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Nematic liquid crystals in a spatially step-wise magnetic field
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We study the molecular reorientation induced by a textured external field in a nematic liquid crystal (nLC).
In particular, we consider an infinitely wide cell with strong planar anchoring boundary conditions, subjected
to a spatially periodic piecewise magnetic field. In the framework of the Frank’s continuum theory, we use the
perturbation analysis to study in detail the field-induced splay-bend Fréedericksz transition. A numerical approach,
based on the finite differences method, is instead employed to solve the fully nonlinear equations. At high field
strengths, an analytic approach allows us to draw the bulk profile of the director in terms of elliptic integrals.
Finally, through the application of the Bruggeman texture hydrodynamics theory, we qualitatively discuss on the
LCs piecewise director configuration under sliding interfaces, which can be adopted to actively regulate friction.
Our study opens the pathway for the application of highly controlled nLC texturing for tribotronics.
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I. INTRODUCTION

Nematic liquid crystals (nLC) are aggregates of rod-like
molecules. These molecules have random positions but are
averagely aligned along a direction called nematic director
n. The particular shape and structure make the molecules
very sensitive to the presence of electric or magnetic fields.
Depending on their dielectric or diamagnetic properties, the
molecules reorient along or normally to the direction of the
field. Thus, the optical response of a cell containing nematics,
which is related to the director orientation, can be driven
by the action of external fields. The controllable long range
orientational response of nematics is crucial in designing
of electro-optic devices, and may contribute as well to the
development of a pioneering tribotronic concept in the near
future [1–4] (see also in the following).

In the typical configuration of the most wide-spread
application, thin layers of a nematic are confined between two
flat parallel substrates. The delimiting walls are treated suitably
to assign the orientation of the molecules on the boundaries.
The condition where the average molecular orientation on the
boundary is orthogonal to the delimiting surfaces is called
homeotropic anchoring. The anchoring is called planar when
the molecular directors are constrained to lie parallel to the
boundary. According to the Oseen-Zocher-Frank theory [5,6],
a local stored energy function depending on n and ∇n is
assumed. In the absence of an external field, the director
n adjusts throughout the sample in order to minimize that
energy according to the boundary conditions. In the presence
of an external field the nematic tends to align its molecules
along or normal to the direction of the field, depending on the
dielectric and diamagnetic properties of the molecules. Thus,
when a nematic is subjected to an electric field, the free-energy
functional shows a further term that takes into account the
interaction energy with the applied field.

We consider a nLC sample that is initially in a planar
homogeneous alignment. It is well known that if a magnetic
field is applied perpendicular to the plates a distortion of
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the nematic alignment occurs above a critical field strength,
provided the magnetic anisotropy is positive. This effect is due
to a competition between the restoring elastic forces induced
by the alignment at the boundaries, and the destabilizing
torques produced by the external field. Below the critical
field strength the destabilizing torques are insufficient to
overcome the elastic forces and the director profile remains
uniform. On the contrary, above this critical field strength the
torques overcome the elastic forces and the director profile
becomes distorted. This phenomenon is commonly known as
a Fréedericksz transition.

Usually the profile distortion changes along the thick-
ness while it remains unchanged along the other directions.
Thus, the related problem is a one-dimensional boundary
value problem. We observe, however, that inhomogeneous
distortions along the boundary direction can arise due to
the elastic anisotropy [7–11] or to the weakness of the
boundary anchoring [12]. Periodicity can also be induced
by variations of the strength of the boundary anchoring
[13]. Inhomogeneous distortions in the plane or in the space
naturally lead to boundary value problems involving partial
derivative equations.

In our case, we deal with a two-dimensional problem
where the director distortion is inhomogeneous in the plane
spanned by the field direction and the anchoring direction. In
particular, the nonuniformity along the anchoring direction is
expected to be produced by a textured external field, crossing
the nematic sample, i.e., a magnetic field applied piecewise
along the longitudinal direction of the cell. Although only static
distortions are concerned, our analysis is closely inspired by
the potential applications of nematics in wet sliding interfaces
[1,4], where a piecewise nonuniformity of the director along
the anchoring direction, at the microscale, may promote the
creation of an active interfacial viscosity micropatterning [1].

