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Width and extremal height distributions of fluctuating interfaces with window boundary conditions
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We present a detailed study of squared local roughness (SLRDs) and local extremal height distributions
(LEHDs), calculated in windows of lateral size l, for interfaces in several universality classes, in substrate
dimensions ds = 1 and 2. We show that their cumulants follow a Family-Vicsek-type scaling, and, at early times,
when ξ � l (ξ is the correlation length), the rescaled SLRDs are given by log-normal distributions, with their
nth cumulant scaling as (ξ/ l)(n−1)ds . This gives rise to an interesting temporal scaling for such cumulants as
〈wn〉c ∼ tγn , with γn = 2nβ + (n − 1)ds/z = [2n + (n − 1)ds/α]β. This scaling is analytically proved for the
Edwards-Wilkinson (EW) and random deposition interfaces and numerically confirmed for other classes. In
general, it is featured by small corrections, and, thus, it yields exponents γn (and, consequently, α, β and z)
in good agreement with their respective universality class. Thus, it is a useful framework for numerical and
experimental investigations, where it is usually hard to estimate the dynamic z and mainly the (global) roughness
α exponents. The stationary (for ξ � l) SLRDs and LEHDs of the Kardar-Parisi-Zhang (KPZ) class are also
investigated, and, for some models, strong finite-size corrections are found. However, we demonstrate that good
evidence of their universality can be obtained through successive extrapolations of their cumulant ratios for long
times and large l. We also show that SLRDs and LEHDs are the same for flat and curved KPZ interfaces.
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I. INTRODUCTION

The Kardar-Parisi-Zhang (KPZ) equation [1]

∂h(�x,t)

∂t
= ν∇2h + λ

2
(∇h)2 + η (1)

is a paradigmatic model in out-of-equilibrium statistical
physics. Originally proposed to describe growing interfaces,
h(�x,t) can be viewed as the height at substrate position
�x and time t , ν as a surface tension, λ as a “velocity
excess,” and η(x,t) as a white noise with 〈η(x,t)〉 = 0
and 〈η(x,t)η(x ′,t ′)〉 = 2Dδds (x − x ′)δ(t − t ′) [2]. However,
fluctuations in diverse other systems such as one-dimensional
driven lattice gases [3] and free fermions in a harmonic well
[4], directed polymers in a random media [5], and confined
ledges of crystalline facets [6] are also described by Eq. (1).

Since 2010 there has been a renewed interest in KPZ
systems, mainly due to theoretical calculations of height
distributions (HDs) in one dimension (d = 1 + 1) [7] and
reliable experimental realizations of this class in d = 1 + 1
[8,9]. In short, it is now known that the 1 + 1 growth regime
KPZ HDs are given by Tracy-Widom (TW) distributions [10]
from different ensembles depending on surface geometry (flat
or curved), whereas the stationary HD is the Baik-Rains [11]
distribution. Moreover, the temporal and spatial correlators
are also different for flat and curved KPZ interfaces [12].
Extensive numerical simulations have confirmed these results
in d = 1 + 1 [13–16] and showed the existence of similar
scenarios in 2 + 1 [17–20], where experimental evidence of
universal HDs has been given in Refs. [21–23], and higher
dimensions [24].
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Beyond the HDs, other fluctuations at surface can present
universality. In 1994 Rácz and coworkers [25,26] demon-
strated that global squared width (or roughness) distributions
(WDs), calculated at the steady-state regime with periodic
boundary conditions (PBCs), are universal. Since then, PBC-
WDs have been widely applied in numerical studies of growth
models [27–30], being known to present smaller finite-size
corrections than HDs and roughness scaling [31]. For linear
interfaces, the exact probability density functions (PDFs)
of WDs were calculated for PBC [25,32,33] and window
boundary condition (WBC) [33], in d = 1 + 1. The latter, with
the squared local roughness (SLR) calculated in windows of
lateral size l that span the surface (of size L > l), are of special
importance for experimental analysis, where usually it is pretty
hard to attain the steady state. Indeed, the comparison of 2 + 1
growth regime SLRDs (with WBC) from vapor-deposited
films [21–23] and the ones for KPZ models [22,34] has
provided experimental evidence of their universality. More
recently, a similar study in d = 1 + 1 [35] led to the same
conclusion for SLRDs of the celebrated KPZ turbulent liquid-
crystal (TLC) experiment [8], where evidence was provided
that the 1 + 1 KPZ SLRD agree with the Edwards-Wilkinson
(EW) class [defined by Eq. (1) with λ = 0] one, calculated
exactly by Antal et al. [33].

Other interesting measures at the surface are the extremal
heights, maximal and minimal heights relative to the mean,
which are associated with drastic events such as a short circuit
in a battery or the breakdown of a device due to corrosion [36].
The fluctuations of the steady state (global) extremal heights
(with PBC) have also been studied, and universal distributions
were found for several universality classes, including the KPZ
one [36–42]. Local extremal HDs (LEHDs) for KPZ class
(with WBC) in d = 2 + 1 were initially studied in Ref. [21],
being very important to support the KPZ universality of
CdTe/Si(001) films. Shortly thereafter, a similar study was
done for oligomer films [22], where a more detailed numerical
study, establishing the universality of these distributions in
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KPZ class, was presented. Finally, the same analysis has
been applied for the 1 + 1 TLC interfaces, and, beyond its
universality, evidence was found [35] that the global extremal
HD for EW surfaces with free BC [38] also plays the role for
KPZ with WBC (in 1 + 1).

