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Electric-field-induced weakly chaotic transients in ferroelectric liquid crystals
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Nonlinear dynamics induced in surface stabilized ferroelectric liquid crystals by strong alternating external
electric fields is studied both theoretically and experimentally. As has already been shown, molecular
reorientations induced by sufficiently strong fields of high-enough frequencies can reveal a long transient
behavior that has a weakly chaotic character. The resulting complex dynamics of ferroelectric liquid crystals can
be considered not only as a consequence of irregular motions of particular molecules but also as a repercussion of
a surface-enforced partial decorrelation of nonlinear molecular motions within smectic layers. To achieve more
insight into the nature of this phenomenon and to show that the underlying complex field-induced behavior of
smectic liquid crystals is not exceptional, ranges of system parameters for which the chaotic behavior occurs are
determined. It is proved that there exists a large enough set of initial phase trajectory points, for which weakly
chaotic long-time transitory phenomena occur, and, thereby, it is demonstrated that such a chaotic behavior can
be regarded as being typical for strongly field-driven thin liquid crystal systems. Additionally, the influence
of low-amplitude random noise on the duration of the transient processes is numerically studied. The strongly
nonlinear contribution to the electro-optic response, experimentally determined for liquid crystal samples at
frequencies lower than the actual field frequency, is also analyzed for long-time signal sequences. Using a
statistical approach to distinguish numerically response signals of samples from noise generated by measuring
devices, it is shown that the distribution of sample signals distinctly differs from the device noise. This evidently
corroborates the occurrence of the nonlinear low-frequency effect, found earlier for different surface stabilized
liquid crystal samples.
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I. INTRODUCTION

The discovery of ferroelectricity in liquid crystals [1] has
stimulated not only efforts to explain mechanisms of this
unexpected phenomenon but also has given rise to a new chal-
lenge for researching new ferroelectric liquid crystals (FLCs).
Due to the possibility of direct driving molecular orientations
by external electric fields, the FLCs have immediately been
considered as materials important for technical applications.
Variants of FLCs that have turned out to be very promising
toward this aim are surface-stabilized thin-cell systems. The
influence of cell surfaces on liquid crystal substances essen-
tially reveals itself through promoting formation of appropriate
smectic layer alignment of molecules but can also reveal
itself through inducing ferroelectric ordering of liquid crystals
that are not ferroelectrics in the bulk [2,3]. An interesting
property of surface-stabilized ferroelectric liquid crystals
(SSFLCs), in view of technical applications, is the existence
of bistable orientational states of molecules (the switching
between these states is the basis of working of various
FLC-based devices) [3]. Since the threshold energy needed to
reorient a molecule between the two states is rather large, the
underlying field-induced switching is, by nature, a strongly
nonlinear process. Strongly nonlinear electric field-induced
reorientations of molecules in SSFLCs have mainly been
studied in the context of the process of switching of molecules
between their bistable orientational states, determined by
surface anchoring interactions [2]. The use of the bistable
switching phenomenon in modern display technologies has
inspired investigations of the nonlinear dynamics of SSFLCs
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under strong impulses of the electric field [3]. In such cases,
the motion of molecules within each of the smectic layers
forming SSFLC systems is completely or almost completely
driven by the electric field. Then, in spite of the presence
of surface interactions, which tend to prevent molecules from
reorienting, the resulting switching motion of molecules can be
considered as a collective process with a single characteristic
time. In the case of alternating (e.g., sinusoidally) applied
fields, the amplitude of molecular reorientations diminishes,
in general, as the field frequency grows. In consequence, even
if the field amplitude is very large, the range of variations of
the molecular azimuthal angle is far narrower at high-enough
frequencies than the range between the azimuthal angles
of molecules remaining in two stable orientational states.
It should be pointed out that, although molecules are not
allowed at strong fields of high frequencies to reorient as
a whole with large amplitudes, soliton-like local molecular
reorientations of amplitudes, comparable to those associated
with switching processes, are also possible [4–6]. Such space
localized molecular excitations can, however, be registered in
rather narrow field frequency ranges.

Obviously, molecular reorientations induced by external
fields of large amplitudes can also reveal strongly nonlinear
character, even when they are not associated with localized
(soliton-like) excitations. This is distinctly reflected in exper-
imentally determined nonlinear response spectra of SSFLCs,
especially at frequencies higher than the relaxation frequency
[5,6]. It is remarkable that even fundamental (first harmonic)
components of these response spectra exhibit a complex
form that considerably differs from the simple Debye shape,
typical for cases of weak fields. Nevertheless, according to
conventional approaches to study nonlinear dynamic effects
in FLCs [7–9], the nonlinearity should only be reflected in
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second- and higher-order harmonic response spectra but not
in the fundamental harmonics. This may suggest that the
expansion of the response function in terms of harmonics
is not convergent for sufficiently strong applied fields. Fur-
thermore, the spectra determined experimentally evolve in a
very intricate way as the field amplitude grows, displaying
irregular anomalies within wide field frequency ranges [10].
Such a complex nonlinear behavior of response function
cannot be associated with the occurrence of structural and
topological defects, impurities, or ionic currents. Clearly, the
complex response of LCs on the action of strong fields can
be interpreted as being a result of the appearance in SSFLCs
many relaxation processes, each of which is characterized by
a specific relaxation time. The origin of these processes can be
expected to lie in a complicated interplay between the action of
relatively strong alternating fields and a stabilizing influence
of the surface interactions on molecules. Indeed, while the
surface interactions are large only close to system boundaries,
the applied electric field is nearly equal across the system.
Additionally, the effect of the field on molecular reorientations
is reduced in the high-frequency regime [11,12]. Accordingly,
reorientations of molecules near boundary surfaces and in
the middle of SSFLCs can be desynchronized [13–16] as
the field amplitude grows, provided that field frequencies are
high enough. Since the extent of such a desynchronization
of molecular orientations can change with the distance of
molecules from surfaces of the system, the field-induced
molecular motion within smectic layers can then become
partially or even entirely uncorrelated.

Since the response function belongs to the most basic quan-
tities characterizing the dynamics of LC systems, a detailed
explanation of the underlying mechanism of strongly nonlinear
reorientations of molecules in SSFLCs is of great importance.
To validate the presumption that the desynchronization of
molecular motions in SSFLCs can indeed be considered
as a direct consequence of a large complexity of strongly
nonlinear response function, a simple model involving only
interactions inside smectic layers has been introduced [10].
Then the azimuthal angle of molecules has been treated within
the model as a scalar field depending on only one space
variable. The resulting equation of the reorientational motion
of molecules has numerically been solved for strong applied
fields of high frequencies by taking an initial (in the absence of
the external field) surface-induced nonuniform distribution of
the azimuthal angle. As has been argued, the evolution of the
molecular azimuthal angle exhibits very long chaotic transients
[17–19], over which the spatial distribution of this angle
remains nonuniform. Additionally, the complex nonlinear re-
orientational dynamics of SSFLCs has also been demonstrated
to occur on short time scales, much less than transient periods
but greater than the period of field oscillations. The resulting
slow dynamic processes has been indicated to concern a
modulation of the amplitude of variations of azimuthal angle
oscillations with the field frequency. This modulation has been
shown to proceed almost periodically with a quasifrequency
which decreases in time (and which is less than the field
frequency) [10].