While it is already experimentally well-stated that the LCs
molecular orientation in a Couette flow can be controlled
upon application of electric field [14–16] (supporting the
adoption of LCs for the active control of friction), on the
other hand lubrication theories for nematic liquid crystals
(see, e.g., Ref. [17]) are usually based on assumptions that
may become unphysical for realistic interactions, such as
neglecting the variation of the director in the direction of
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the flow. On the contrary, we show in the following that
this hypothesis fails even qualitatively whenever the external
field is applied on a delimited region, rather than on the
whole sample, justifying the urgency of this study prior to
any further development of the LC lubrication theory and
related assumptions. Indeed, at the borderline between regions
where the externally applied field undergoes a discontinuity,
significant values of the director gradient are obtained. This
should be carefully taken into account in a coherent theory of
lubrication that involves nematics, and which will be presented
in a dedicated contribution.

The manuscript is organized as follows. In Sec. II we
formulate the boundary value problem relative to the nLC
texturing problem under investigation. In Sec. III we perform
a perturbation analysis of the equilibrium equation in order
to assess the Fréedericks threshold and the director profile
just above the critical field. The numerical and analytical
study of the bulk profile in the nonlinear regime are presented
and discussed in Sec. IV. In Sec. V we present for the first
time the application of LCs in a very simple microtextured
tribotronic concept, characterized by a controllable optimal
friction. Finally, the conclusions follow in Sec. VI.

II. EQUILIBRIUM EQUATIONS

In our analysis, the nematic occupies the spatial region
between two parallel planes placed at z = 0 and z = d,
respectively. We assume strong anchoring boundary condition
with n at the boundary pointing along the x axis; see Fig. 1.
The bend-splay geometry is assumed here for simplicity; i.e.,
the director can only rotate in the x-z plane, thus we can adopt
the parametrization n(x,z) = cos [θ (x,z)]ex + sin [θ (x,z)]ez,
where θ is the angle between the x axis and the director.

We consider that the entire domain consists in an infinity
of adjacent identical boxes of infinite length along the
y axis, of width L and thickness d. Inside each cell,
an external uniform magnetic field of strength H acts
orthogonally to the boundaries on regions of length x̄, where
0 < x̄ � L, while in the complementary part of the cell no
external field is applied. Thus, we can study the reduced
problem on a single planar cell that occupies the region
{(x,z)|0 � x � L,0 � z � d}. The magnetic field acts in the
region {(x,z)|0 � x � x̄,0 � z � d}.

Assuming the one-constant approximation, the Frank’s free
energy (per unit of length) becomes

2WF =
∫ d

0
dz

∫ L

0
dxK|∇θ |2,

where K is a positive parameter. This energy, together with
planar strong anchoring, sustains the alignment of the director
along the x axis. The field-nematic interaction is instead further

FIG. 1. Schematic representation of the nematic cell.

described by the term

2WI = −
∫ d

0
dz

∫ x̄

0
dxχaH

2 sin2 θ.

The constant χa measures the difference between the magnetic
susceptibility parallel to the director and perpendicular to the
director. WI promotes the alignment of the director in the
direction of the field or orthogonally, depending on the sign of
χa . Here, we assume χa > 0, in order to induce a competition
between the elastic energy and the magnetic field.