SLRDs and LEHDs (as well as HDs) have also been
recently calculated for electrodeposited oxide films [43],
providing strong evidence of diffusion dominated growth,
Mullings-Herring (MH) class [44], in these systems. Despite
all these applications [21–23,35,43], some aspects of the local
distributions remain unexplored, for example, their short time
regime. Moreover, the role of finite-size corrections in such
distributions needs more analysis, as pointed out recently
in Ref. [45]. Here we present a thorough numerical and
theoretical analysis of these aspects considering models in
KPZ and other universality classes. We show that the best
way to access the universality of these local distributions
is through successive extrapolations of their cumulant ratios
in time and size, since they present strong l dependence in
some systems. Although HDs and correlators are different
for the (full) flat and curved interfaces [7,12,17–20], we find
equal WBC distributions in both geometries. Interestingly, at
short times, the cumulants of SLRDs evolve in time following
scaling relations that allow us to determine the (global) scaling
exponents of roughening systems from a local, growth regime
measure.

The rest of this paper is organized as follows. In Sec. II
we define the studied models and the growth methods, as
well as the quantities of interest in this work. The scaling
of the cumulants of the distributions is presented in Sec. III.
In Secs. IV and V the universality of SLRDs and LEHDs,
respectively, is analyzed. Our final discussions and conclusions
are summarized in Sec. VI.

II. MODELS AND METHODS

A. Models

Most of the results presented in the following sections
are for the (KPZ) restricted solid-on-solid (RSOS) [46], the
Etching [47], and the single-step (SS) [2] models, grown on flat
substrates with fixed and enlarging sizes. However, in Sec. III
we also study the random deposition (RD), the Family [48]
(EW class), the conserved RSOS [CRSOS; Villain-Lai-Das
Sarma (VLDS) class [49]], and the large curvature (LCM;
MH class) models. In all cases, the interfaces were grow with
periodic boundary conditions. In the Monte Carlo simulation
of these models, at each time step, a position i of a substrate
with N sites is randomly sorted, and then the height hi of this
site and/or its neighbors change according to the rules:

RSOS: hi → hi + 1, if the condition |hj − hi | � 1 is
satisfied for all nearest neighbors (NN) j of site i. Otherwise,
hi remains unchanged.

Etching: First, if hj < hi , we make hj = hi for all NN j .
Then hi → hi + 1.

SS: hi → hi + 2, if the condition hj − hi = 1 is satisfied
for all NN j . Otherwise, hi remains unchanged.

RD: hi → hi + 1.
Family: hk → hk + 1, where k is the position with the

minimal height among i and the NN j .

TABLE I. Details of the simulations of flat models. tmax is the
maximal deposition time, which leads to the maximal average size
〈L〉max = ω(t + 1) for ω > 0.

d ω tmax Substrate size Samples

(1 + 1) 0 2 × 104 L = 217 3000
(1 + 1) 20 2 × 104 〈L〉max ≈ 4 × 105 3000
(2 + 1) 0 103 L = 211 1500
(2 + 1) 4 103 〈L〉max ≈ 4000 1500

CRSOS: If the RSOS rule is not fulfilled at site i, the particle
diffuses on the surface until finding a site satisfying it.

LCM: hk → hk + 1, where k is the position with the largest
surface curvature among i and the NN j .

After each deposition attempt the time is increased by �t =
1/N . The initial conditions are (chessboard) hi alternating
between 0 and 1 for the SS model, and (flat) hi = 0 for the
other models.

The method used for the substrate enlargement consists in
duplicating columns; i.e., a column i (or a row j , in d = 2 + 1)
is randomly sorted, and then an identical column (or row) is
created at position i + 1 (or j + 1) [50], with a rate ω in each
substrate direction [20]. These duplications [occurring with
probability Pa = ωds/(N + ωds)] are randomly mixed with
deposition attempts [which have probability Pd = N/(N +
ωds)], with ds = d − 1. After each event (deposition attempt
or column duplication) the time is increased by �t = 1/(N +
ωds). We start the growth on substrates of lateral size L0 = ω,
and, thus, at the time t , its (average) size will be 〈L〉 = L0 +
ωt . Since the value of the substrate enlarging rate ω > 0 has
negligible effects on universal properties of the interfaces [20],
we consider here only one value of ω, shown in Table I.

We also study the version A of the (KPZ) Eden model [51]
on the square lattice, where, starting from a single seed at the
origin, a radial cluster is grown by randomly adding particles at
one of the Np empty sites at its periphery. In order to eliminate
the lattice imposed anisotropy, the growth on a given site i

happens with probability pi = (ni/4)κ , where ni = 1,2,3, or
4 is the number of occupied nearest neighbors of site i and κ

is a parameter set to κ = 1.705 [52]. When a particle is added,
the time is increased by 1/Np. We run averages over 2500
clusters with up to 5.5 × 109 particles.

B. Quantities of interest

The squared local roughness at position i of a given surface
at the time t is defined as the variance of the heights of the lds

sites inside a box of lateral size l, centered at site i:

w2,i(l,t) ≡ h̄2
i(l,t) − h̄i(l,t)

2. (2)

Measuring w2,i(l,t) for all positions i of the substrate of size
L � l, as well as for different surfaces (samples) at the same
time t , we obtain a set of values, and from them we build
the squared local roughness distributions (SLRDs) P (w2), so
that P (w2)dw2 gives the probability of finding the squared
roughness in the range [w2,w2 + dw2]. In a similar way, we
define the maximal (M) and the minimal (m) relative height
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within a given box i, respectively, as

Mi ≡ hmax,i − h̄i and mi ≡ |hmin,i − h̄i |, (3)

where hmax,i (hmin,i) is the maximal (minimal) height inside
the box i. From the values of Mi and mi for different i

and samples, we built the maximal [P (M); MAHDs] and the
minimal [P (m); MIHDs] height distributions, respectively, so
that P (X)dX is the probability of finding X in the interval
[X,X + dX], with X = M or m.