It should be noted that the model used to describe strongly
nonlinear effects in SSFLCs rather does not precisely reflect
the complicated strongly field-driven behavior of real thin LC

systems. In particular, this model relies on the assumption
(not necessarily correct) that the smectic structure of SSFLCs
is well defined, even in the presence of strong alternating
fields. Nevertheless, the model yields a surprisingly consistent
interpretation of both the origin of the complex anomalies
of the response function and the appearance of a distinct
response of the systems below the actual frequency of a
strong external field. (In principle, when the applied is weak
enough, the LC response registered at frequencies less than
the field frequency is equal to zero.) Thus, the model can
treated as a basis for investigating strongly nonlinear effects
in SSFLCs. However, there remain some open questions that
are essential not only to evaluate the applicability the model
but also for better understanding chaotic dynamic processes
in SSFLCs. The main questions refer to the nonuniqueness
of initial conditions for chaotic trajectories describing the
spatiotemporal evolution of the azimuthal orientation of
molecules, the perturbation of chaotic trajectories due of
noise generated by measuring devices, and a possibility of
distinguishing experimentally registered LC response signals
from device noises. In the present paper, these problems are
analyzed in detail. Above al, it is indicated that there exists
a set of initial phase trajectory points for which molecular
reorientations display weakly chaotic character on long times.
This initial parameter set (the so-called basin of weakly
chaotic transients) is demonstrated to be quite large, and,
thereby, the strongly field-induced behavior thin LC systems
is argued to be rather typical for such systems. As concerns
the effect of perturbations on the weakly chaotic trajectories,
it is numerically shown that a weak random noise, imitating
field frequency fluctuations in real systems, not only does not
change the chaotic behavior of these trajectories but also leads
to an increase of the duration of the weakly chaotic transients.
Finally, an evidence is given for a distinct difference between
long-time sequences of LC response signals, experimentally
registered at frequencies lower that the current field fre-
quency, and random signals (noises), produced by measuring
devices.

The paper is organized as follows. In Sec. II, the the-
oretical description of field-induced nonlinear dynamics of
ferroelectric SSFLC systems is recapitulated. This introduc-
tory section also contains a detailed analysis of chaotic
molecular reorientation processes underlying nonlinear effects
in these systems. In Sec. III, it is shown that the chaotic
reorientation processes in SSFLCs have a generic character,
and, thereby, that the occurrence of these effects in a wide
class of real SSFLCs can indeed be explained on grounds
of chaotic time evolution of field-induced molecular reori-
entations. Section IV concerns the effect of random noises
on the theoretically determined time evolution of molecular
orientations, while Sec. V discusses the influence of apparatus
noises on experimentally registered strongly nonlinear field-
induced responses of the considered systems. In particular,
using a simple method to investigate long time sequences of
complex response signals, it is demonstrated (Sec. V) that
field-induced chaotic molecular reorientations, theoretically
predicted to occur at frequencies less than the actual fre-
quency of strong fields, can experimentally be detected in
an unquestionable way. Section VI summarizes the obtained
results.
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FIG. 1. Geometry of the studied liquid crystal system. Smectic
layers are aligned perpendicular to plates of a cell of thickness d .
The local polarization �PS is perpendicular to the molecular director
�n and lies parallel to the layer plane. The orientation of the director
is determined by tilt and azimuthal angles, θ and φ, respectively. The
external alternating electric field E(t) is applied perpendicular to the
boundary plates.

II. NONLINEAR DYNAMICS OF SSFLC SYSTEMS

A. Theoretical method

The investigation of nonlinear field-induced properties of
SSFLCs is based here on the theoretical method described
in Ref. [10]. In this section, essential steps of this method
are briefly presented and discussed. The SSFLCs systems
are known to form usually a folded (chevron) smectic layers
structure. However, the angle of inclination (with respect to the
direction normal to system surfaces) of the layers in the both
chevron slabs is always very small. Furthermore, in the pres-
ence of strong fields, the smectic layers undergo straightening
up towards the position perpendicular to boundary surfaces and
the system transforms to a quasibookshelf structure. Therefore,
the systems under consideration are assumed to form smectic
layers aligned perpendicular to boundary surfaces. Then the
vector of local polarization �PS = (−PS cos φ , − PS sin φ),
where φ denotes the molecular azimuthal angle, is perpendic-
ular to the molecular director �n and lies parallel to the layer
plane. The geometry of the studied systems is shown in Fig. 1.

Since couplings between smectic layers are relatively weak,
molecular reorientations under strong fields can be investigated
separately within each of the smectic layers. Thus, these reori-
entations can be described by determining the spatiotemporal
dependence of the azimuthal angle φ between vectors of
the local polarization and the external electric field E(t) =
E0 cos(ωt), with E0 and ω denoting its amplitude and angular
frequency, respectively (see Fig. 1). The fluctuations of φ are
investigated along the x direction, perpendicular to the sample
plates. It should be pointed out that, in the case of thin SSFLCs,
these fluctuations can be considered as being significant inside
entire samples. Obviously, the space variation of φ within a
smectic layer is initially (when the external field is absent)
imposed by boundary conditions (at x = 0 and x = d, where
d is thickness of the system). However, after applying a strong
enough electric field, molecular motions are almost entirely
field controlled and, consequently, the anchoring effects due
to surface interactions can then be neglected. Nevertheless,
the effect of action of these interactions should be taken into

account by allowing φ to be spatially nonuniform before the
field is applied. Because the molecular reorientations studied
here do not concern local switching processes (soliton-like
excitations), the depolarization effect, due to the appearance of
polarization charges locally induced in a result of a strong local
nonuniformity of the molecular orientation [5,6], is neglected.
Then, the spatiotemporal dependence of φ = φ(x,t), 0 � x �
d, due to applying an alternating electric field to sample plates,
is described by the following motion equation [3]:

K
∂2φ

∂x2
− γ

∂φ

∂t
= PSE0 sin φ cos ωt, (1)

where K is the elastic constant characterizing deformations
inside smectic layers and γ denotes the rotational viscosity.
Note that both K and γ contain the factor sin2 θ , where
θ denotes the molecular tilt angle, i.e., K = K ′ sin2 θ and
γ = γ ′ sin2 θ with K ′ and γ ′ being independent of θ . Using
dimensionless variables x̃ = x/d and t̃ = tω, Eg. (1) can be
rewritten as

1

2
c1

∂2φ

∂x̃2
− ∂φ

∂t̃
= c2 sin φ cos t̃ , (2)

where 0 � x̃ � 1 and the parameters

c1 = 2K

γωd2
, (3)

c2 = PSU0

γωd
, (4)

with U0 = E0d being the voltage amplitude. It is to be noted
that the electric field is treated here as being uniform inside
liquid crystal cells, which is not necessarily true. However,
various models based on such an approximation have been
shown to describe dynamic properties of SSFLCs in a correct,
at least qualitatively, manner [5,6,20]. A more general form of
the motion equation for smectic (and nematic) liquid crystals
involves three elasticity parameters [3,4]. Nevertheless, the
simplified one-parameter equation of motion (like the one
used here) has been shown to adequately describe molecular
reorientations, in cases of both weak and relatively strong
fields [7–9]. Indeed, the fundamental as well as higher-
order harmonic (nonlinear) contributions to response spectra
derived by using Eq. (1) are in agreement with respective
components of spectra determined experimentally [7–9]. It
should be noted that the parameters in Eq. (1) can be consid-
ered as effective temperature-dependent material parameters,
accessible experimentally. In particular, since the measured
polarization of FLCs usually includes both the dielectric and
flexoelectric contributions, PS occurring in Eq. (1) can be
treated as an effective (containing these two contributions)
local polarization.

The nonlinear motion equation describing azimuthal reori-
entations of molecules possesses solutions of different kinds,
in accordance with different amplitudes and frequencies of the
applied external electric field. For strong but not very strong
fields, the solution to the motion equation of the type (1) has
been postulated in the form of the harmonic expansion [7–9].
For such a solution, both the fundamental and higher-order
harmonic components of the resulting response spectra involve
a single relaxation time. However, at very strong fields,
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the response spectra of SSFLCs display a very complex
form that can be considered a result of the appearance in
these systems multiple relaxation processes with a continuous
distribution of relaxation times rather than a single Debye
relation process [3,4]. Thus, to describe adequately strongly
nonlinear effects in SSFLCs, the solution of Eq. (2) can be
postulated neither by assuming that it can be represented by
the harmonic expansion nor by imposing any special functional
form on the time dependence of the azimuthal angle. As
concerns the space variation of φ, it has been argued that,
for a wide class of cell systems, φ should possess a single
extremum within untilted smectic layers of systems with the
bookshelf geometry or within tilted layers (arms) of systems
with the chevron geometry [3]. Furthermore, assuming that
the x̃ dependence of φ(x̃,t̃) has a quadratic form, theoretically
and experimentally obtained results for the dependence of
the strength of the dielectric relaxation and the dependence
the relaxation time on the cell thickness are in a very good
agreement [20]. Thus, in such an indirect way, the quadratic
form of the space dependence of φ has been demonstrated to
be a reasonable approximation to a real profile of φ. Since,
at strong high-frequency fields, the amplitude of variations of
φ(x̃,t̃) cannot be large across whole smectic layers, the solution
to Eq. (2) can thus be expressed in the following form:

φ(x̃,t̃) = a0(t̃) + a1(t̃)x̃ + a2(t̃)x̃2, (5)

where the coefficients ai(t̃), i = 0,1,2, are space independent.
Assuming that the external electric field is turned on at t̃ = 0,
the initial values ai(0) of these coefficients can essentially be
found by specifying appropriate boundary conditions on the
static equation for angular momentum balance [Eq. (2) with
c2 = 0]. In general, the boundary conditions are given by the
relations

φ(0,0) = φ 0, φ(1,0) = φ1

and

d

dx̃
φ(x̃,0)

∣∣
x̃=0 = φ′

0,
d

dx̃
φ(x̃,0)

∣∣
x̃=1 = φ′

1,

with φ0, φ1, φ′
0, and φ′

1 being finite constants, determined by the
surface anchoring interactions. Thus, at t̃ = 0, one obtains the
following relationships: a0 = φ0, a1 + a2 = φ1 − φ0, a1 = φ′

0,
and a2 = (φ′

1 − φ′
0)/2. It should be noted that, in the case of

FLCs, the boundary conditions are essentially nonsymmetric
with respect to cell plates [2,21], i.e., φ0 �= φ1 and φ′

0 �= −φ′
1.

Obviously, in both symmetric and nonsymmetric cases of
boundary conditions, the coefficients ai(0), i = 1,2,3, are,
in general, nonzero. However, the boundary conditions are
governed by surface anchoring interactions, which involve
unknown, in general, parameters. It is worth noting that there
is no microscopic model which would adequately describe
electrochemical processes at interfaces between cell plates
and liquid crystal molecules. In consequence, the surface
anchoring potential have been postulated in different, pure
phenomenological manners [2,21]. Instead, the solutions to
Eq. (2) are found here for ai(0) chosen from some ranges,
excluding the case of uniform initial distribution of the
azimuthal angle, when a1(0) and a2(0) are simultaneously
equal to zero. Since the interaction of molecules with a strong
enough external electric field is dominant, the influence of

surfaces on the molecular orientation can be neglected as soon
as the strong field is turned on. Accordingly, the action of
surface anchoring is here taken into account only through
boundary conditions in the absence of the external electric
field. Thus, the influence of cell surfaces on the orientation
of liquid crystalline molecules is accounted for by taking
nonzero values of a1(0) and a2(0) (then φ is nonuniform at
t = 0). For simplicity, surface interactions are considered as
independent of time. After applying a strong electric field, the
system is driven by the field, but, as will be shown below, the
initial nonuniformity of φ(x̃,t̃) can be of great consequence
for its time evolution even over very long time periods. It
should be pointed out that, although the coefficients ai change
according to electric field oscillations, they do not necessarily
have identical functional form. Clearly, the cases when both the
coefficients a1 and a2 are decreasing (increasing) functions of
time correspond to a field-stimulated reduction (magnification)
of the nonuniformity level of φ. Since |φ| < 2π for sufficiently
high field frequencies, one can assume that ai(0) = O(1),
i = 1,2,3, and that ai(t) = O(1), i = 1,2,3. Substituting (5)
into (2), one obtains equations describing the time evolution
of the coefficients ai , i = 0,1,2,

d

dt̃
a0 = c1a2 − c2 cos t̃ sin a0, (6)

d

dt̃
a1 = −c2a1 cos t̃ cos a0, (7)

d

dt̃
a2 = −c2 cos t̃

(
a2 cos a0 − 1

2
a2

1 sin a0

)
, (8)

with the nonlinearity parameters c1 and c2 being given by
Eqs. (3) and (4), respectively.

B. Numerical analysis

To solve Eqs. (6)–(8) numerically, the parameters c1 and
c2 must be specified. These parameters have been estimated
using values of material constants experimentally found at
temperature T = 30 ◦C for the standard liquid crystalline
mixture Felix 17-100, introduced into cells of thickness
d = 5 μm [5]. Note that most of the experimental results
presented below have been obtained just for this mixture at
the same temperature (T = 30 ◦ C, using cells of thickness
d = 5 μm). The material parameter values used here are as
follows: PS = 2.9 × 10−4 Cm−2, γ = 0.055 Pas, and K =
1.5 × 10−9 N [5,6]. Values of the amplitude and the frequency,
f = ω/(2π ), of the applied voltage have been taken to
be U0 = 20,40,60 V, and f = 3,4,5 kHz, respectively. Then
the Runge-Kutta-Gill numerical integration method of fourth
order [22] has been applied using discrete integer-valued time
tn = t0 + nh, (n = 0,1,2, . . . ), where t0 is the time at which
the electric field is switched on and h > 0 is the sampling
interval (taken here to be h = 0.01). Obviously, the application
of the numerical integration procedure yields discrete flow
maps which can be iterated beginning with some initial values
a

(0)
0 , a

(0)
1 , and a

(0)
2 (at n = 0) of the coefficients a0, a1, and a2,

respectively. All numerical results presented below have been
obtained taking t0 = 0. General properties of the resulting
trajectories have been analyzed by representing graphically
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FIG. 2. Trajectory, determined by Eqs. (6)–(8) for U = 20 V,
f = 4 kHz, and for the initial conditions a

(0)
0 = −0.01, a

(0)
1 = 0.3,

and a
(0)
2 = −0.003. Projections of the trajectory onto the (a0,a2) plane

(a) and onto the (a2,a1) plane (b) are shown for 185 000 initial iteration
steps (blue points) and for 6 × 106 iterations steps (red points) after
107 skipped trajectory points.

their projections onto two-dimensional subspaces of the space
(a0,a1,a2).

A typical trajectory exhibiting complex pattern is shown
in Fig. 2. This trajectory has numerically been generated for
U0 = 20 V and f = 4 Hz, starting from the initial conditions
a

(0)
0 = −0.01, a

(0)
1 = 0.3, and a

(0)
2 = −0.003 (at n = 0). The

projections of the trajectory onto the planes (a0,a2) and (a2,a1)
are drawn in Figs. 2(a) and 2(b), respectively, for 1.85 × 105

initial iterations (1 � n � 185 000) and for 6 × 106 trajectory
points generated after n = 107 iteration steps (i.e., after a long
time delay). The drawings of Fig. 2 show that the trajectory
is neither periodic nor quasiperiodic, displaying a very slow
evolution towards a more compact object. Indeed, the area
occupied by the trajectory contracts in the a1 and a2 directions
and simultaneously slowly broadens in the a0 direction as
n increases. Thus, this may indicate that the trajectory

does not evolve towards an attractor [19]. However, due to
computer accuracy limitations, one cannot definitely conclude
if the trajectory falls onto a one-dimensional subspace of the
phase space (a0,a1,a2), determined by a1 = 0 and a2 = 0.
Nevertheless, the very slow evolution of the trajectory is
characteristic for the chaotic transients towards an attractor
[18]. Clearly, the occurrence of an asymptotic tendency of
a1 and a2 to vanish as n grows implies that the action of
strong applied fields of appropriately high frequencies leads
to a very slow suppression of inhomogeneity in the azimuthal
orientation of molecules.

The transitory weak-chaotic behavior trajectories deter-
mined by Eqs. (6)–(8) has also been confirmed by calculating
local Lyapunov exponents (LLEs) for long time sequences
n = 1,2, . . . ,N with N � 1 [10]. As has been argued, the
largest LLE found for each of trajectories derived for different
(large) voltage amplitudes is positive although very small
and appears to tend to zero for sufficiently large number of
trajectory points. More precisely, LLEs display rather irregular
N dependence for initial trajectory points, i.e., when N is
not very large. After exceeding a limiting number N = N1,
dependent on U0, the LLEs (not only the largest LLE)
monotonously tend to zero as N increases. However, due to
numerical limitations, the tendency for λ1 to vanish cannot be
analyzed for arbitrary large N . Nevertheless, such a tendency
has been confirmed up to the largest number of numerically
generated trajectory points, i.e., for N2 = 2 × 108 [10]. As
an example, N1 ≈ 3 × 106, the largest LLE λ1 ≈ 4 × 10−3 at
N = N1 and λ1 ≈ 10−3 at N = 2 × 108 for U0 = 20 V, while
N1 ≈ 3 × 107, λ1 ≈ 6 × 10−3 at N = N1 and λ1 ≈ 3 × 10−3

at N = 2 × 108 for U0 = 40 V. Clearly, such a behavior of
the LLEs is typical for systems exhibiting transitory weak
chaos [19]. It must, however, be stressed that, although the
above discussion concerns trajectories generated for different
amplitudes of applied voltages, it is limited to some initial
trajectory points, i.e., to some initial space distribution of the
azimuthal angle (in real systems, this distribution is determined
not only by properties of mere liquid crystal materials but also
by surface interactions). Then, for a reliable interpretation of
strongly nonlinear properties of real SSFLC systems, it is
important to investigate the extent of subspace of the initial
trajectory points for which chaotic transients occur.

III. BASIN OF CHAOTIC TRANSIENTS

A characteristic property of the chaotic transients described
above is their long lifetime. In cases of systems exhibiting
the occurrence of chaotic transients, the analysis of their
asymptotic behavior is very difficult, as the transients mask
underlying attractors [17,18]. In consequence, the determina-
tion of the set of initial trajectory points for which trajectories
asymptotically fall on an attractor, i.e., the determination of
the basin of attraction, is essentially not possible. Instead, one
can then explore a set of initial points for which transient
phenomena appear. Such a set of initial trajectory points
can be qualified as a basin of weakly chaotic transients.
Clearly, although the meaning of this term is not precise, as
particular transients can be associated with different attractors,
the concept of the basin of chaotic transients can be useful for
studying transitory effects of long lifetimes [17,18,23–26].
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FIG. 3. Sets of initial values of coefficients a0 and a2 for which trajectories exhibit long weakly chaotic transients (like those illustrated in
Figs. 2 and 3). Each set has been obtained for U0 = 20 V and f = 4 kHz but for different initial values of a

(0)
1 : a

(0)
1 = 0.3 (a), a

(0)
1 = 0.2 (b),

a
(0)
1 = 0.15 (c), a

(0)
1 = 0.12 (d), a

(0)
1 = 0.1 (e), and a

(0)
1 = 0.05 (f). The sets (shown as black regions) represent respective sections of the basin

of chaotic transients in the plane (a0,a2).

To illustrate the influence of the initial conditions on the
evolution of the studied system and to show that the long-time
transitory behavior of the trajectory investigated above is
observed not only for special initial conditions, the basin of
transients, i.e., the set of initial values a

(0)
0 , a

(0)
1 , and a

(0)
2 , for

which trajectories reveal the existence of chaotic transients
and remain for a long time within a finite-volume subspace of
the phase space, has been studied. Since the determination of
the complete basin of transients would require very enormous
computations, the investigation of this basin is confined here
to an analysis of its cross sections in the planes (a0,a1),
(a0,a2), and (a1,a2). More precisely, initial values of pairs of
the parameters ai , i = 0,1,2, have successively been chosen
from an appropriate rectangle defined in one of the planes,
taking the value of the third parameter to be fixed. Then,
a given initial trajectory point from a chosen, sufficiently
large rectangle has been counted in the basin of chaotic
transients if, after N0 � 1 initial iteration steps, the trajectory
remains within the rectangle and behaves chaotically over
further N1 iteration steps. The results obtained for U0 = 20 V,
f = 4 kHz, N0 = 107, and N1 = 6 × 105 are presented in
Figs. 3, 4, and 5. The areas shown in Fig. 3 represent sections of
the basin of chaotic transients in the plane (a0,a2) for different
fixed initial values of a

(0)
1 . To gain more complete insight into

the shape of basin of chaotic transients, analogical sections
of this basin but in the (a1,a2) plane (for fixed values of
a

(0)
0 ) and in the (a0,a1) plane (for fixed values of a

(0)
2 ) are

presented in Figs. 4 and 5, respectively. It is seen that the
basin has a rather simple compact shape and comprises only
relatively small (in absolute values) parameters a

(0)
1 and a

(0)
2 ,

compared to possible parameter values, determined by the
condition that −π � φ(x̃) � π for each x̃ ∈ [0,1]. This does

not mean, however, that the appearance of such transients in
SSFLC systems is, in general, unlikely. Indeed, when surface
anchoring interactions are not very strong, the inhomogeneity
of the distribution of the azimuthal angle within smectic layers
is not large [2,3]. Clearly, such a situation corresponds to small
(in absolute values) starting parameters a

(0)
1 and a

(0)
2 .

IV. SPATIOTEMPORAL DEPENDENCE
OF THE AZIMUTHAL ANGLE

Having obtained time solutions of Eqs. (6)–(8), one imme-
diately gets the spatiotemporal dependence of the azimuthal
angle φ(x̃,t̃) [Eq. (5)]. This enables one to examine com-
plex field-induced reorientations of molecules within smectic
layers. As the temporal dependencies of ai , i = 1,2,3, in
general, differ, the time evolution of φ(x̃,t̃) differs for various
molecular positions x̃. It proves that, in addition to fast
oscillations of φ with frequency equal to the frequency of
the applied voltage, there also occur relatively slow, almost
periodic, temporal modulations of the amplitude of these
oscillations. This is distinctly illustrated in Fig. 6(a), where
an initial temporal evolution of φ, up to 2 × 104 iterations,
is presented at different molecule positions, for an enormous
voltage amplitude U0 = 60 V (allowing a better visualization)
and for the voltage frequency f = 4 kHz. A continuation
of this plot, after 106 iteration steps, is shown in Fig. 6(b).
As seen in Fig. 6, the period of the modulation grows with
time while the depth of the modulation slowly decreases with
time, reflecting a long transitory behavior of the trajectory
determined by Eqs. (6)–(8) for appropriate initial conditions.
It is also visible that both the depth Am and the phase
βm of modulation vary with x̃, although the modulation
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FIG. 4. Sets of initial values of coefficients a1 and a2 leading to weakly chaotic transients of the type shown in Figs. 2 and 3 for different
values of the remaining parameter: a

(0)
0 = −0.01 (a), a

(0)
0 = −0.05 (b), a

(0)
0 = −0.07 (c), a

(0)
0 = −0.08 (d), a

(0)
0 = −0.09 (e), a

(0)
0 = −0.1 (f),

a
(0)
0 = −1.05 (g), and a

(0)
0 = −0.11 (h). The resulting sections of basin of chaotic transients have been obtained at U0 = 20 V and f = 4 kHz.

quasifrequency fm is independent of x̃. Furthermore, Am, βm,
and fm all depend on the field frequency f , as illustrated
in Fig. 6. This has vast implications for understanding the
complexity of nonlinear response spectra ε(ω) of SSFLCs.
Indeed, the dependence of Am, βm, and fm on f as well as
the space dependence of βm must result in a non-Debye form
of the fundamental harmonic component of response spectra
at sufficiently high field frequencies, i.e., at frequencies for
which the system manifests the chaotic behavior. To validate
this in an explicit manner one would know, however, the
functional form of the φ(x̃,t̃) dependence of contributions to
ε(ω), determined at particular molecule positions x̃. Clearly,
the mere dependence of the modulation phase βm on x̃ is
a sign of at least partial deorganization, or more precisely
desynchronization, of reorientational motions of molecules
within each smectic layer. More specifically, although the
phase of fast oscillatory molecular reorientations (with the
field frequency) is synchronized, the overall reorientations of
molecules are not synchronized due to the space dependence of

the phase of the modulation of fast reorientation oscillations.
It should be pointed out that such complex field-induced
motions of molecules can appear only if the distribution of
the azimuthal angle within smectic layers is nonuniform in the
absence of the external electric field. Then, after switching on
the external electric field, this distribution varies, in general,
but remains nonuniform for long time periods.

Since the quasifrequency of the modulation is less than
the field frequency, one can expect the appearance of a
response signal of SSFLCs below the running frequency of the
applied field. Obviously, the modulation of fast field-induced
oscillations of the azimuthal angle can occur only if the
field puts the system into the chaotic state. As well known,
however, chaotic systems are very sensitive to even very weak
perturbations [27]. In real systems, field-induced molecular
motions are perturbed by noise generated by experimental
devices. Such a device noise can originate, e.g., in fluctuations
of the frequency and/or the amplitude of the applied electric
field. To investigate the influence of random perturbations

FIG. 5. Sets of initial values of coefficients a0 and a1 that yield weakly chaotic transients for different initial values of a
(0)
2 : a

(0)
2 = −0.001

(a), a
(0)
2 = 0.001 (b), a

(0)
2 = −0.003 (c), a

(0)
2 = 0.003 (d), as determined at U0 = 20 V and f = 4 kHz.
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FIG. 6. Molecular azimuthal angle as a function of the number
of points of trajectory determined for U0 = 60 V, f = 4 kHz, and
x̃ = 0.01 (1), x̃ = 0.5(2), x̃ = 1.0 (3). Starting trajectory points were
taken to be a

(0)
0 = −0.001, a

(0)
1 = 0.3, and a

(0)
2 = 0.01. The plot (a)

shows the azimuthal angle for N = 2 × 104 trajectory points, while
the diagram (b) displays continuation of the plot (a) for iteration steps
106 � n � 106 + 2 × 104.

on the field-induced molecular reorientations within the
framework of the considered model, the motion equations
(6)–(8) have also been solved for discrete-valued time series
tn = t0 + nh + nh rμ(n), n = 1,2, . . . , with rμ(n) = μ ran(n),
where μ denotes the perturbation (noise) level and the function
ran(n) takes a random value from the range [−0.5, + 0.5]
at each n. In some sense, the resulting perturbation of the
trajectory, given by Eqs. (6)–(8), and thereby a modification
of the time dependence of φ reflects the effect of fluctuations
of the field frequency in real systems. The result of disturbing
φ(x̃,t̃) under numerically simulated random noise is illustrated
in Fig. 7 for the noise level μ = 0.2. It is seen that, in the
presence of noise, the modulation of oscillations of φ has
a rather complex form. In particular, the noised modulation
does not proceed with a single frequency (or with a single
quasifrequency). Nevertheless, a simple comparison of plots of
Figs. 6(a) and 7(a) shows that even if the level of random noise
is relatively high, modulations of the oscillation amplitude of φ

are not completely destroyed or masked. It is also remarkable
that the amplitude of oscillations of φ determined for large
n is much greater when the random noise is introduced into
the system, although it remains smaller than the oscillation
amplitude of φ derived for small n, in the absence of noise [as
seen in Figs. 6(b) and 7(b)]. This implies that a weak random
noise extends the duration of chaotic transient processes

FIG. 7. Plots of the time dependence of the molecular azimuthal
angle, analogous to drawings shown in Figs. 6(a) and 6(b), respec-
tively, but obtained in the presence of random noise of the level
μ = 0.2 (see the text).

appearing in the studied model system (cf. Refs. [17] and
[18]). It should, however, be noted that noises generated by real
devices cannot necessarily be quite random. It is also obvious
that if the level of the random noise would be sufficiently high,
the noise could have a destructive influence on the resulting
chaotic transients, leading to their rapid vanishing.

V. MODULATIONS OF ORIENTATIONAL OSCILLATIONS
AND DEVICE NOISE

It is rather obvious that complex chaotic reorientational
motions of molecules within smectic layers give rise to
changes in optical transmission of the sample placed between
crossed polarizers and, thereby, lead to the occurrence of the
electro-optic effect. Thus, using the photodiode light detector,
the resulting transmittance changes can be converted into
appropriate variations in the output voltage Uout, which are
easy to register [10]. As has already been shown, chaotic
motions of molecules are reflected not only in the electro-optic
response (determined as a function of the field frequency) but
also in an electro-optic response at frequencies lower than the
frequency of strong enough applied voltages [10].

According to theoretical results presented in Sec. IV, one
would expect that the modulation of φ could result in an
electro-optic signal at a single frequency, dependent on the
amplitude and frequency of the external field. However, the
modulation is not strictly periodic, as molecular motions
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undergo very slow chaotic transients. Furthermore, the mod-
ulation of molecular reorientations can strongly be affected
by fluctuations of the amplitude and frequency of the external
electric field. It should be pointed out that the modulations
appear when the system remains chaotic and, hence, when the
system is very sensitive on even small perturbations [17,18].
Consequently, real systems display the existence of a broad
frequency band rather than a single frequency signal in the
electro-optic response spectrum registered below the field
frequency (provided that the field amplitude is large enough)
[10]. Naturally, complex molecular modulated reorientations
induced by high alternating voltages should also be visible
in similar (modulated) time sequences of the electro-optic
(dielectric) response (Uout), measured at fixed frequencies,
lower than the voltage frequency.

To detect experimentally the aperiodic modulation of fast
field-driven oscillatory reorientations of molecules in a direct
way, long time sequences of the intensity of light transmitted
through the system has been recorded at frequencies less
than the current field frequency. The sequences have been
obtained by taking the time sampling interval �t = 5 ×
10−4 s. Experiments have been performed for the Felix 17-100
liquid crystal contained in a cell of thickness d = 5 μm. All
measurements have been carried out for fixed temperature
T = 30 ◦C, i.e., 47 ◦C below the temperature of the transition
of this SSFLC from ferroelectric to paraelectric phase, and for
the applied voltage of different amplitudes but of the same
frequency f = 4 kHz. At these thermal and field conditions,
the layer structure of the studied samples have displayed a
large stability, in spite of the occurrence of the transformation
effect of the chevroned smectic layers to quasibookshelf layers
with smectic layers oriented nearly perpendicular to bounding
plates (electrodes) [3]. Results obtained for sufficiently high
voltages indicate that the amplifier output voltage Uout exhibits
irregular time dependence for various chosen frequencies
fs < f of the selective amplifier. The dependence indeed has a
form of aperiodically modulated fast periodic oscillations. For
fs = 176 Hz and U0 = 20 V, this is illustrated in Fig. 8(a),
where rather irregular, aperiodic modulation of fast periodic
oscillations of Uout is noticeable. On the contrary, Uout does
not display clear modulations, not only for U0 = 0 but also for
U0 = 2 V, as shown in Figs. 8(c) and 8(b), respectively. Note
that, at U0 = 2.0 V, numerical solutions of Eqs. (6)–(8), found
for different initial conditions, do not reveal chaotic behavior,
too. This suggests that the voltage amplitude U0 = 2 V is
rather too weak in order to any distinctly chaotic molecular
motions could be activated. It should be pointed out that
signals recorded at U0 = 0 come only from noises generated
by registering devices of the experimental setup, such as the
photodiode, selective amplifier, and voltmeter [10]. Clearly,
these noises also occur for U0 = 2 V and U0 = 20 V. How-
ever, it is remarkable that the time variation of the azimuthal
angle, theoretically derived in the presence of random noise
for U0 = 20 V (Fig. 7), is qualitatively consistent with the
time dependence of the output voltage [Fig. 8(a)]. Then, Fig. 8
gives an explicit evidence for the existence of modulation of
oscillatory molecular motions induced by alternating voltages
of sufficiently large amplitudes.

To characterize the variability of Uout over long time periods
in a more precise manner, a method to describe multifractal sets

FIG. 8. Exemplary oscilloscope image of time variations of the
output voltage of the selective voltmeter, obtained for a time step
�t = 5 × 10−4 s. The voltmeter was set to the frequency fs =
176 Hz while the voltage frequency was fixed at f = 4 kHz. The
voltage amplitude was U0 = 20 V (a), U0 = 2 V (b), and U0 = 0 V
(c).

is here adapted [28]. Although this method has originally been
introduced to explore normalized distributions appearing in the
context of complex multifractal objects, it can also be used in
more general cases, when considered sets are not necessarily
fractals. Accordingly, time sequences of measurements of
the output voltage Uout(ti), i = 1,2, . . . ,N , where ti denotes
time at which the ith measurement of Uout is carried out, are
analyzed below by using the discrete normalized variable

ui = |Uout(ti)|∑N
i=1 |Uout(ti)|

i = 1,2, . . . ,N, (9)

where N � 1 is the length of a sequence of measurements.
The sampling time step (�t) is assumed to be fixed for entire
voltage sequences. Next, we define the generating function

λN (q) =
N∑

i=1

u
q

i (10)

with q ∈ (−∞,∞) denoting a continuous variable. Conse-
quently, the time variability of Uout can be characterized by

012702-9
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FIG. 9. The function G(q) plotted for discrete time sequences of
the output voltage as measured for the applied voltage of amplitudes
U0 = 0, 2 V, and 20 V. All experimental data were obtained for
�t = 5 × 10−4 s and N = 5 × 104.

the function

G(q) = lim
N→∞

[
1

1 − q

ln λN (q)

ln N

]
. (11)

Due to normalization of Uout(ti) [see Eq. (9)], G(q = 1)
is always equal to 1. Note that, in a rather unrealistic
case when Uout(ti), i = 1,2, . . . ,N , are all equal, i.e., when
recorded signals exactly constitute white noise, G(q) = 1
for all q. However, when the output voltage fluctuates in
time, one has G > 1 for q < 0 and G < 1 for q > 0 [28].
Thus, complex sequences of registered output voltage can be
characterized by the function G(q). This function is drawn in
Fig. 9 using experimental data obtained for applied voltage
amplitudes U0 = 0, 2 V, 20 V, taking that �t = 5 × 10−4 s
and N = 5 × 104. It is evidently seen that G(q) determined
for U0 = 20 V distinctly deviates from G(q) derived both for
U0 = 0 and U0 = 2 V. However, the functions G(q) obtained
for U0 = 0 and U0 = 2 V differ from each other in a very
slight degree, especially in regime of large q (see the inset
in Fig. 9). This clearly indicates that, at sufficiently high
alternating voltages, there appears a low frequency response
(measured at frequencies lower than the voltage frequency), in
addition to noise coming from experimental devices.

The appearance of quasimodulations of fast oscillations of
the azimuthal reorientations of molecules and, consequently,
the occurrence of a broad band in response spectra of real
nonlinear SSFLC systems can be interpreted as a sign of the
existence in the system different time scales. This usually
indicates that the system simultaneously undergoes different
dynamic processes, each of which can be characterized by an
individual relaxation time [29,30]. In view of results of Secs. III
and IV, strong applied fields of sufficiently high frequencies
can drive SSFLCs into a chaotic state, associated with
the quasiperiodic modulations of molecular reorientational
oscillations with the field frequency. Both the amplitude and
the phase of the modulations have been found to be space and
field-frequency dependent. Consequently, in the chaotic state
of the studied systems, molecular reorientations are at least
partially desynchronized. Due to the distinct space dependence
of the modulation depth, the partial desynchronization reflects

the appearance within each of the smectic layers small regions
of space, in each of which reorientations of molecules can
approximately be described by a single relaxation time,
dependent on the distance of the small space region from
one of the boundary surfaces. Thus, the complex form of the
high-frequency part of the nonlinear response spectra of real
SSFLC systems can be considered a spatial desynchronization
of molecular reorientations, arising when the systems is in
chaotic state. It is worth noting that the emergence of chaos
in the studied systems is possible only if the initial (in the
absence of the applied field) space distribution of the azimuthal
angle within smectic layers is nonuniform, although it has been
shown that chaos can also appear in coupled identical oscil-
lators without assuming any inhomogeneities of the resulting
oscillatory network [31]. Obviously, in real SSFLCs, the initial
space nonuniformity of molecular azimuthal orientations is
caused by surface anchoring interactions. Additionally, this
nonuniformity can also be influenced by various dynamic
processes that are not taken into account within the considered
model, such as ionic currents and motions of zig-zag defects,
i.e., specific bookshelflike regions forming spontaneously in
the regular chevron structure of SSFLC systems of rather small
thicknesses [32–34].

VI. CONCLUSIONS

Molecular reorientation processes induced in thin SSFLCs
by strong alternating external electric fields have been studied
both theoretically and experimentally. The analysis of numer-
ical solutions of the balance torque equation has indicated
that strong enough fields of appropriately high frequencies
can degrade synchronized molecular reorientations, preferred
at weak fields, in such a way that reorientations of molecules
forming smectic liquid crystals reveal a long transient behavior
of weakly chaotic character. It has also been proven that
there exists a set of initial trajectory points (the so-called
basin of weakly chaotic transients), for which chaotic long-
time transitory phenomena occur. The long-lasting transients
have been argued to be connected with a relatively slow,
quasiperiodic modulation of fast oscillations performed by
molecules with the field frequency. This modulations have
numerically been shown to slow down with time and to
be sensitive on noise perturbations of the studied systems.
Moreover, the modulations have been argued to be responsible
for field-induced effects associated with the appearance of
a complex frequency dependence of nonlinear response of
SSFLC systems at high frequencies (above the relaxation
frequency) and for the occurrence of a low-frequency band
in the response spectra of these systems below the running
field frequency. Both these effects have been verified exper-
imentally by applying the electro-optic technique. Although
the simple dynamic model considered here does not perfectly
reflect the intermolecular interactions in real SSFLC systems,
it allows one to explain unexpected nonlinear effects induced in
these systems by strong electric fields. In particular, the anal-
ysis of reorientational molecular motions carried out within
this model leads to the conclusion that measurable, strongly
nonlinear effects in thin LC samples originate in complex,
chaotic spatiotemporal processes within smectic layers. It
should be stressed that the effects described in this paper
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may have important implication for technical applications of
SSFLCs. As is well known, the understanding of the complex
behavior of SSFLCs at strong applied fields plays a crucial
role in constructing various FLC-based devices which exploit
nonlinear molecular reorientations (examples of such devices
are optical modulators, optical switches, and microdisplays).

Therefore, the elaboration of methods to control chaotic
molecular reorientations in SSFLC systems under strong
fields has practical significance. In particular, the invention
of methods to diminish the duration of chaotic transients or to
suppress them could contribute to the improvement of SSFLC
devices.
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[34] W. Jeżewski and W. Kuczyński, Phys. Rev. B 79, 214206 (2009).

012702-11

http://dx.doi.org/10.1051/jphyslet:0197500360306900
http://dx.doi.org/10.1051/jphyslet:0197500360306900
http://dx.doi.org/10.1051/jphyslet:0197500360306900
http://dx.doi.org/10.1051/jphyslet:0197500360306900
http://dx.doi.org/10.1103/PhysRevLett.51.471
http://dx.doi.org/10.1103/PhysRevLett.51.471
http://dx.doi.org/10.1103/PhysRevLett.51.471
http://dx.doi.org/10.1103/PhysRevLett.51.471
http://dx.doi.org/10.1103/PhysRevE.83.042701
http://dx.doi.org/10.1103/PhysRevE.83.042701
http://dx.doi.org/10.1103/PhysRevE.83.042701
http://dx.doi.org/10.1103/PhysRevE.83.042701
http://dx.doi.org/10.1080/01411594.2011.646271
http://dx.doi.org/10.1080/01411594.2011.646271
http://dx.doi.org/10.1080/01411594.2011.646271
http://dx.doi.org/10.1080/01411594.2011.646271
http://dx.doi.org/10.1080/00150190008229576
http://dx.doi.org/10.1080/00150190008229576
http://dx.doi.org/10.1080/00150190008229576
http://dx.doi.org/10.1080/00150190008229576
http://dx.doi.org/10.1103/PhysRevE.62.R5907
http://dx.doi.org/10.1103/PhysRevE.62.R5907
http://dx.doi.org/10.1103/PhysRevE.62.R5907
http://dx.doi.org/10.1103/PhysRevE.62.R5907
http://dx.doi.org/10.1051/epjap:2006104
http://dx.doi.org/10.1051/epjap:2006104
http://dx.doi.org/10.1051/epjap:2006104
http://dx.doi.org/10.1051/epjap:2006104
http://dx.doi.org/10.1140/epje/i2013-13002-7
http://dx.doi.org/10.1140/epje/i2013-13002-7
http://dx.doi.org/10.1140/epje/i2013-13002-7
http://dx.doi.org/10.1140/epje/i2013-13002-7
http://dx.doi.org/10.1080/00150199108014063
http://dx.doi.org/10.1080/00150199108014063
http://dx.doi.org/10.1080/00150199108014063
http://dx.doi.org/10.1080/00150199108014063
http://dx.doi.org/10.1103/PhysRevLett.64.821
http://dx.doi.org/10.1103/PhysRevLett.64.821
http://dx.doi.org/10.1103/PhysRevLett.64.821
http://dx.doi.org/10.1103/PhysRevLett.64.821
http://dx.doi.org/10.1103/PhysRevA.44.R3403
http://dx.doi.org/10.1103/PhysRevA.44.R3403
http://dx.doi.org/10.1103/PhysRevA.44.R3403
http://dx.doi.org/10.1103/PhysRevA.44.R3403
http://dx.doi.org/10.1103/PhysRevE.51.980
http://dx.doi.org/10.1103/PhysRevE.51.980
http://dx.doi.org/10.1103/PhysRevE.51.980
http://dx.doi.org/10.1103/PhysRevE.51.980
http://dx.doi.org/10.1103/PhysRevLett.76.1804
http://dx.doi.org/10.1103/PhysRevLett.76.1804
http://dx.doi.org/10.1103/PhysRevLett.76.1804
http://dx.doi.org/10.1103/PhysRevLett.76.1804
http://dx.doi.org/10.1016/j.physrep.2008.01.001
http://dx.doi.org/10.1016/j.physrep.2008.01.001
http://dx.doi.org/10.1016/j.physrep.2008.01.001
http://dx.doi.org/10.1016/j.physrep.2008.01.001
http://dx.doi.org/10.1103/PhysRevE.50.4763
http://dx.doi.org/10.1103/PhysRevE.50.4763
http://dx.doi.org/10.1103/PhysRevE.50.4763
http://dx.doi.org/10.1103/PhysRevE.50.4763
http://dx.doi.org/10.1016/0167-2789(83)90126-4
http://dx.doi.org/10.1016/0167-2789(83)90126-4
http://dx.doi.org/10.1016/0167-2789(83)90126-4
http://dx.doi.org/10.1016/0167-2789(83)90126-4
http://dx.doi.org/10.1103/PhysRevLett.50.935
http://dx.doi.org/10.1103/PhysRevLett.50.935
http://dx.doi.org/10.1103/PhysRevLett.50.935
http://dx.doi.org/10.1103/PhysRevLett.50.935
http://dx.doi.org/10.1017/S014338570000300X
http://dx.doi.org/10.1017/S014338570000300X
http://dx.doi.org/10.1017/S014338570000300X
http://dx.doi.org/10.1017/S014338570000300X
http://dx.doi.org/10.1209/epl/i2004-10142-5
http://dx.doi.org/10.1209/epl/i2004-10142-5
http://dx.doi.org/10.1209/epl/i2004-10142-5
http://dx.doi.org/10.1209/epl/i2004-10142-5
http://dx.doi.org/10.1103/PhysRevA.33.1141
http://dx.doi.org/10.1103/PhysRevA.33.1141
http://dx.doi.org/10.1103/PhysRevA.33.1141
http://dx.doi.org/10.1103/PhysRevA.33.1141
http://dx.doi.org/10.1080/02678290701602926
http://dx.doi.org/10.1080/02678290701602926
http://dx.doi.org/10.1080/02678290701602926
http://dx.doi.org/10.1080/02678290701602926
http://dx.doi.org/10.1103/PhysRevLett.107.244101
http://dx.doi.org/10.1103/PhysRevLett.107.244101
http://dx.doi.org/10.1103/PhysRevLett.107.244101
http://dx.doi.org/10.1103/PhysRevLett.107.244101
http://dx.doi.org/10.1103/PhysRevE.73.061702
http://dx.doi.org/10.1103/PhysRevE.73.061702
http://dx.doi.org/10.1103/PhysRevE.73.061702
http://dx.doi.org/10.1103/PhysRevE.73.061702
http://dx.doi.org/10.1103/PhysRevB.77.094101
http://dx.doi.org/10.1103/PhysRevB.77.094101
http://dx.doi.org/10.1103/PhysRevB.77.094101
http://dx.doi.org/10.1103/PhysRevB.77.094101
http://dx.doi.org/10.1103/PhysRevB.79.214206
http://dx.doi.org/10.1103/PhysRevB.79.214206
http://dx.doi.org/10.1103/PhysRevB.79.214206
http://dx.doi.org/10.1103/PhysRevB.79.214206