The equilibrium equations are stationary points of the total
free-energy functional

2W =
∫ d

0
dz

∫ L

0
dx[K|∇θ |2 − χah(x̄ − x)H 2 sin2 θ ], (1)

where h(·) represents the Heaviside step function. The
unknown θ satisfies the planar strong anchoring boundary
conditions

θ (x,0) = θ (x,d) = 0, (2)

and the periodic boundary conditions

θ (0,z) = θ (L,z), ∂xθ (0,z) = ∂xθ (L,z). (3)

According to the variational calculus, the Euler-Lagrange
equation associated with the functional Eq. (1) is

2K�θ + χah(x̄ − x)H 2 sin 2θ = 0. (4)

The previous equation, together with the above boundary
conditions, always admits the trivial solution θ (x,z) = 0
everywhere. In the next section, we study the field-induced
bifurcation from this ground state. However, in the usual
applications, the field is applied on the entire sample. This
allows us, in the majority of cases, to consider the solution
independent of x and, hence, to solve a boundary value
problem involving an ordinary differential equation. In such a
case, the linear analysis leads to the critical threshold Hcr =
(π/d)

√
K/χa . On the contrary, due to the nonuniformity of

the field, in our case the director profile depends on x, and
hence the equilibrium problem involves partial differential
equations.

III. PERTURBATION ANALYSIS

Let us introduce ξ :=
√

χaH 2/K , which represents the
inverse of the magnetic coherence length. It is a measure for
the relevance of the competing field torque versus the elastic
restoring effect. The equations to solve become the nonlinear
equation

2�θ + ξ 2 sin 2θ = 0, 0 � x � x̄, 0 � z � d, (5)

and the Laplace equation

�θ = 0, x̄ � x � L, 0 � z � d. (6)

In addition, variational arguments allow us to as-
sume the continuity of θ and of its normal derivative
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at x = x̄:

lim
x→x̄−

θ (x̄,z) = lim
x→x̄+

θ (x̄,z),

lim
x→x̄−

∂xθ (x̄,z) = lim
x→x̄+

∂xθ (x̄,z).

In order to assess the critical threshold ξcr, we consider small
perturbations of the undistorted profile. Thus, in what follows,
we assume that

ε =
√

(ξ − ξcr)/ξcr � 1 (8)

and consider the leading term of the expansion of the solution
power series of ε:

θ (x,z) = εϑ(x,z) + o(ε).

Then we substitute it into Eq. (5) and into the boundary
conditions. Up to the first order, we have to solve the linear
system of partial differential equations:

�ϑ + ξ 2
crϑ = 0, 0 � x � x̄, 0 � z � d, (9a)

�ϑ = 0, x̄ � x � L, 0 � z � d, (9b)

together with the boundary conditions

ϑ(x,0) = ϑ(x,d) = 0, (10)

with the periodic conditions

ϑ(0,z) = ϑ(L,z), ∂xϑ(0,z) = ∂xϑ(L,z), (11)

and with the continuity conditions at x = x̄,

lim
x→x̄−

ϑ(x̄,z) = lim
x→x̄+

ϑ(x̄,z), (12a)

lim
x→x̄−

∂xϑ(x̄,z) = lim
x→x̄+

∂xϑ(x̄,z). (12b)

Let us start by considering solutions in the region where the
magnetic file is applied. We look for solutions [Eq. (9a)] of the
kind ϑ(x,z) = X (x)Z(z). Thus, we arrive to

∂xxXZ + X ∂zzZ + ξ 2
crXZ = 0,

which can be split into two ordinary differential equations:

∂xxX + (
ξ 2

cr − λ2
)
X = 0, ∂zzZ + λ2Z = 0. (13)

In particular, Z satisfies the homogeneous boundary condi-
tions Z(0) = Z(d) = 0 and, therefore, it can be expressed as
a sine Fourier series, whose nth mode is

Zn = sin (λnz), λn = nπ

d
,

which already satisfies the boundary conditions Eq. (10). By
substituting λn into Eq. (13), we obtain

∂xxXn + ω2
nXn = 0,

where ω2
n = ξ 2 − λ2

n, and hence

Xn = an cos [ωn(x − x1)] + bn sin [ωn(x − x1)], (14)

with 0 � x � x̄, where we have set x1 = x̄/2. The quantity ωn,
and hence ξcr, can be determined once imposing the periodicity
and the continuity conditions at x = x̄.