At first glance, the probability density functions (PDFs)
P (X) (with X = w2,M or m) may depend on the box size
l, the time t , and parameters related to the specific growing
system. So we must compare rescaled distributions, and the
best way to do this is making [31,37]

P (X) = 1

σX

�X

(
X − 〈X〉

σX

)
, (4)

where σX ≡ 〈X2〉1/2
c is the standard deviation of X. The

function �X is expected to assume universal forms for a
given class and dimension. In order to characterize these
PDFs, we will analyze the first adimensional cumulant ratios
of the nonrescaled P (X): R ≡ 〈X〉/〈X2〉1/2

c , the skewness

S ≡ 〈X3〉c/〈X2〉3/2
c , and the kurtosis K ≡ 〈X4〉c/〈X2〉2

c , where
〈Xn〉c is the nth cumulant of the fluctuating variable X.

III. CUMULANT SCALING

In this section, the time evolution of the local distributions
is investigated. All results presented here for flat models
were obtained for fixed size substrates. We have checked
notwithstanding that similar results are found for enlarging
systems.

A. SLRDs

The first cumulant (the mean) of the SLRDs, 〈w2〉c, is the
squared local roughness, a standard quantity in the analysis
of fluctuating interfaces [53]. In KPZ systems, the scaling
of 〈w2〉c in time t and box size l is given by the Family-
Vicsek (FV) [54] scaling 〈w2〉c ∼ l2αf1(t/ lz), where f1(x)
is a scaling function behaving as f1(x) ≈ const for x � 1
and f1(x) ∼ x2β for x � 1, with β = α/z being the growth
exponent. Therefore, for small times (t � lz), so that the lateral
correlation length (ξ ∼ t1/z) is smaller than l, 〈w2〉c ∼ t2β . On
the other hand, for t � lz (i.e., for ξ � l), 〈w2〉c becomes
constant in time and scales as 〈w2〉c ∼ l2α . This well-known
scaling is shown in Fig. 1(a) for the (1 + 1) Etching model.

From the FV scaling, we might expect, for the nth cumulant
of SLRDs, that 〈

wn
2

〉
c
∼ l2nαfn(t/ lz), (5)

as is, indeed, confirmed in the insets of Figs. 1(a) and 1(b)
and Figs. 1(c) and 1(d) by the nice collapse of the rescaled
cumulants for a given model, in d = 1 + 1. Moreover, this
scaling also holds in d = 2 + 1, as shown in Figs. 2(a) and 2(b)
for the RSOS and Etching models, respectively. In Fig. 1(b) we
see that f2(x) ≈ const for t � lz, as expected. However, 〈w2

2〉c
depends on both t and l at short times. In general, we have
found 〈wn

2 〉
c
∼ l(1−n)ds tγn , with the exponent γn depending on
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FIG. 1. (a) First and (b) second cumulants of SLRDs as a function
of time t , calculated in different box sizes l for d = 1 + 1 surfaces of
the Etching model. The insets of (a) and (b) and the plots in (c) and
(d) show the collapse of the rescaled cumulants for all KPZ models in
d = 1 + 1. From bottom to top, collapsed curves for RSOS, SS, Eden,
and Etching models are shown. The dashed lines have the indicated
slopes, where β = 1/3.

the exponents β and α (or z). Thus, fn(x) ∼ xγn , rather than the
simple behavior fn(x) ∼ x2nβ , which we could naively expect.

Actually, this l dependence and nontrivial temporal scaling
is not limited to KPZ systems, but a general feature of the
cumulants of SLRDs and of (global) WDs, when ξ � l (or L).
For instance, a similar result can be proved for the EW class
in d = 1 + 1, for the global WD calculated by Antal and Rácz
[32] as a function of time. In fact, from the generating function
of the moments calculated in Ref. [32] it is straightforward to
demonstrate that, at short times (ξ � L), 〈Wn

2 〉
c
∼ L(1−n)tγn ,

with γn = n − 1/2 (see Appendix A). Although W2 is the
global roughness (for PBC), we remark that, when ξ � l � L,
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FIG. 2. First four rescaled SLRDs cumulants for the (a) RSOS
and (b) Etching models in d = 2 + 1. From top to bottom, curves for
n = 1, 2, 3, and 4 are shown. The exponents α = 0.3869 [55] and
z = 2 − α were used here.

the BCs becomes irrelevant, since most columns inside a given
box are uncorrelated, and, thus, the same behavior shall be
found for WBC. We have confirmed this through simulations
of the Family model in d = 1 + 1, where 〈wn

2 〉
c
∼ l(1−n)tn−1/2

is indeed found.
Additional proof of the l dependence in high-order SLRDs’

cumulants is provided for the RD model, whose WD (cal-
culated in Appendix B) has 〈Wn

2 〉
c
∼ L(1−n)ds t2nβ . Since all

heights are uncorrelated in this system, it is obvious that WD
and SLRD are equivalent, so that 〈wn

2 〉
c
∼ l(1−n)ds t2nβ . It is

noteworthy that the “expected” temporal scaling 〈wn
2 〉

c
∼ t2nβ

is found in this case, suggesting that the correlation length
(which is ξ ∼ 1 here) is responsible for the nontrivial γn

exponents in the other classes. In fact, for the 1 + 1 EW
class, where β = 1/4 and z = 2 [2], one may write γn = n −
2β = 2nβ + (n − 1)/z and, then, 〈wn

2 〉
c
∼ [l/ξ (t)](1−n)t2nβ .

