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Local rheological measurements in the granular flow around an intruder
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The rheological properties of granular matter within a two-dimensional flow around a moving disk is
investigated experimentally. Using a combination of photoelastic and standard tessellation techniques, the strain
and stress tensors are estimated at the grain scale in the time-averaged flow field around a large disk pulled at
constant velocity in an assembly of smaller disks. On the one hand, one observes inhomogeneous shear rate and
strongly localized shear stress and pressure fields. On the other hand, a significant dilation rate, which has the
same magnitude as the shear strain rate, is reported. Significant deviations are observed with local rheology that
justify the need of searching for a nonlocal rheology.
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I. INTRODUCTION

The description of the flow properties of granular material
remains a true practical and fundamental challenge. This chal-
lenge comes from the inherent nonlinear interactions between
the grains and from the small separation of length scales. As a
matter of fact, no (attractive) force exists between two grains
when the contact is broken and the flow scale is often not much
larger than the elementary grain scale. Many tools have been
developed over the past decades to tackle this issue and extract
the kinematic properties of grain flows, underlying the open
problem of defining a single rheology for granular matter. In
the past decade, a local rheology emerges based on a unique
relation of the friction coefficient μ with the so-called inertial
number I corresponding to the shear rate made dimensionless
with confining pressure and density [1,2]. This rheology works
quite well by rescaling various experimental and numerical
data into a consistent picture for parallel flows—such as
Couette flows or flows down inclines—or weakly nonparallel
flows in a wide range of flow rates [1,3,4]. Nevertheless, this
local description falls short of describing nonparallel flows
where the streamlines are far from parallel and also quasistatic
regimes close to the “liquid-solid” transition [5]. Nonlocal
effects, where the stress not only depends on the strain rate but
also on its spatial variations, have been recently reported both
experimentally and numerically [6–8]. These effects may arise
from plastic rearrangements inducing long range correlations
and cooperative behaviors. Nonlocal modeling for granular
flows is thus now considered to extend the μ(I ) rheology
by the introduction of a diffusive term [8–11]. This captures
well the average flow fields reported in some numerical
simulations and experiments where the flow is observed to be
strongly inhomogeneous. Such developments were inspired by
kinetic theory, where nonlocality arises from the diffusion of
a granular temperature into a granular flow [12,13].

In this paper, we present quantitative measurements in the
two-dimensional flow of small photoelastic disks around a
larger intruder disk, where the local strain rate and the local
stresses are recorded simultaneously. This allows one to test the
local rheology framework in the case of a strongly nonparallel
flow. The four invariants of the local strain rate tensor and local
stress tensor reveal that the flow is strongly localized around

the intruder. A tentative rheological analysis sheds light on
a significant amount of dilation and some spatial variations
of the friction coefficient that bring out new challenges for
modeling.

II. EXPERIMENTAL SETUP

The experiments consist in pulling an intruder disk at
constant velocity V0 into a two-dimensional assembly of about
8 × 103 smaller photoelastic disks in a setup sketched in
Fig. 1(a) which is adapted from [14]. This granular assembly
is a bidisperse mixture of disks of diameters 4 and 5 mm to
avoid any possible crystallization, and made of polyurethane
(density ρs = 1280 kg/m3) which is photoelastic. These disks
are placed in between two horizontal glass plates with a
gap thickness of 4 mm, slightly larger than the disk height
h = 3.2 mm, and closed by lateral walls that form a square area
of Lx × Ly = 400 × 400 mm2 � 90 × 90d2

g , where dg = 4.5
mm is the mean diameter of the granular assembly. By varying
the number of disks, the global packing fraction φ0 of the model
granular medium has been varied in the range 0.76 � φ0 �
0.80 that corresponds to a dense packing but remains always
significantly smaller than the jamming point φJ � 0.83 [14].
The larger intruder disk of diameter d = 16 mm corresponding
to about 4dg is pulled in the x direction with a steel wire
attached to a linear stepper motor at a constant velocity V0

in the range 10−4 � V0 � 3 mm s−1. In order to prevent the
intruder from tilting and to ensure minimal interaction between
the wire and the grains, the steel wire is welded on the top face
of the intruder and we designed the intruder slightly taller than
the disks. As a result, the overhead wire hardly sags and has
minimal contact with the grain assembly. Since the wire is
very stiff, the intruder does not tilt more than a few degrees.
The steel wire is essentially inextensible and ensures that the
pulling device does not deform when the intruder travels across
the medium. A piezoelectric sensor records the time evolution
of the drag force F (t) exerted by the granular medium onto
the intruder disk during its displacement. Once the intruder is
placed in the granular medium at one side of the cell at its initial
position (Xi,Yi) � (−0.4Lx,0) and before its pulling motion
to the other side of the cell towards its final position (Xf ,Yf ) �
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FIG. 1. (a) Sketch of the experimental setup. (b) Snapshot of
the intruder moving from left to right through the granular packing.
(c) Same image obtained between crossed polarizers and displaying
transient chains of contact forces.

(0.4Lx,0) close to the front wall, the whole packing is first
homogenized by horizontal vibrations of the bottom plate in
the transverse y direction. All experiments presented here were
performed at constant volume with a fixed cell size (constant
φ0). During the intruder displacement, snapshots are recorded
using a high resolution camera (2048 × 2048 pixels) at a
frame rate f such as V0/f < dg/10. To avoid any possible
boundary effect in the results, images and subsequent data
analysis are restricted to a central square region of interest
of size 160 × 160 mm2 � Lx/2.5 × Ly/2.5, leading thus to
a spatial resolution of about 0.1 mm � dg/45. Each grain is
thus composed by about 1.6 × 103 pixels in the images. Since
the forces at stake are of the order of 0.1 N, the in-plane
compression is smaller than 0.01%, so that we consider a
constant diameter in the detection algorithm. The granular
packing is backlit with a large uniform source of linear
polarized light and a switchable circular analyzer is mounted
on a stepper motor synchronized with the picture acquisition.
Such a device gives one alternated cross-polarized and direct
light pictures at the effective frame rate of f/2. Assuming little
change in the packing between two successive pictures, one
combines structural information extracted from the direct light
pictures [Fig. 1(b)] and stresses measurements extracted from
the cross-polarized pictures [Fig. 1(c)] to quantify stress and
strain tensors at the grain scale. Considering the flow geometry,
the results will be presented in polar coordinates (r,θ ) centered
on the intruder, with θ = 0 in the x direction of the intruder
motion.

III. IMAGE ANALYSIS

For each direct image, we extract the position of each
grain including the intruder. By tracking each grain between
two successive images, we compute its velocity from its
displacement. To limit noise, the velocity gradient tensor ∇v
at the grain location is not calculated by differentiation but by
integration along a closed contour around the grain [15,16]:

∇v = 1

S

∮
v ⊗ ndl, (1)

where S is the surface delimited by the corresponding contour,
dl is the elementary displacement on this contour for which
the outward normal unit vector is n, and ⊗ denotes the tensor
product. Here, as each grain is surrounded by a finite and
discrete number of neighbors, we compute the integral of
Eq. (1) along the edges of its Voronoı̈ cell. The strain rate
tensor G is then deduced for each grain by

G = 1
2

(∇v + ∇vT
)
, (2)

where the exponent T refers to the transpose matrix. The strain
rate tensor is finally interpolated along a Cartesian grid of step
dx = dy = 0.4 mm � dg/10.

Another important part of the image processing is the
computation of the stress tensor σ . From each direct image,
the Delaunay triangulation and the Voronoı̈ tessellation are
constructed to extract the neighbor network and contact
network of each grain at each time t . From the cross-polarized
image at the same given time t (more exactly that only
differs by 1/f ), we determine then the contact forces between
grains by calculating the spatial gradient of the intensity
inside triangular sectors defined by one particle center and
the corresponding side of the Voronoı̈ cell [17]. The stress
tensor for each grain is then computed as [15,18]

σ = 4

πd2
i

∑
i �=j

fij ⊗ rij , (3)

where fij is the contact force between the two grains i and
j in contact and rij is the vector of modulus di/2 pointing
from the center of grain i of diameter di towards the center of
grain j . The stress tensor σ is then interpolated on the same
Cartesian grid as for the strain rate tensor G. Note that the
present two-dimensional (2D) stress is a force per unit length
and not a force per unit area as the real stress σ/h would be.