In a similar way, in the region where no external field is applied,
we look for solutions of the kind ϑ(x,z) = X̃ (x)Z̃(z) and we
arrive to

Z̃n = sin(λnz), (15)

X̃n = an cosh[λn(x − x2)] + dn sinh[λn(x − x2)], (16)

with x̄ � x � L, where x2 = x̄ + (L − x̄)/2. It is worth
noticing that, since λn is a real number, X̃n can be written
in term of only hyperbolic sines and cosines. On the contrary,
the Xn can be described in terms of trigonometric functions or
in terms of hyperbolic functions as well, since the sign of ω2

n

cannot be a priori established.
According to Eqs. (11) and (12), the obtained solutions must
satisfy the linear conditions

Xn(x̄) = X̃n(x̄), ∂xXn(x̄) = ∂xX̃n(x̄), (17a)

Xn(0) = X̃n(L), ∂xXn(0) = ∂xX̃n(L). (17b)

These conditions lead to an homogeneous system of linear
equations, with unknowns an, bn, cn, and dn, where nontrivial
solutions are allowed if and only if the matrix of the coefficients
Mn is singular.
Let us denote jn = det(Mn). A direct inspection shows that
jn can be written as the product of two terms jn = j (e)

n j (o)
n .

The term j (e)
n (respectively, j (o)

n ) represents the determinant of
2 × 2 matrix obtained considering solutions that in each region
have an even (respectively, odd) symmetry with respect to x1

and x2. In other words, solutions with even parity corresponds
to set bn = 0 and dn = 0; on the contrary, the odd symmetry
requires an = 0 and cn = 0. In particular, we obtain

j (e)
n = ωn cosh

(
b

2
λn

)
sin

(
x̄

2
ωn

)

− λn sinh

(
b

2
λn

)
cos

(
x̄

2
ωn

)
, (18a)

j (o)
n = λn cosh

(
b

2
λn

)
sin

(
x̄

2
ωn

)

+ωn sinh

(
b

2
λn

)
cos

(
x̄

2
ωn

)
, (18b)

where b = L − x̄. To make Mn singular it is sufficient that
only one of two terms vanishes. This means that the bifurcation
originates with a given symmetry of the director profile. Thus,
on one side, equation jn = 0 allows us to determine the critical
threshold of the bifurcation. On the other side, depending on
the critical threshold being a root of j (e)

n = 0 or of j (o)
n = 0, we

can have a solution with even or odd symmetry, respectively.

A. The critical threshold

Hereinafter, we collect some analytical properties of the
equation jn = 0. We start by observing that ωn = 0, and there-
fore ξcr = nπ/d, is always solution of j (o)

n = 0. Nevertheless,
these solutions yield ϑ = 0, and hence they must be discarded
because they do not produce a buckling.
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ωn

ωn/2

ωn/3

πq cot(pωnd)

−πq−1 tan(pωnd)

FIG. 2. Qualitative behavior of the roots of the threshold equation
j = 0.

In any case, the equation jn = 0 is an implicit equation
involving the mode number n and the two aspect ratio � := x̄/d

and β := b/d, where � + β = L/d. Obviously, since ωn is an
increasing function of ξcr, the critical threshold is expected in
correspondence of the lowest ωn.

We now demonstrate that ωn attends it minimum for n = 1.
Indeed, whenever β and � are fixed, the equations j (e)

n = 0 and
j (0)
n = 0 can be recast in the form

n−1ωnd = πq cot(p ωnd), (19a)

n−1ωnd = −πq−1 tan(p ωnd), (19b)

respectively, where q ad p are positive constants. The right-
hand sides of both Eqs. (19), which do not depend explicitly
on n, consist in two decreasing functions of ωn (the dashed and
dash-dotted lines in Fig. 2). On the contrary, the left-hand side
represents straight lines of slope 1/n. As shown in Fig. 2,
the lowest root is determined by the intersection between
the highest slope straight line (n = 1) and the dash-dotted
curve.

Furthermore, Fig. 2 sketches how the lowest root of
Eq. (19a) is expected in the interval 0 < ω1d < π

2 p−1, while
the lowest root of Eq. (19b) (apart ω1 = 0, which must
be discarded for the reasons reported above) falls in the
range π

2 p−1 < ω1d < πp−1. In conclusion, we can assert that

the critical threshold is the lowest solution of j
(e)
1 = 0 and,

consequently, the buckled solution exhibits an even symmetry
with respect to x = x1 and x = x2, consisting to set b1 = 0
and d1 = 0 in Eqs. (14) and (16), respectively. A schematic
representation of the director field is portrayed in Fig. 3.

Figure 4 reports on the lowest solution of Eqs. (18a) (solid
lines) and (18b) (dashed lined) for several values of the ratio
x̄/L. This figure confirms that ωcr is obtained as solution of
Eq. (18a). Furthermore, as expected, the critical threshold is a
deceasing function of x̄/L.

FIG. 3. Schematic representation of the post-buckling director
alignment. The vertical external field is applied in the shaded region.

By analyzing Eq. (18a), we discover that the critical
threshold shows two behavior regimes:

(i) Whenever x̄ approaches L, i.e., for tiny values of β,
Eq. (18a) is dominated by the hyperbolic functions. In this
regime, we obtain

ωcr ≈ π

d

√
1 − x̄

L
. (20)

In the special case whenever x̄ = L, one obtains ωcr = 0
and therefore ξcr = π/d, corresponding to the classical result
Hcr = (π/d)

√
K/χa .

(ii) On the contrary, as πβ/2 becomes O(1), the contri-
bution of the hyperbolic functions becomes negligible. In this
regime, we look for solutions with ω1x̄ � 1 and we find

ωcr ≈ 2
√

3π√
x̄(πx̄ + 6d)

. (21)

Figure 5 shows the comparison between the numerical (see
in the following) and the analytical solutions throughout the
entire interval 0 < x̄ � L.

B. Amplitude determination

Until now, we can state that the post buckling solution
involves the first Fourier mode in the z direction, that is n = 1,
showing an even symmetry with respect to x = x1 and x = x2.
Thus, we have

θ = εa1 cos [ωcr(x − x1)] sin
(π

d
z
)

0 � x � x̄, (22a)

θ = εc1 cosh
[π

d
(x − x2)

]
sin

(π

d
z
)

x̄ � x � L. (22b)

FIG. 4. ωcrd/π , solution of Eqs. (18a) (solid lines) and (18b)
(dashed lines) as a function of the aspect ratio d/L, for x̄/L =
0.1, 0.25, and 0.5 (from top to bottom).
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FIG. 5. Numerical solution of Eq. (18a) (with L/d = 10) com-
pared with the analytical approximated solution Eqs. (20) and
(21). The inset represents the magnification of the region close to
x̄/d = 10.

In addition, one of the conditions, Eq. (17), can be used
to obtain c1 = a1 cos (ωcrx̄/2)/ cosh [(bπ )/(2d)]. However, up
to this point, the solution to the linear problem is incomplete,
since its amplitude a1 remains undetermined. In order to assess
the profile amplitude εa1, fourth-order terms in the energy
expansion are retained [18]. We substitute Eqs. (22) and (8)
into Eq. (1), obtaining, up to the fourth order,

W = ε2W (2) + ε4W (4),

where

W (2) = −a2
1d cos

(ωcr

2
x̄
)

sech

(
πb

2d

)
j

(e)
1 ,

which vanishes at the critical threshold, and

W (4) = − dξcr

2ωcr

{
[ωcrx̄ + sin(ωcrx̄)]a2

1

− [6ωcrx̄ + 8 sin(ωcrx̄) + sin(2ωcrx̄)]
a4

1

64

}
.

Having performed the integration, it remains to minimize the
energy with respect to the amplitude a1. Thus, we arrive at
a1 = 0 and

a1 = ± 4
√

2
√

ωcrx̄ + sin(ωcrx̄)√
6ωcrx̄ + 8 sin(ωcrx̄) + sin(2ωcrx̄)

. (23)

The former corresponds to the trivial solution, which becomes
unstable beyond the critical threshold. The two opposite
solutions correspond to clockwise and counterclockwise ro-
tations of the director. Equation (23) can be approximated by
a1 = ±2 + O(x̄2ω2

cr).

IV. NUMERICAL RESULTS AND NONLINEAR ANALYSIS

Here we present a numerical approach for the resolution of
the fully nonlinear boundary value problem reported above.
By introducing the dimensionless variables Z = z/d and X =
x/d, we first rephrase Eq. (5) in the following dimensionless
equation:

�ψ + �2 sin ψ = 0, (24)

where ψ = 2θ , and �(x) = dξ for x < x̄ [�(x) = 0 other-
wise]. The Laplacian operation is now understood with respect
to the dimensionless coordinates.

Then Eq. (24) is discretized on a regular rectangular mesh
of size (kX,kZ), with grid size (δX,δZ), by central finite
differences, resulting in the following:

ψi+1,j + ψi−1,j + δ2
X/δ2

Z(ψi,j+1 + ψi,j−1)

− 2ψi,j

(
1 + δ2

X/δ2
Z

) + δ2
X�2

ij sin ψij = Lij , (25)

with Lij = 0. Equation (25) is linearized in

Lk
ij = Lk−1

ij +
[

∂Lij

∂ψhk

]k−1

�ψhk, (26)

where ∂Lij /∂ψi+1,j = ∂Lij /∂ψi−1,j = 1, ∂Lij /∂θ̄i,j+1 =
∂Lij /∂ψi,j−1 = δ2

X/δ2
Z ,

∂Lij /∂ψij = −2
(
1 + δ2

X/δ2
Z

) + δ2
X�2

ij cos ψij ,

and 0 elsewhere. Periodicity (i = 1 and i = kX) and Cauchy
conditions (j = 1 and j = kZ) are applied on the boundaries.
Hence, by imposing Lk

ij = 0, Eq. (26) can be solved in
�ψ , and ψk iteratively under-relaxed accordingly to ψk =
ψk−1 + c�ψ , where c in the range 0.01 to 0.1 has been adopted
in calculations. The iterations are arbitrarily truncated when
|Lij | → 0 and |ψij | → 0, where | · | is here considered as
a suitable numerical norm operator. We observe that while
Eq. (25), and the related linearization, can clearly differ
depending on the complexity of the rheological description
of the LCs (e.g., when including the elastic anisotropy), the
iterative resolution scheme is expected not to be affected for
static interactions.

As shown before, this boundary value problem admits a
nonunique solution. Thus, to promote the convergence of
the numerical results toward the solution with the proper
symmetry, we used Eq. (22) as a guess solution in the numerical
code.

In Figs. 6 and 7 we show for a texture density x̄/L = 0.2
and x̄/L = 0.5, respectively, the maximum director angle θmax

as a function of the dimensionless applied field. Each figure
is a branch of a pitchfork bifurcation. The intersection of the
curve with the axis θmax = 0 represents the numerical critical
threshold [24], which perfectly agrees with the theoretical
prediction. For field strengths just below the critical threshold,
the value of θmax is well captured by the theoretical analysis
done in the previous section. In the strong field regime,
we compare the numerical result with the one obtained in
Refs. [19,20], that we report here below for ease of reading:

θmax ≈ 4 tan−1

[
tanh

(
ξ

4

)]
− π

2
. (27)

However, this formula has been derived within the hypothesis
that the external field is applied on the whole domain.
Consequently, it works better in the limit of slender cell. This
explains the discrepancy between with the numerical results
in stocky cells [x̄/d is O(1)], where the effects due to the
discontinuity of the field become relevant.

Figure 8 reports the profile of θ in the middle of the cell z =
d/2 for several values of the applied field. The gap between
the numerical and the approximate analytical solution Eq. (22)
increases as the applied field increases. The plateau region
in the numerical solution is well captured by the asymptotic
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FIG. 6. The predictions of Eqs. (23) and (27) compared with the numerical results, at a constant texture ratio ph = x̄/L = 0.2. For several
aspect ratios, (a) d/L = 2, (b) d/L = 0.2, (c) d/L = 0.02.

FIG. 7. The predictions of Eqs. (23) and (27) compared with the numerical results, at a constant texture ratio ph = x̄/L = 0.5. For several
aspect ratios, (a) d/L = 5, (b) d/L = 0.5, (c) d/L = 0.05.
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FIG. 8. Profile of θ at z = d/2 for several values of the strength
field. Comparison between the numerical solutions (solid lines) with
the linear analytical solutions Eq. (22) (dashed lines).

solution Eq. (27). In any case, we notice that the effect of the
field decays upon a characteristic length of the order of the cell
thickness d.

To assess the analytical behavior of the profile in the middle
of the cell, we observe first that at z = d/2 the boundary effect
can be neglected. Consequently, in a neighborhood of x = x̄,
we can assume ∂zzθ � ∂xxθ , which allows us to approximate
Eq. (5) by

2∂xxθ + ξ 2 sin 2θ = 0, 0 � x � x̄, 0 � z � d. (28)

This equation looks like the pendulum equation. Thus, we
obtain the first integral

(∂xθ )2 + ξ 2 sin2 θ = ξ 2 sin2 θ1, (29)

where θ1 := θ (x1,d/2) is the maximum value of θ (x,d/2).
Within the high field regime we can set θ1 = θmax provided by
Eq. (27).

A direct inspection of Eq. (29) yields

dx = ± dθ

ξ
√

sin2 θ1 − sin2 θ
, (30)

where the sign + (respectively, −) is to be used in the interval
x ∈ (0,x1) (respectively, x ∈ (x1,x̄)). We focus on the interval
(x1,x̄) where integration of Eq. (30) between x̄ and x leads to

ξ (x − x̄) = csc θ1[F(θ̄ , csc2 θ1) − F(θ, csc2 θ1)], (31)

where F denotes the incomplete elliptic integral of first kind
and θ̄ := θ (x̄,d/2).

In the region without applied field, θ satisfies the Laplace
equation and, hence, we have

θ (x,d/2) = C1 cosh
(π

d
(x − x2)

)
. (32)

Finally, the two arbitrary constants θ̄ and C1 can be determined
by imposing the continuity conditions at x = x̄

θ̄ = C1 cosh
[π

d
(x̄ − x2)

]
, (33a)

−ξ
√

sin2 θ1 − sin2 θ̄ = C1
π

d
sinh

[π

d
(x̄ − x2)

]
. (33b)

Figure 9 shows the comparison between the numerical
solutions and the approximate solutions provided by Eqs. (31)–

FIG. 9. Profile of θ at z = d/2 for several values of the strength
field. Comparison between the numerical solutions (solid lines) and
the nonlinear solution Eqs. (31) and (32) (dashed lines).

(33), for several values of the applied field. The bulk approxi-
mate solution works better in the regime of high applied fields.

V. DISCUSSION

During the past couple of decades, LCs found several tech-
nological applications in electro-optical and electromechanical
devices, ranging from the well-known LC displays to liquid
crystal thermometers, switchable windows, electro-optical
zoom lenses, microvalves, and microdampers, to cite few [15].
One of the largest advantages of electrorheological LCs over
other smart fluids (e.g., magnetorheologic fluids, given by
microscale particles suspension) is that they are free from
suspended heterogeneities, which makes them particularly at-
tractive for for microsystems and microchannels applications,
and even more for tribological applications. Among others, the
rheological properties of nLCs have been extensively studied
at both fundamental and more engineering level. At least for
simple kinematics (e.g., Couette flow), nLCs shear viscosity
can be easily controlled [21] upon application of external
fields such as electric and magnetic fields, which change
the orientation of the director (the locally averaged direction
of molecules) with respect to the flow velocity. Thus, nLCs
with positive dielectric anisotropy (i.e., the dielectric constant
parallel to the director ε|| is larger than that perpendicular to it,
ε⊥) confined between sliding plates, show a noticeable increase
in the apparent viscosity upon application (perpendicularly to
the sliding direction) of an external electric field, due to the
alignment of the director along the external field. