data [41]. In a similar vein, a
series of numerical simulations have also been performed to
quantify the accuracy of the stability analysis performed in
Sec. VI. The present case with an interstitial fluid presents
an additional challenge. Two common numerical strategies to
model both the fluid and particle dynamics are computational
fluid dynamics with discrete element modeling (CFD-DEM)
and DNS. While CFD-DEM is significantly more affordable,
whether current drag modeling approaches accurately capture
all contributions of the instantaneous fluid force remains an
open issue [5]. Therefore, DNS—which does not require
modeling—is preferred, although such an approach is consid-
erably more computationally expensive. DNS has been used
previously to study instabilities in the HCS, showing good
agreement with the theoretical granular temperature decay in
the early stages for elastic [22] and inelastic particles [23].
However, both studies focused on relatively large systems, all

of which led to the development of vortex and/or clustering
instabilities. Here, we perform simulations for a range of
system sizes to determine the critical system size, L∗

crit, for
a given set of conditions.

A. Numerical method

The SUSP3D program, developed by Ladd and coworkers
for particulate flows [47–49] is used here to generate the
DNS data for comparison with the theoretical results ob-
tained from the linear stability analysis. This program uses
a three-dimensional, 19-velocity quadrature (D3Q19) lattice
Boltzmann method (LBM) to solve the fluid flow. Solid
particles, represented by collections of discrete solid nodes
on the cubic lattice, are moved by fluid-particle forces using
Newton’s law of motion. Collisions between particles are
treated as hard-sphere collisions with a normal coefficient
of restitution. Lubrication interactions between particles are
supplied by analytical models and the singularity at contact is
resolved by applying the lubrication cutoff [50].

B. Setup of simulations

DNS of the HCS used cubic periodic computational do-
mains. The size of the computational domain, L, is determined
by the dimensionless domain size of interest L∗ ≡ L/σ , and
the minimum lattice resolution needed to resolve flows around
particles. In this study, σ is taken to be 5.84�x, where �x is
the lattice spacing. This lattice resolution was tested against
a higher-resolution 9.84�x and the results were identical,
indicating that a resolution of σ = 5.84�x is sufficient. The
number of particles in the HCS is determined by the solid
fraction; initially, the particles are distributed randomly in the
computational domain.

All simulations started from an initial condition in which the
fluid is stationary and the particle velocities follow a Gaussian
velocity distribution with a zero mean. The standard deviation
of the velocity distribution gives ReT0 . As the particle velocities
are determined randomly, ReT0 of each replicate is not identical
and may vary from the reported values by ±10%. The system
is characterized by the combination of five nondimensional
variables: L∗, φ, α, ReT0 , and ρs/ρg . Five simulations are
carried out for each condition studied, each replicate with
a different (random) initialization of particle positions and
velocities.

C. Results

A Fourier analysis of the velocity field is used to determine
the onset of coherent vortex motion [42,51], indicating the
onset of instability. The Fourier transform of the momentum
density is given by

p̂(k) = m

2π

Np∑
j=1

vj e
ik·xj , (107)

where Np is the number of particles, m, x, and v are the
particle mass, position, and velocity, respectively, and k is the
wave-number vector. Since the domain is periodic, allowed
wave numbers are k = (2πa/Lx, 2πb/Ly, 2πc/Lz), where
a, b, and c are positive integers and Lx = Ly = Lz = L for
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the current cubic system. The squared norm of the Fourier
momentum density is determined by integrating Eq. (107)
over concentric shells,

P (k) =
∫ 2π

0

∫ π

0

∫ k+δk

0
|p̂|2r2 sin θdrdθdϕ. (108)

While the particle motion remains relatively randomly dis-
tributed, P (k) increases monotonically with k. At the onset
of the velocity vortex instability, however, this pattern is
disturbed and P (k) becomes peaked near the first mode P1, i.e.,
k = 2π/L. Therefore, the system stability is determined by
monitoring the difference between the first and second modes,
P1 − P2, with a positive value indicating a low-wave-number
peak in P (k) corresponding to a velocity vortex instability. A
system is considered to be stable only when all five replicates
remain stable and, conversely, unstable when just one of the
five replicates becomes unstable.

Figure 9 illustrates, as examples, the momentum modes
corresponding to stable and unstable conditions. Both cases
shown in Fig. 9 consider the same set of conditions other than
the system size, L∗. In Fig. 9(a), none of the five replicates
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FIG. 9. Momentum modes of a stable (a) and unstable (b) cases
for conditions ReT0 ≈ 5,α = 0.8 and ρs/ρg = 1000 and φ ≈ 0.3. The
unstable simulations have system size and concentration of L∗ = 4.48
and φ = 0.3028 while the smaller stable system has L∗ = 3.58 and
φ = 0.2843.

TABLE I. Summary of principal DNS results for conditions
ReT0 ≈ 5 and ρs/ρg = 1000.

Np φ α L∗ Un/stable

131 0.2009 0.9 6.99 Unstable
87 0.2014 0.9 6.09 Stable
87 0.2014 0.8 6.09 Unstable
48 0.1989 0.8 5.02 Stable
59 0.3050 0.9 4.66 Unstable
46 0.3027 0.9 4.30 Stable
52 0.3028 0.8 4.48 Unstable
25 0.2843 0.8 3.58 Stable

achieve P1 � P2 and the case is considered stable. As L∗ is
increased from 3.5 to 4.5 in Fig. 9(b), P1 − P2 grows in time
and four of the five replicates achieve the instability criterion
(recall that only one is necessary to be considered unstable). As
stability analysis shows that the stability boundary is mostly
sensitive to φ and α, we chose to set ReT0 = 5 and ρs/ρg =
1000, and characterized critical L∗ at φ = 0.2 and 0.3 and
α = 0.9 and 0.8. Table I summarizes the DNS results that are
used to narrow down the stability boundaries for comparison
with the linear stability analysis carried out in Sec. VI.

VIII. ANALYSIS: THEORY VERSUS SIMULATION

The DNS data provided in Table I is plotted in Fig. 10 as a
function of the solid volume fraction φ for ReT0 ≈ 5,ρs/ρg =
1000 and two different values of the coefficient of restitution
α = 0.9 and 0.8. The critical system size L∗

crit is taken as the
mean size of the largest stable and smallest unstable cases for
each condition. Error bars are used to indicate the positions of
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FIG. 10. Neutral stability curves for the critical system size L∗
crit

as a function of the solid volume fraction φ for ReT0 = 5,ρs/ρg =
1000 and two different values of the coefficient of restitution: α =
0.9 (black lines) and α = 0.8 (red lines). The present theory (solid
lines) is compared to the dry granular theory of Ref. [44] (dashed
lines). Results of DNS (filled symbols) and MD (empty symbols)
simulations are also shown for α = 0.9 (black squares) and α = 0.8
(red circles).
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the two cases used to calculate each L∗
crit; however, they are

obscured by the data points for clarity. Using the procedure
outlined in Sec. VI, theoretical results for the neutral stability
curves for the velocity vortex instability are also shown in
Fig. 10 for the same conditions as the DNS data. In addition,
the theoretical neutral stability curves corresponding to the dry
granular case [44] are also compared to MD data [41] for the
sake of illustration.

It is quite apparent that qualitatively the theory captures two
distinct trends that are observed in the DNS data: The inclusion
of the interstitial fluid causes (i) a systematic reduction in
the critical length scale and (ii) a decreased dependence on
the coefficient of restitution, i.e., inelastic dissipation. While
these trends may seem obvious simply by considering that
an additional source of dissipation has been introduced, it is
worthwhile to note that using a (dry) granular linear stability
theory with a modified dissipation term (i.e., ζ ∗

0 → ζ ∗
0 + 2γ ∗

0 )
does not result in a significant shift in the neutral stability
curves as in Fig. 10. While the current theory marks a
substantial improvement over such a “frozen” approximation,
quantitatively there are still discrepancies between the stability
analysis performed here and the DNS data. On its own, this
comparison may have been considered reasonable. However,
the remarkable agreement of the (dry) granular theory with the
MD data suggests that perhaps the two-fluid comparison may
still be improved. One cause of the increased discrepancy could
be due to the choice of the neutral stability criterion—recall
that here stability is time dependent unlike the (dry) granular
case, where neutral stability was unambiguous. On the other
hand, the current results could indicate a need for improvement
to the thermal drag model. A first-order extension of the
thermal drag model considered here has been proposed in
Ref. [20] while the most recent model proposed by Tenneti
and Subramaniam [52] is of an entirely different form [53].

IX. SUMMARY AND CONCLUDING REMARKS

In this work, we have studied the impact of an interstitial
fluid on the HCS of an assembly of inelastic, monodisperse
solid particles. An instantaneous force model for the carrier
fluid has been incorporated into the Enskog kinetic equation.
Building on a previous work [5], the instantaneous force
model is simplified here by assuming initially that the
mean relative velocity between the phases is negligible, i.e.,
�U ≡ U − Ug = 0. This simplification allows for a more
rigorous treatment of the thermal drag contribution of the fluid,
which is the dominant fluid phase effect in terms of stability
of the HCS. More specifically, here the complete granular
temperature dependence of the scaled friction coefficient γ ∗
(which characterizes the amplitude of the drag viscous force)
is considered in the derivation of the continuum model. This
feature was not accounted for in a previous derivation [5] of the
continuum model. As before [5], the Chapman-Enskog method
is used to derive the governing equations of the suspension
model and their corresponding transport coefficients. The
expansion has been carried out to first order in spatial gradients
(Navier-Stokes hydrodynamic order) and the explicit forms of
the (scaled) transport coefficients are given by Eqs. (59)–(62)
where their corresponding kinetic contributions are given by
Eq. (69) for the shear viscosity, Eq. (76) for the thermal

conductivity and Eq. (B1) for the Dufour-like coefficient. Since
the forms of the transport coefficients are at hand, a linear
stability analysis is then performed on the resulting continuum
theory. Unlike the (dry) granular stability analysis [45], all four
linear stability modes become functions of time through the
scaled thermal drag’s dependence on the (decaying) granular
temperature, therefore requiring a numerical solution. A sim-
ple method to determine neutral stability is proposed and the
transverse velocity mode (most unstable) is solved to study the
onset of the velocity vortex instability. To assess the accuracy
of the new theory and resulting linear stability analysis, a suite
of DNS have also been carried out and reported herein. The
theoretical predictions are able to capture the most important
trends observed in the DNS data and mark a substantial
improvement over the previous “frozen” theory [5]. However,
the quantitative agreement is not as favorable as previous
studies have found for similar (dry) granular analyses [41],
indicating that additional refinement—to either the underlying
kinetic theory itself or the linear stability analysis—may be
possible.
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APPENDIX A: FIRST-ORDER SOLUTION

To first order, the velocity distribution function f (1) obeys
the kinetic equation

(
∂

(1)
t + L

)
f (1) − γ

m

∂

∂V
· Vf (1)

= −
(

D
(1)
t + V · ∇ + g · ∂

∂V

)
f (0) + J

(1)
E [f ], (A1)

where D
(1)
t ≡ ∂

(1)
t + U · ∇,J

(1)
E [f ] denotes the first-order con-

tribution to the expansion of the Enskog collision operator and
Lf (1) = −(J (0)

E [f (0),f (1)] + J
(0)
E [f (1),f (0)]). Note that gravity

has been assumed to be of first order in spatial gradients in
Eq. (A1). The macroscopic balance equations to first order in
gradients give

D
(1)
t n = −n∇ · U, D

(1)
t U = −ρ−1∇p + g,

D
(1)
t T = −2p

dn
∇ · U − ζ (1)T . (A2)

Substitution of Eq. (A2) into the right-hand side of Eq. (A1)
allows us to get the form of the first-order distribution f (1). It
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is given by

f (1) = A(V) · ∇ ln T + B(V) · ∇ ln n

+ Cij (V)
1

2

(
∂iUj + ∂jUi − 2

d
δij∇ · U

)
+ D(V)∇ · U,

(A3)

where the quantities A(V), B(V), Cij (V), and D(V) are the
solutions of the following linear integral equations:

−
(

2γ

m
+ ζ (0)

)
T

∂A
∂T

− 1

2
ζ (0)A − γ

m

∂

∂V
· VA + LA = A,

(A4)

−
(

2γ

m
+ ζ (0)

)
T

∂B
∂T

− γ

m

∂

∂V
· VB + LB

= B +
[

2n

m

∂γ

∂n
+ ζ (0)

(
1 + φ

∂ ln χ

∂φ

)]
A, (A5)

−
(

2γ

m
+ ζ (0)

)
T

∂Cij

∂T
− γ

m

∂

∂V
· VCij + LCij = Cij , (A6)

−
(

2γ

m
+ ζ (0)

)
T

∂D
∂T

− γ

m

∂

∂V
· VD + LD = D. (A7)

Here the expressions of the inhomogeneous terms A, B, Cij ,
and D are given by Eqs. (A5)–(A8), respectively, of Ref. [5]. It
must be remarked that the integral equations (A4)–(A7) differ
from those obtained in Ref. [5] by the action of the operator
T ∂T on the unknowns A, B, Cij , and D:

T ∂T X(V,γ ) = −1

2

∂

∂V
· VX − 1

2
γ

∂X

∂γ
, (A8)

where X ≡ {A,B,Cij ,D}. In addition, the external field does
explicitly appear in the above integral equations. This is due
to the particular form of the gravitational force [21].

The kinetic coefficients ηk , κk , and μk are defined as

ηk = − 1

(d − 1)(d + 2)

∫
dv Dij (V)Cij (V), (A9)

κk = − 1

dT

∫
dv S(V) · A(V), (A10)

μk = − 1

dn

∫
dv S(V) · B(V), (A11)

where

Dij (V) = m

(
ViVj − 1

d
V 2δij

)
, (A12)

S(V) =
(

m

2
V 2 − d + 2

2
T

)
V. (A13)

In order to determine ηk , we multiply both sides of Eq. (A6)
by Dij (V) and integrate over velocity. In the case of κk

and μk , we multiply Eqs. (A4) and (A5), respectively, by
S(V) and integrate over V. After some algebra, one achieves
the first-order differential equations (63), (74), and (79) for
the (dimensionless) transport coefficients η∗

k , κ∗
k , and μ∗

k ,
respectively.

APPENDIX B: DUFOUR-LIKE AND EULER
TRANSPORT COEFFICIENTS

The hydrodynamic form of the kinetic contribution to the
(scaled) Dufour-like transport coefficient can be written as

μ∗
k,hyd = �

ν∗
κ (ζ ∗

0 + 2γ ∗)3(ζ ∗
0 − 2ν∗

κ )(3ζ ∗
0 − 2ν∗

κ )(ζ ∗
0 − ν∗

κ )
,

(B1)

where we have introduced the quantity

� = ν∗
κ (ζ ∗

0 + 2γ ∗)
[
Bγ ∗ζ ∗

0 (2ν∗
κ − 3ζ ∗

0 )

× (
6γ ∗ζ ∗

0 + ζ ∗2
0 − 8γ ∗ν∗

κ − 2ζ ∗
0 ν∗

κ

) − 2C(2γ ∗ + ζ ∗
0 )2

× (ζ ∗
0 − 2ν∗

κ )(ζ ∗
0 − ν∗

κ )
] + 4Bγ ∗3ζ ∗

0

(
1 + 2γ ∗

ζ ∗
0

)2ν∗
κ /ζ ∗

0

× (
3ζ ∗3

0 − 11ζ ∗2
0 ν∗

κ + 12ζ ∗
0 ν∗2

κ − 4ν∗3
κ

)
× 2F1

(
2ν∗

κ

ζ ∗
0

,
2ν∗

κ

ζ ∗
0

,1 + 2ν∗
κ

ζ ∗
0

, − 2γ ∗

ζ ∗
0

)
. (B2)

In Eq. (B2), we have introduced the quantities

B ≡ 2κ∗
k φ∂φ ln Rdiss(φ), (B3)

C ≡ κ∗
k ζ ∗

0 (1 + φ∂φ ln χ ) + d − 1

d
a2

+3
2d−2(d − 1)

d(d + 2)
φχ (1 + α)

(
1 + 1

2
φ∂φ ln χ

)
×

[
α(α − 1) + a2

6
(10 + 2d − 3α + 3α2)

]
. (B4)

The Euler transport coefficient ζU is given by

ζU = ζ10 + ζ11, (B5)

where

ζ10 = −3
2d−2

d
χφ(1 − α2) (B6)

and

ζ11 = 1

2nT

π (d−1)/2

d�
(

d+3
2

)σd−1χm(1 − α2)

×
∫

dV1

∫
dV2 g3

12 f (0)(V1)D(V2). (B7)

The function D(V) is the solution to the linear integral
equation (A7). An approximate solution to Eq. (A7) can be
obtained by taking the leading Sonine approximation

D(V) → eDfM (V)F (V), (B8)

where

F (V) =
(

m

2T

)2

V 4 − d + 2

2

m

T
V 2 + d(d + 2)

4
, (B9)

and

fM (V) = n

(
m

2πT

)d/2

e−mV 2/2T (B10)
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is the Maxwellian distribution. The coefficient eD is given by

eD = 2

d(d + 2)

1

n

∫
dV D(V)F (V). (B11)

The relation between ζ11 and eD is

ζ11 = 3(d + 2)

32d
χ (1 − α2)

(
1 + 3

128
a2

)
e∗
D, (B12)

where e∗
D = νeD . The coefficient e∗

D is determined by sub-
stituting (B8) into the integral equation (A7), multiplying by

F (V), and integrating over V. The result is

2γ ∗ + ζ ∗
0

2
γ ∗ ∂e∗

D

∂γ ∗ +
(

γ ∗ + ν∗
γ − 3

2
ζ ∗

0

)
e∗
D

= 9

256

2d (d + 2)

d2
χφ

[
ω∗

2(d + 2)
− 1 + α

2

(
1

3
− α

)
a2

]
,

(B13)

where

ν∗
γ = −1 + α

192
χ [30α3 − 30α2 + (105 + 24d)α − 56d − 73], (B14)

ω∗ = (1 + α)

{
(1 − α2)(5α − 1) − a2

6
[15α3 − 3α2 + 3(4d + 15)α − (20d + 1)]

}
. (B15)

As in the case of the other kinetic coefficients, if one neglects the term γ ∗∂γ ∗e∗
D in Eq. (B13), then one simply gets

e∗
D,approx =

9
256

2d (d+2)
d2 χφ

[
ω∗

2(d+2) − 1+α
2

(
1
3 − α

)
a2

]
γ ∗ + ν∗

γ − 3
2ζ ∗

0

. (B16)

The expression (B16) was already derived in our previous work [5]. The hydrodynamic solution to Eq. (B13) is

e∗
D,hyd = 9

128

2d (d + 2)

d2
χφγ ∗3ζ ∗

0 �(2γ ∗ + ζ ∗
0 )−4

[
ω∗

2(d + 2)
− 1 + α

2

(
1

3
− α

)
a2

]
, (B17)

where

� = 12
2γ ∗ + ζ ∗

0

γ ∗(2ν∗
γ − ζ ∗

0 )
+ 4

ν∗
γ

2F1

(
2ν∗

γ

ζ ∗
0

,
2ν∗

γ

ζ ∗
0

,1 + 2ν∗
γ

ζ ∗
0

, − 2γ ∗

ζ ∗
0

) + ζ ∗3
0

γ ∗3(2ν∗
γ − 3ζ ∗

0 )
2F1

(
2ν∗

γ

ζ ∗
0

, − 3 + 2ν∗
γ

ζ ∗
0

, − 2 + 2ν∗
γ

ζ ∗
0

, − 2γ ∗

ζ ∗
0

)

+ 3ζ ∗2
0

γ ∗2(ν∗
γ − ζ ∗

0 )
2F1

(
2ν∗

γ

ζ ∗
0

, − 2 + 2ν∗
γ

ζ ∗
0

, − 1 + 2ν∗
γ

ζ ∗
0

, − 2γ ∗

ζ ∗
0

)
. (B18)
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[5] V. Garzó, S. Tenneti, S. Subramaniam, and C. M. Hrenya,

J. Fluid Mech. 712, 129 (2012).
[6] S. Tenneti, R. Garg, C. M. Hrenya, R. O. Fox, and S.

Subramaniam, Powder Tech. 203, 57 (2010).
[7] D. L. Koch and R. J. Hill, Annu. Rev. Fluid Mech. 33, 619

(2001).
[8] J. J. Wylie, Q. Zhang, Y. Li, and X. Hengyi, Phys. Rev. E 79,

031301 (2009).
[9] C. Heussinger, Phys. Rev. E 88, 050201(R) (2013).

[10] J. E. Hilton and A. Tordesillas, Phys. Rev. E 88, 062203 (2013).
[11] R. Seto, R. Mari, J. F. Morris, and M. M. Denn, Phys. Rev. Lett.

111, 218301 (2013).
[12] T. Wang, M. Grob, A. Zippelius, and M. Sperl, Phys. Rev. E 89,

042209 (2014).
[13] M. G. Chamorro, F. V. Reyes, and V. Garzó, Phys. Rev. E 92,
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[32] A. Kubicki and V. Garzó, J. Stat. Mech. (2015) P03015.
[33] J. W. Dufty, A. Santos, J. J. Brey, and R. F. Rodrı́guez,

Phys. Rev. A 33, 459 (1986).
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[44] V. Garzó, Phys. Rev. E 72, 021106 (2005).
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