Finally both strain rate and stress tensors G and σ are
decomposed into an isotropic part and a deviatoric part [19]:

G = ε̇I + Gd, (4)

σ = −pI + σ d, (5)

where I is the unit tensor, ε̇ = 1
2 tr(G) = 1

2 div v is the dilation
rate of the 2D grain flow, Gd is the shear rate tensor, p

is the pressure, and σ d is the shear stress tensor. In the
following, we shall present the results using only scalar
quantities corresponding to the invariants of the strain rate
tensor G and the stress tensor σ . The first invariants are the
dilation rate ε̇ and the pressure p and the second invariants
corresponding to the deviatoric parts of the two tensors are
the shear rate γ̇ and the shear stress τ as named usually in
rheology [20] and defined as:

γ̇ = [
1
2 tr(G2

d)
]1/2

, (6)

τ = [
1
2 tr(σ 2

d)
]1/2

. (7)

The drag force F on the intruder can be inferred from the
image analysis described above by the integration of the local
stress tensor around the intruder:

F = −
∮

σn · ex dl. (8)
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FIG. 2. (a) Instantaneous drag force F (t) on the intruder obtained
either (—-) by the force sensor or (—) by the image analysis from
the photoelastic images for an intruder of diameter d = 16 mm in
motion at the velocity V0 = 10−2 mm s−1 in a 2D granular medium
of packing fraction φ0 = 0.76. (b) Time-averaged drag force 〈F 〉 as
a function of V0. Data from (�) force sensor and (�) photoelastic
images together with (—-) the mean value 〈F 〉 = 0.22 N averaged
over the explored velocity range 10−5 < V0 < 10 mm/s.

For the image analysis, we leave out the images where the
intruder is too close to the edges of the image and only focus
on the images where the intruder is in a central zone (−60 ≤
X ≤ 60 mm, i.e., −Lx/7 � X � Lx/7). This allows one to
have local information in the granular medium up to at least
22 mm � 5dg away from the intruder center. This should be
a large enough zone of analysis as the radial extension of
the velocity field perturbation is expected to be here of about
2dg + d/4 � 13 mm � 3dg [21].

The time evolution of the drag force F (t) extracted from the
image analysis [Eq. (8)] is reported in Fig. 2(a) together with
the global measurements from the piezoelectric sensor. Both
show strong fluctuations that are undoubtedly associated with
the creation or breaking of force chains inside the granular
material but no significant slow variations. The fluctuations of
these two signals are rather well time correlated even if their
amplitudes are different, which may be related to the very
different measurement technics. As a matter of fact, the force
sensor measures not only the drag on the intruder but also
the friction of the intruder with the bottom and the possible
friction of the wire attached to the intruder. By contrast, the
photoelastic technique only measures intergrain contact forces.
Anyway, the absence of slow time variations suggests that
a stationary regime is reached where the force is constant
on average, in agreement with previous observations for the
motion of objects in a granular material [13,21–24]. In the
following, we only focus on time-averaged quantities along
the intruder motion in the central part of the cell. Figure 2(b)
shows that the mean drag forces 〈F 〉 obtained from the force
sensor and from the photoelastic signal are very close to each
other whatever the pulling velocity V0, which gives confidence
in our local image analysis. For V0 ranging within about five
decades, 〈F (t)〉 is roughly constant, in agreement with the
experiments mentioned above.

In the next section, we will focus on the time-averaged local
quantities that are extracted from image analysis of both direct
and polarized images. These different quantities characterizing
the granular flow will be normalized by the natural length scale
dg and time scale dg/V0. As there is no external stress applied
on the lateral boundaries and no “hydrostatic pressure” from
gravity in our configuration, the typical stiffness k = (π/4)Eh
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FIG. 3. (a) Velocity field around an intruder disk of diameter
d = 16 mm moving from left to right at the velocity V0 = 2.7 mm s−1

into a granular medium of global packing fraction φ0 = 0.76. Vectors
indicate the grain velocity direction and the color map encodes the
modulus of the dimensionless velocity v/V0. (b) Corresponding local
packing fraction φ.

of the contact between two cylinders [25] will be taken as the
stress scale, where E is the effective Young modulus of the
disks of height h with here the value k � 1 N mm−1.

IV. LOCAL MEASUREMENTS

A typical velocity field of the granular medium around
the moving intruder is displayed in Fig. 3(a). As expected
from previous kinematic descriptions [13,21], the velocity
perturbation induced by the intruder motion is found to be
strongly localized around it. The corresponding local packing
fraction φ is displayed in Fig. 3(b): φ is observed to be quite
homogeneous in space and close to the global value φ0 except
in a very narrow crown upstream of the intruder and in an
elongated triangular wake downstream where φ is significantly
smaller. This downstream wake has been reported in detail by
[26] in similar 2D experiments and follows directly from the
absence of confining pressure on the cell boundaries or gravity,
as the present setup is horizontal.

The radial and azimuthal profiles of φ are displayed in
Figs. 4(a) and 4(b) along one azimuthal or radial position,
respectively. The data points have been obtained by digitizing
the 2D interpolated grids onto annular sectors (r − dr,r +
dr),(θ − dθ,θ + dθ ), with dr = dg/8 and dθ = π/32. Fig-
ure 4(a) shows that φ is quasiconstant and very close to
φ0 = 0.76 upstream of the intruder except in a very narrow
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FIG. 4. (a) Local packing fraction φ as a function of the radial
position r/dg from the intruder along the azimuthal direction θ =
(10 ± 3)◦. (b) Local packing fraction φ as a function of the azimuthal
position θ for the radial position r = (11 ± 1) mm (i.e., r/dg �
2.4 ± 0.2 from the intruder). Data are obtained for d = 16 mm,
V0 = 10−2 mm s−1, and φ0 = 0.76.
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FIG. 5. Maps of the four dimensionless scalar invariants of the
[(a),(b)] strain rate tensor and [(c),(d)] stress tensor around an intruder
of diameter d = 16 mm moving from left to right at the velocity V0 =
2.7 mm s−1 through a granular packing of global packing fraction
φ0 = 0.76. (a) dilation rate ε̇dg/V0, (b) shear rate γ̇ dg/V0, (c) pressure
p/k, and (d) shear stress τ/k.

zone of size one grain diameter close to the intruder where
φ decreases significantly and abruptly with r . The azimuthal
profile close to the intruder [Fig. 4(b)] shows that there is
no significant variation of φ around the intruder in a large
azimuthal range (−π/2 � θ � π/2) except in the downstream
wake observed in Fig. 3(b).

The maps of the four scalar invariants ε̇, γ̇ , p, and τ

extracted from the strain rate tensor and stress tensor, re-
spectively, are displayed in Fig. 5. All these quantities vary
significantly upstream of the intruder with some differences.
Concerning the strain rate field [Fig. 5(a)], one observes a
zone of high positive ε̇ extending about one intruder diameter
upstream and in a quite large azimuthal extension (−π/2 �
θ � π/2), with thus a “banana shape.” The shear rate γ̇ in
Fig. 5(b) displays a similar banana shape with a radial upstream
extension of about half the intruder diameter and a similar
azimuthal extension. This correlation between ε̇ and γ̇ is
related to the fact that dense granular media are known to
dilate upon transient shear [27,28]. Finally the stress fields
[Figs. 5(c) and 5(d)] differ from the strain fields. A zone of
high pressure p elongated in the upstream direction appears in
front of the intruder and a zone of high shear stress τ of similar
shape is also observed. There is thus a clear link between p

and τ . The relation between stress and strain appears, however,
less clear from these four maps.

To quantify more precisely the spatial variations of the
strain and stress tensors, the radial and azimuthal profiles of
the normalized four scalar invariants are displayed in Fig. 6 for
the same global packing fraction (φ0 = 0.76) but three intruder
velocities V0 ranging over four decades. As previously, the data
points have been obtained by digitizing the 2D interpolated
grids onto annular sectors (r − dr,r + dr),(θ − dθ,θ + dθ ),
with dr = dg/8 and dθ = π/32. The rather good collapse

FIG. 6. Variations with the normalized radial distance r/dg along
the azimuthal direction θ = (10 ± 3)◦, and with θ for r = (11 ±
1) mm of the four dimensionless scalar invariants. (a), (b) dilation
rate ε̇dg/V0; (c), (d) shear rate γ̇ dg/V0; (e), (f) pressure p/k; and (g),
(h) shear stress τ/k, for φ0 = 0.76 and V0 = 10−4 (×), 10−2 (◦), and
1 mm s−1 (+). (—) Cosine function as a guideline for the eye. The gray
zone corresponds to the intruder extension up to r = d/2 = 8 mm.

observed in Figs. 6(a)–6(d) of the three curves for the three
velocities shows that ε̇ and γ̇ scales with V0 as expected. By
contrast, Figs. 6(e)–6(h) confirm that p and τ do not depend
significantly on V0, which is consistent with the fact that the
measured drag force 〈F 〉 does not depend significantly on V0 in
Fig. 2(b). In the lin-log plots of Figs. 6(a), 6(c), 6(e), and 6(g),
the strong monotonic decrease of ε̇, γ̇ , and p with increasing
radial distance from the intruder is in agreement with the
exponential radial decrease already reported for γ̇ [13]. By
contrast, τ displays a nonmonotonic evolution with a first
increasing and then decreasing evolution with radial increasing
distance from the intruder surface. Figures 6(b), 6(d), 6(f), and
6(h) show that the four invariants have a maximal value in the
direction of motion (θ = 0) but quite different variation with
θ . The variations of ε̇ and γ̇ are close to a cosine shape. Such
a cosine shape has been already observed for γ̇ in the granular
flow around a cylinder in vertical penetration motions [13,21],
which is thus a consistent result. The θ variations of p and τ

are in contrast far from a cosine. The present observed strong
localization of p and τ with both r and θ may explain the very
small length scale reported previously for the force interaction
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FIG. 7. (a) Dimensionless dilation rate ε̇dg/V0 as a function of
shear rate γ̇ dg/V0 and (b) dimensionless shear stress τ/k as a function
of pressure p/k for an intruder of diameter d = 16 mm. Same data
points as in Figs. 6(a), 6(c), 6(e), and 6(g) together with (	) for
φ0 = 0.80 and V0 = 10−2 mm s−1.

of a moving object with both bottom [24] or lateral [29] walls.
Note that for the lower speed experiment (V0 = 10−4 mm/s)
the radial variations of ε̇ and τ in Figs. 6(a) and 6(g) are quite
different from the others, which will be discussed in the next
section.

V. RHEOLOGICAL CURVES

Let us now look at the relations between the four scalar
invariants ε̇, γ̇ , p, and τ to search for the existence of a
possible local constitutive law for the granular medium in the
present nonparallel flow around a moving intruder. Despite
some dispersion, Fig. 7(a) shows that the dilation rate ε̇

increases with the shear rate γ̇ . This correlation between ε̇

and γ̇ is reminiscent of the so-called Reynolds dilatancy [30],
where dilation usually increases quadratically with shear strain
ε ∼ γ 2 [27]. With also some dispersion, Fig. 7(b) shows that
the shear stress τ increases with the pressure p, which justifies
the introduction and use of a friction coefficient. Note that we
ensure that the principal directions of the shear rate and shear
stress tensors are nearly parallel in the upstream region where
a local dilatancy coefficient D and a friction coefficient μ will
be computed, in agreement with the requirements pointed out
by [4].

In order to test the possible local rheology, we now look
at both relations of the dilatancy coefficient D = ε̇/γ̇ and
the friction coefficient μ = τ/p with the inertial number
I = γ̇ dg

√
ρsφ/p which is the ratio of the inertial time scale

dg/
√

p/ρsφ at the grain scale and the flow time scale 1/γ̇ , and
which has been shown to be the relevant dimensionless number
in simple parallel flows [1–3]. The data shown in Figs. 8 and
9 are the D,μ, and I values averaged over the radial range
2 ≤ r/dg � 6 along different azimuthal directions, from the
motion direction near θ = 0 [Figs. 8(a) and 9(a)] towards the
equatorial direction near θ = π/2 [Figs. 8(d) and 9(d)]. One
observes that D does not depend significantly on I with about
the value D = 2 ± 1 that remains about the same whatever the
azimuthal direction θ . Concerning the local friction coefficient,
one does not observe any significant increase of μ with
I , which is due to the very low I values explored here
corresponding to a quasistatic regime (I < 10−2). In some
directions [θ � 45◦ in Figs. 9(a) and 9(b)], one may even
observe a significant decrease of μ with increasing I at very
small values (I � 10−5). This is linked to the differences
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FIG. 8. Local dilatancy coefficient D as a function of the inertial
number I with an average over the radial extension r/dg � 6 along
four azimuthal directions: (a) θ = 10 ± 3◦, (b) θ = 45 ± 3◦, (c) θ =
60 ± 3◦, and (d) θ = 80 ± 3◦. Same data symbols as in Fig. 6 together
with V0 = 10−3 (�), 10−1 (�), and 2.7 mm s−1 (�), for φ0 = 0.76.

reported in Fig. 6 for the lowest speed experiments (lowest
I ). This behavior is expected to arise from theoretical models
[31] but was not yet reported experimentally, and may explain
the stick-slip-like behavior observed for intruder dragged at
very low velocities [23].

The key point is, however, the significant dependence
observed for μ with the azimuthal direction θ . Indeed, a
significant decrease by a factor about 3 is observed from the
direction of motion where μ � 0.15 [Fig. 9(a) for θ � 10◦]
towards the equatorial direction where μ � 0.05 [Fig. 9(d) for
θ � 80◦]. This strong θ variation of μ(I ) means that such a
local rheology fails here to describe the entire granular flow
around an intruder. This experimental result is consistent with
recent theoretical findings [10] where the friction coefficient
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FIG. 9. Local friction coefficient μ as a function of the inertial
number I with an average over the radial extension r/dg � 6 along
four azimuthal directions: (a) θ = 10 ± 3◦, (b) θ = 45 ± 3◦, (c) θ =
60 ± 3◦, and (d) θ = 80 ± 3◦. Same data symbols as in Fig. 8.
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is found larger in front and behind the intruder and smaller on
the sides. Our present result confirms experimentally these
theoretical predictions and strongly suggests that nonlocal
rheology is thus needed to fully describe nonparallel flows.

VI. CONCLUSION

The present paper demonstrates the possibility of compu-
tation of the local stress tensor together with the local strain
tensor in a two-dimensional granular packing of photoelastic
disks from a detailed analysis of cross-polarized images. This
possibility is here used to test a possible local rheology in a
strongly nonparallel flow consisting in the grain flow around a
larger intruder disk. The analysis of the spatial variations of the
four invariants of the strain rate tensor and stress tensor reveals
that the flow is strongly localized around the intruder and that
the stress is very localized in the direction of motion. A positive
dilation rate increasing roughly linearly with the shear rate is
put in light and allows for the determination of a dilatancy
coefficient D for the present stationary nonparallel granular
flow. This dilatancy coefficient is essentially independent of
the azimuthal direction θ . By contrast, the friction coefficient
μ that relates shear to normal stresses shows significant θ

dependence. This spatial dependence demonstrates that local
rheology may be not sufficient to describe strong nonparallel
flows such as the present flow around a cylinder. While
such spatial variations of μ have been recently predicted
by nonlocal modeling in intruder geometry [10], the finite

level of dilatancy D of stationary flows has not been reported
yet theoretically or numerically. The present finding may
thus put further constraints on the formulation of continuum
models by opening up novel challenges in modeling and
understanding nonparallel compressible granular flows using
compressible nonlocal rheology. Experimentally, checking
for nonlocal rheology is challenging as the computation
of Laplacian terms—at the core of these nonlocal models
[8,10]—is hampered by finite resolution and large fluctuations.

Similar experiments with an imposed vibration of the
packing could be developed in order to uncouple the effect
of the inhomogeneous excitement created by the pulling
of the intruder and the effect of homogeneous excitement
[32–35]. These studies should help to better understand the
drag force with depth in the case of the vertical motion
under gravity [36,37] and the direction of the motion in the
penetration-extraction problem [38,39] in order to be extended
for an understanding of the animal locomotion in sand [40].
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