The results for the (1 + 1) KPZ class (Fig. 1) are also consistent
with this behavior. Therefore, the relevant measure in the
finite-size scaling is lR = l/ξ (t), which gives the effective
number of uncorrelated sites within a given box, so that, in
general, 〈wn

2 〉
c
∼ l

(1−n)ds

R t2nβ .
The finite-size correction in the variance, 〈w2

2〉c ∼ 1/l
ds

R ,
can be simply understood noting that when l

ds

R random heights
are summed, to obtain h̄i , h̄2

i and, then, w2,i , the central limit
theorem states that the variance of the fluctuating variable
w2 will be of order 1/l

ds

R . So, when l
ds

R → ∞ (meaning that
t → 0 for a fixed l or l → ∞ for a fixed t), the SLRDs (and
WDs) tends to a delta function, as pointed in Refs. [32,45].
Interestingly, Antal and Rácz [32] have showed that while
the WD PDF of the 1 + 1 EW class goes to a delta, it first
approaches a log-normal distribution

P (x,t) = 1√
2πσxx

exp

{
− [ln(x) − μ]2

2σ 2
x

}
, (6)

with x = w2/〈w2〉. We claim that, instead of a particularity
of the 1 + 1 EW class, this is a general feature of random
(or almost random) interfaces. Indeed, in Appendix B, we
demonstrate that the SLRD/WD PDF for the RD approaches
the log-normal (with μ = 0), when l,L � 1. Figure 3(a)
shows scaled SLRDs for the 1 + 1 SS (KPZ) model for a
fixed t and different l and, for large l (when ξ � l) they
are well fitted by Eq. (6). The limit ξ � l will be discussed

FIG. 3. Rescaled SLRDs for (a) 1 + 1 SS model for t = 250 and
several l and (b) for several models with t = 100 (25) and l = 2048
(256) in d = 1 + 1 (2 + 1). First four rescaled SLRDs cumulants
for the (c) LCM and (d) CRSOS models in d = 1 + 1. From top to
bottom, curves for n = 1, 2, 3, and 4 are shown. The dashed lines
have the indicated slopes. In (c) α = 3/2, β = 3/8, and z = 4 and in
(d) α = 1, β = 1/3, and z = 3 [2].

in Sec. IV. The same behavior is found in all universality
classes in d = 1 + 1 and 2 + 1, for ξ � l, as shown in
Fig. 3(b). As demonstrated in Appendix B, if the variance of the
log-normal scales as 〈x2〉c ∼ 1/l

ds

R , the high-order cumulants
shall be 〈xn〉c ∼ l

(1−n)ds

R , which explains the behavior 〈wn
2 〉

c
∼

l
(1−n)ds

R t2nβ . Finally, since lR ∼ l/t1/z, in general, one has
〈wn

2 〉
c
∼ l(1−n)ds tγn with

γn = 2nβ + (n − 1)ds

z
=

[
2n + (n − 1)ds

α

]
β. (7)

In fact, for the RD model, where α,z → ∞ [2], γn = 2nβ is
recovered. For KPZ class, α = 1/2, in d = 1 + 1, yields γn =
(2n − 1)2β as, indeed, observed in Fig. 1. Moreover, the scaled
SLRDs cumulants for the LCM model (MH class) and the
CRSOS model (VLDS class), shown, respectively, in Figs. 3(c)
and 3(d), have a nice scaling with γ MH

n = [2(4n − 1)/3]β
and γ V LDS

n = (3n − 1)β for several decades in time. Since
αMH = 3/2 and αV LDS = 1, this confirms the general validity
of the scaling law (7).

Therefore, from estimates of the γn, it is possible to
obtain the “classical” exponents α, β, and z from Eq. (7).
For example, the values of γn, calculated by estimating the
effective exponents γ eff

n as the maxima of the successive slopes
from the curves of ln 〈wn

2 〉
c
× ln t and, then, extrapolating γ eff

n

for large l, for KPZ models in d = 2 + 1 are displayed in
Table II. The exponents α and β obtained from them are in
good agreement with the best estimates known from the global
roughness scaling [α = 0.3869(4) and β ≈ 0.24] [55].

We remark that the usual way to determine α is to grow the
interface until the steady state for different substrate sizes L
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TABLE II. Exponents from 〈wn
2 〉c

∼ tγn , with n = 1 and n = 2,
and the corresponding scaling exponents β = γ1/2 and α = γ1/(γ2 −
2γ1) for KPZ models in d = 2 + 1.

Model γ1 γ2 α β

RSOS 0.483(9) 2.189(5) 0.39(1) 0.242(5)
SS 0.48(1) 2.20(1) 0.39(1) 0.240(5)
Etching 0.47(1) 2.18(2) 0.38(2) 0.235(5)

and then use the saturation roughness (Wsat) scale: Wsat ∼ Lα .
However, usually this requires long simulational times, and,
thus, the best available results are limited to relatively small
L, mainly in d ≥ 2 + 1 [29,55], where finite-size effects can
play a relevant role. More important, it is very hard to attain
the steady state in experiments, and, thence, the possibility of
estimating α from a temporal scaling, as devised here, is of
paramount importance.

Actually, in systems following the FV scaling, α can be
obtained in the growth regime from the scaling of the local
roughness with the box size l (〈w2〉c ∼ l2αloc , where αloc is
the local roughness exponent), since α = αloc. However, this
scaling usually has strong corrections and may be also featured
by crossover effects due to grain or mound structures at the
surface [56]. Even worse, several systems present anomalous
scaling, so that α �= αloc [57]. For instance, the scaling of
the LCM model (the MH class), in d = 1 + 1, is anomalous
and αloc = 1 whereas α = 3/2. As confirmed in Fig. 3(c),
the temporal scaling of the MH SLRDs’ cumulants yields the
(global) exponent α.

Reliable estimates of the correlation length ξ (t), and,
consequently, of the dynamic exponent z (from ξ ∼ t1/z),
are also difficult to obtain, for example, in surfaces with
multipeaked grains or mounds [21,23]. So the possibility of
calculating z from a simple measure such as 〈wn

2 〉
c

is very
useful. Indeed, from Eq. (7), one has z = 2/(γ2 − 2γ1), and,
then, using the values in Table II, we find z = 1.63(3) (RSOS),
1.61(3) (SS), and 1.61(4) (Etching), again, in good agreement
with the best known estimate (z ≈ 1.613 [55]).

B. LEHDs

At the PBC steady state, the mean (global) maximal relative
height 〈Msat〉c scales as the surface roughness 〈Msat〉c ∼
〈Wsat〉 ∼ Lα [36]. The only known exception is the EW class in
d = 2 + 1, where 〈Wsat〉 ∼ √

ln L and 〈Msat〉c ∼ ln L [40,41].
In most cases, this suggests for the cumulants of the local
MAHDs that 〈

Mn
〉
c
∼ lnαgn(t/ lz), (8)

where the scaling function gn(x) would scale as gn(x) ∼
const for x � 1 and gn(x) ∼ xδn for x � 1. This scaling
is confirmed in Figs. 4(a)–4(d) by the good collapse of the
high-order (n > 1) rescaled cumulants of the MAHDs for
the KPZ models in d = 1 + 1. However, for the mean n = 1
[Fig. 4(a)] reasonable collapses are observed only for the
larger l. Indeed, Raychaudhuri et al. [36] demonstrated that
the (global) maximal relative height increases in time as
〈Mg〉 ∼ tβ[C + ln L − (β/α) ln t]1/a , where C is a constant
and the exponent a is associated to the decay of the right

FIG. 4. (a) First, (b) second, (c) third, and (d) forth rescaled
cumulants of MAHDs, calculated in different box sizes l. From
bottom to top, collapsed curves for RSOS, SS, Eden, and Etching
models in d = 1 + 1 are shown. The dashed lines have the indicated
slopes, where β = 1/3.

tail either of the extremal height distribution or the velocity
distribution. Therefore, the origin of the deviation in 〈M〉c
[Fig. 4(a)] is certainly these logarithmic enhancements. It is
impressive that such logarithmic seem not be present in the
high order cumulants.

As a consequence of the finite-time and -size effects, the
scaling of 〈M〉c in time is not so clear but is initially consistent
with 〈M〉c ∼ tβ [see Fig. 4(a)]. On the other hand, for the
higher-order cumulants [Figs. 4(b)–4(d)], we find good power
laws 〈Mn〉c ∼ tnβ . Thus, gn(x) ∼ xnβ for x � 1, meaning
that (asymptotically) 〈Mn〉c does not depend on l, for t � lz,
in contrast with 〈wn

2 〉
c
. This happens because fluctuations in

Mi are dominated by hmax,i, which is not an average and so
does not follow the central limit theorem. Therefore, it is not
possible to determine α (and z) directly from 〈Mn〉c versus t ,
but alternative measures of β can be found.

For the RSOS, SS, and Eden models, Fig. 4 shows that
〈Mn〉c deviate from the scaling at early times. This is due to
the very smooth surfaces produced by these models at short
times, which are almost flat inside a box (Mi � 1). In contrast,
even for small t , the interfaces of the Etching model have
a considerable roughness and, consequently, a well-behaved
〈Mn〉c scaling.

The cumulants of the local MIHDs, 〈mn〉c, follow a scale
similar to Eq. (8), as shown in Fig. 5 for the RSOS model.
However, the scaling functions gmin

n (x) for n = 3 and 4 have
a crossover at t � lz, leading to deviations of the scaling
gmin

n (x) ∼ xnβ . Similar results were found for the other models
in d = 1 + 1.

In two dimensions, the cumulants of MAHDs and MIHDs
present stronger corrections than in d = 1 + 1, and rescaling
them according to Eq. (8) does not lead to good data collapse
(not shown). So, in general, we may conclude that while the

012801-5



I. S. S. CARRASCO AND T. J. OLIVEIRA PHYSICAL REVIEW E 93, 012801 (2016)

FIG. 5. First four rescaled cumulants of MIHDs for the RSOS
model in d = 1 + 1. From top to bottom, curves for n = 1, 2, 3,
and 4 are shown. The dashed lines have the indicated slopes, with
β = 1/3.

scaling of cumulants of the SLRDs is a powerful method to
obtain the scaling exponents, the same does not happen with
the one of the LEHDs.

IV. SQUARED LOCAL ROUGHNESS DISTRIBUTIONS

Figures 6(a) and 6(b) show the extrapolation of the
skewness S and kurtosis K of the SLRDs, for t → ∞ (i.e.,
for the regime of ξ � l), for the KPZ models in d = 1 + 1
in both fixed size (symbols) and enlarging substrates (full
lines). In all cases, good linear behaviors are found if we use
1/t in the abscissa, for long times. The extrapolated values
S∞, K∞, and of the ratio R∞ are displayed in the insets of
Fig. 6. For RSOS and SS models, they present negligible l

dependences, allowing us to obtain accurate estimates of those
ratios, whose averages are depicted in Table III. On the other
hand, stronger finite-size effects are observed in SLRDs of
Eden and (mainly) the Etching models. In the latter, this is
certainly due to a large intrinsic width w2

i dominating the
roughness at short scales. In fact, following the procedures
and definitions in Ref. [58], we estimate here 〈w2

i 〉 = 2.21(2)
for the Etching model (in d = 1 + 1). However, contrary to
its original version, for the Eden model, we do not find a
correction consistent with an intrinsic width, so it has another
origin, possibly the existence of some remaining anisotropy
at short scales. Despite these corrections, for large l, we may
observe those ratios converging towards the ones for SS/RSOS
models. As noted by Halpin-Healy and Takeuchi [35], the
SLRD by Antal et al. [33], calculated for steady state EW
interfaces with WBC, should be also the PDF of 1 + 1 SLRDs
of KPZ class. Indeed, this PDF has ratios R = 1.12, S = 2.55,
and K = 10.27 that, although they do not agree with our
estimates within the error bars, are very close to them. A similar
slight difference has been reported for the Euler integration of
the KPZ equation [35].

In d = 2 + 1, we find R, S, and K extrapolating nicely,
again, as 1/t . The obtained S∞ and K∞ are displayed in
Figs. 7(a) and 7(b), respectively, where some finite-size effects
are observed even for the RSOS and SS models and more

4000.02000.00
1/t

0.5

1.0

1.5

2.0

2.5

3.0

S

0 0.005 0.01 0.015 0.02
1/l

2.4

2.6

2.8

3.0

S ∞

0 0.005 0.01 0.015 0.02
1/l

1.05

1.10

1.15

1.20

R ∞

(a)

(A)

(B)

4000.02000.00
1/t

0

5

10

15

K

0 0.005 0.01 0.015 0.02
1/l

8

10

12

14

K
∞

RSOS
SS
Etching
Eden

(b)

FIG. 6. (a) Skewness and (b) kurtosis as functions of 1/t for all
KPZ models in d = 1 + 1, calculated in boxes of sizes l = 64 (black),
128 (red), 256 (blue), and 512 (green). For RSOS, SS, and Etching
models, symbols are for growth on fixed size substrates, while full
lines for enlarging ones. In panel (a) the insets show the extrapolated
(in time) ratios (A) R∞ and (B) S∞. The extrapolated kurtosis are
displayed in the inset of panel (b). In insets, open and full symbols
are data for fixed size and enlarging substrates, respectively, while
full and dashed lines are linear fits of them.

severe corrections in the Etching one [in this case we estimate
〈w2

i 〉 = 2.7(1)]. Notwithstanding, again, as size increases these
ratios converge to similar asymptotic places. The estimates for
RSOS and SS models are depicted in Table III, where we
see that S and K have good agreement with the estimates
from the Euler integration of KPZ equation [22] (S = 2.03
and K = 7.11). Moreover, the R value is a bit larger than
the estimate 1/R = 0.53(2) in Ref. [45]. For the Etching
model, despite the stronger corrections, we find R ≈ 2.08,
S ≈ 1.95 and K ≈ 6.4. While R agrees with other models, the
differences in S and K from the bottom limits are, respectively,
2.5% and 8.5%.

TABLE III. Cumulant ratios for KPZ SLRDs.

Dimension R S K

1 + 1 1.15(2) 2.44(4) 9.5(4)
2 + 1 2.05(5) 2.04(4) 7.3(3)
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FIG. 7. Extrapolated (t → ∞) (a) skewness and (b) kurtosis of
SLRDs as functions of 1/l�, for KPZ models grown on fixed size
(open) and enlarging substrates (full symbols) in d = 2 + 1. The
dashed lines are linear fits of the data. � = 1 for RSOS and SS and
� = 1.25 for Etching model.

These results show that our extrapolation procedure [first
in time, (A) to guarantee that ξ � l and, then, for large
l, (B) to overcome finite-size effects] is a reliable way
to access the universality of local distributions. We recall
that in recent works [21,22,35,43,45] this was achieved by
performing simulations for very long growth times, to fulfill
the requisite (A), and for several box sizes, in order (to try)
to determine a plateau: a l-independent value of R, S, and
K . Temporal extrapolations of the maxima (when they exist)
of these plateaus can be also important [45]. However, to
observe clear (wide) plateaus in systems with strong finite-size
corrections, huge growth times can be necessary. This was,
indeed, observed for the (2 + 1) Etching model in Ref. [45]. A
similar problem shall happen in systems with large z, whose
ξ increase very slowly in time. Moreover, in experiments, the
limited number of samples and/or small ξ might prevent the
observation of reliable plateaus.

On the other hand, within our framework, the temporal
extrapolation provides good estimates of the cumulant ratios
(for ξ � l) from data for (relatively) short deposition times.
For comparison, Aarão Reis [45] has obtained 2.0 � S � 2.2
from simulations of the RSOS model, in d = 2 + 1, for times
up to t = 13 000, while we find here S = 2.04(4) from data
for t = 1000. Obviously the temporal extrapolations cannot be
done for arbitrarily short times, but we observe that working
with t so that ξ (t) ∼ l is enough, which is much easier to work
with than ξ � l. For instance, recalling that ξ = (

√
A|λ|t)1/z

[59] and using the values of A and λ in Ref. [20], for t = 1000
(in d = 2 + 1), one has ξSS ≈ 52, and good extrapolations
were possible for l � 64. In d = 1 + 1, ξSS ≈ 737 for t =
20 000, and we have worked with l � 512.

Another interesting finding here is that the asymptotic KPZ
SLRDs are the same for flat (fixed size) and curved (enlarging
substrates) geometries. Indeed, in Fig. 6, we see that for long
times S (and K), for the same model and l, tends to become
equal regardless of whether the substrate enlarges or not. This
leads to temporal extrapolations S∞ and K∞ being very similar
for both subclasses. In d = 2 + 1, this is even more evident
(see the superimposed data in Fig. 7). Moreover, the asymptotic
cumulant ratios for the (really curved) Eden surfaces agree
quite well with the ones for other (flat surface) models, in
d = 1 + 1.

The rescaled SLRDs in d = 1 + 1 and d = 2 + 1 are shown
in Fig. 8. The good collapse of the distributions for different

0 5 10 15 20
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FIG. 8. Rescaled SLRDs for KPZ models in d = 1 + 1 (bottom)
and d = 2 + 1 (top). Data for d = 2 + 1 are shifted up two decades.
Inset shows the same SLRDs in linear scale, with data for d = 2 + 1
centered in 5. Data for fixed size (RSOS and Etching) and enlarging
substrates (SS) are shown.

models, boxes sizes, and geometries gives a final confirmation
of their universality in both dimensions. We remark that
SRLDs for Eden and Etching models for small l (not shown) do
not present a good collapse, as expected from the corrections
observed in their cumulant ratios. The Antal et al. [33] PDF is
also shown in Fig. 8 and presents an excellent agreement with
the 1 + 1 SLRDs. Thus, despite the small differences in their
cumulant ratios, our results confirm the claim of Halpin-Healy
and Takeuchi [35] that the steady-state EW distribution also
plays the role in KPZ growth regime, when WBC is considered.
Concerning the right tail of the SLRDs, we find evidence of
an exponential (in d = 1 + 1) and stretched exponential (in
d = 2 + 1) decay, as also suggested in Refs. [35] and [22,34],
respectively.

V. EXTREMAL RELATIVE HEIGHT DISTRIBUTIONS

We start this section by remarking that the MAHDs and
MIHDs are directly related to the decay of the right and left
tails, respectively, of the HDs. Since RSOS and SS models
have HDs with S < 0, their left (right) tails are equivalent to
the right (left) ones of the Eden and Etching models (whose
HDs have S > 0). Therefore, we will compare MIHDs of the
former models with the MAHDs of the last ones, and vice
versa.

Performing an analysis of cumulant ratios of local MAHDs
and MIHDs similar to the previous section, we find that
they also extrapolate in time as 1/t . The long-time values
obtained for S and K in d = 1 + 1 are shown in Figs. 9(a)
and 9(b), respectively. Again, strong finite-size corrections
are found for Eden and Etching models, but, after a size
extrapolation, we find accurate estimates of R, S and K

(depicted in Table IV). Since the stationary (within a box of size
l � ξ ) HDs are symmetric in d = 1 + 1, MAHDs and MIHDs
are identical. We recall that in Ref. [35] it was claimed that
the Majumdar-Comtet (M-C) [38] PDF, for (global) extremal
heights of steady state 1 + 1 EW interfaces with free BC, also
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FIG. 9. Extrapolated (a) skewness and (b) kurtosis for LEHDs of
KPZ models in d = 1 + 1. For d = 2 + 1, the extrapolated skewness
(open) and kurtosis (full symbols) are shown (c) for MAHDs and (d)
for MIHDs. In panel (c) � = 1 for RSOS/SS and � = 1.25 for the
Etching model.

represents the local MAHDs of 1 + 1 KPZ systems. Indeed,
our estimates for S and K are just slight smaller than the ones
for the M-C distribution (R = 2.98, S = 1.11, and K = 1.69),
while R agree within the error bar.

For d = 2 + 1, the stationary KPZ HD is asymmetric, and,
so, different LEHDs are expected. Indeed, different values
for S and K are found for MA- and MIHDs for RSOS/SS
models (see Table IV). The MAHD ratios for the Etching
model extrapolate to almost the same values, while the ones
for MIHDs cannot be extrapolated, due to nonmonotonic
behavior [see Fig. 9(d)]. It is worth mentioning that in
Ref. [22] S = 0.884/0.877 and K = 1.20/1.17 were reported
for MA/MIHDs for the Euler integration of the KPZ equation,
which are quite close to our estimates in most cases.

Figures 10(a) and 10(b) show the rescaled LEHDs for
d = 1 + 1 and 2 + 1, respectively. In the one-dimensional
case, an excellent data collapse for all models and good
agreement with the M-C pdf in the peaks and right tails
are observed, but a slight difference exits in the left tail, as
also found in Ref. [35]. In d = 2 + 1, again, MAHDs (and
MIHDs) for different models collapse quite well. As expected,
from their similar cumulant ratios (Table IV), rescaled (2+1)
KPZ MAHDs and MIHDs are very similar, presenting some
difference only in their right tail [see inset of Fig. 10(b)].

TABLE IV. Cumulant ratios for KPZ LEHDs.

Dimension R S K

1 + 1 3.00(5) 1.07(2) 1.60(3)
2 + 1-MAHDs 7.3(4) 0.84(2) 1.14(5)
2 + 1-MIHDs 7.3(4) 0.93(3) 1.35(10)
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FIG. 10. (a) Rescaled LEHDs for KPZ models in d = 1 + 1.
Inset shows the same data in linear scale. (b) Rescaled MAHDs
(X = M , top) and MIHDs (X = m, bottom) for KPZ models in
d = 2 + 1. MAHDs (MIHDs) were shifted two decades up (down).
The nonshifted MAHD and MIHD of the RSOS model are displayed
in the inset. Data for fixed size (RSOS and Etching) and enlarging
substrates (SS) are shown.

VI. FINAL DISCUSSION AND CONCLUSION

In summary, we have presented a detailed numerical
analysis of experimentally relevant local distributions of
squared roughness (SLRDs) and extremal heights (LEHDs),
calculated in the growth regime of several models in one and
two dimensions.

Strong finite-size effects were found in the distributions of
some KPZ models, but strong evidences of their universality
was obtained after appropriate extrapolations of their cumulant
ratios. We claim that the procedure devised here advances over
previous analysis of local distributions, since reliable estimates
of cumulant ratios are obtained for relatively short times (so
that ξ ∼ l), instead of long times (ξ � l). This can be very
important in the analysis of experimental interfaces, where
typically ξ is small and/or in universality classes with large
z. We also emphasize that the cumulant ratio R, disregarded
in most previous works on local distributions, can be very
useful in deciding the universality class of a given system. For
instance, local distributions for the MH class in d = 2 + 1 have
been recently studied in Ref. [43], where R ≈ 4, S ≈ 0.88, and
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K ≈ 0.85 were found for the MAHDs (=MIHDs in this class).
Comparing these values with the ones in Table IV, we see that
S and K are close to the KPZ ones, but a remarkable difference
exists in R.

Although the underlying height fluctuations and temporal
and spatial covariances are different for flat and curved KPZ
interfaces (in the growth regime), we find here that SRLDs
and LEHDs do not present this dependence. Indeed, within a
box of size l � ξ , we obtain stationary measures of w2, M ,
and m and, thus, our results show that stationary fluctuations
in curved interfaces are the same as in flat ones.

Another very important finding here was the scaling of the
SLRDs’ cumulants at early times. We stress that this scaling
advances over other methods to calculate these exponents
because it is not necessary to grow the interface until the steady
state (which, generally, demands long growth and simulation
times) to obtain α and z. Moreover, this (temporal) scaling does
not seem to suffer from crossover effects and is not affected by
scaling anomalies, as does the local roughness scaling with the
box size l. Another advantage of this method is that smooth
curves of 〈wn

2 〉
c
× tγn can be obtained even for a small number

of surfaces (samples), since the cumulants are averaged over
several boxes at surface. Thus, we believe that this method will
be very useful in experimental studies. Furthermore, it can also
be important to solve theoretical and numerical issues, such as
the KPZ exponents in higher dimensions and its related upper
critical dimension.
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APPENDIX A: CUMULANTS OF THE SLRD OF EW CLASS
IN d = 1 + 1

Antal and Rácz [32] have calculated the global roughness
distribution P (W2,t) of 1 + 1 EW interfaces with PBC. For flat
initial conditions, they found the generating function GL(ζ,t)
of its moments as

GL(ζ,t) = N
∞∏

m=1

∫
dcmdc∗

m

exp
{−2|cm|2[ζ + 1/2σ 2

m(t)
]}

σ 4
m(t)

,

(A1)

where N is a normalization factor, cm (and c−m = c∗
m) are the

coefficients of the Fourier expansion of h(x,t) − h̄(t), and

σ 2
m(t) = D

(
1 − e−2νq2

mt
)

Lνq2
m

, (A2)

with qm = 2πm/L. Defining 〈W2〉s = DL/(12ν) (the steady-
state squared roughness) and τ ≡ 8π2νt/L2 = 4π2[ξ (t)/L]2,
one can write σ 2

m(t) = 3〈W2〉s(1 − e−m2τ )/(πm)2. Calculating
the Gaussian integrals, GL(ζ,t) can be obtained as well as
�L(ζ,t) ≡ ln GL(ζ,t), which is the generating function of the

cumulants of P (W2,t), given by

〈
Wn

2

〉
c

= (−1)n
(

∂�L

∂ζ

)
ζ=0

= (n − 1)!6n〈W2〉ns
π2n

∞∑
m=1

(
1 − e−τm2)n

m2n
. (A3)

For short times, so that τ � 1 (and, thus, ξ � L), this sum
can be approached by an integral yielding

〈
Wn

2

〉
c
∼ 〈W2〉ns τ n−1/2 ∼ (Dn/

√
ν)L1−ntn−1/2. (A4)

APPENDIX B: SLRD OF RANDOM INTERFACES

Considering a random deposition on a hypercube substrate
of dimension ds and lateral size L = La, where a is the lattice
constant, P (W2,t) can be calculated by particularizing the
Antal and Rácz [32] results, noting the following:

(1) ν = 0 in a random growth, so that the variance σ 2
m(t) [in

Eq. (A2)] has to be changed to σ 2(t) = 2Dt/Lds . Therefore,
σ 2 no longer depends on the Fourier mode m, and, thus, all
integrals in Eq. (A1) are identical; and

(2) A cutoff has to be introduced in the product [in Eq. (A1)]
of the Lds modes.

After these considerations, we find the generating function

GL(ζ,t) = (1 + 2ζσ 2)−(Lds /2) (B1)

and then the cumulants
〈
Wn

2

〉
c
∼ Lds σ 2n ∼ L(1−n)ds Dntn. (B2)

Defining the adimensional variable x = W2/〈W2〉 =
W2/(2Dt), it is easy to calculate the inverse Laplace transform

P (W2,t) =
∫ i∞

−i∞

dζ

2πi
G(ζ )eζW2 = 1

〈W2〉�(x,t), (B3)

where

�(x,t) = kk

(k − 1)!
xk−1e−kx, (B4)

with k ≡ Lds /2. Interestingly, this PDF does not depend ex-
plicitly on the time, but does on system size. Its cumulants are
〈xn〉c = (n − 1)!/kn−1. Then, when the system size diverges
(k → ∞), 〈xn〉c → 0 for n > 1, while 〈x〉c = 1, i.e., the
distribution tends to a delta function. Notwithstanding, first
it approaches a log-normal distribution. In fact, performing
an expansion of � around its mean, defining ε = x − 1 and
σ 2

x ≡ 〈x2〉c = 1/k, we can write

�(x,t) =
[

kke−k

(k − 1)!

]
exp

[
−ε − ln(1 + ε)

σ 2
x

]/
x, (B5)

whose term in parentheses converges to 1/(
√

2πσx) for large
k, while [ε − ln(1 + ε)] ≈ ln2(x)/2 + ε3/6 for ε � 1. Then

�(x,t) � 1√
2πσxx

e
− ln2(x)

2σ2
x

(
1 − ε3

6σ 2
x

)
. (B6)
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Defining the distance from the mean in terms of the standard
deviation ε ≡ bσx , we see that the correction b3/(6

√
k)

vanishes for large k. We remark that the cumulants of this

log-normal have the form 〈x〉c = eσ 2
x /2, and 〈xn〉c = 〈x〉nc

(eσ 2
x − 1)n−1gn, for n > 1, with gn = const + O(eσ 2

). Thence,
if σx ∼ 1/Lds one finds 〈x〉c = 1 and 〈xn〉c ∼ L(1−n)ds .
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046140 (2002).
[34] T. Paiva and F. D. A. Aarão Reis, Surf. Sci. 601, 419 (2007).
[35] T. Halpin-Healy and K. A. Takeuchi, J. Stat. Phys. 160, 794

(2015).
[36] S. Raychaudhuri, M. Cranston, C. Przybyla, and Y. Shapir, Phys.

Rev. Lett. 87, 136101 (2001).
[37] G. Györgyi, N. R. Moloney, K. Ozogány, and Z. Rácz, Phys.
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[57] J. M. López, Phys. Rev. Lett. 83, 4594 (1999); J. J. Ramasco,
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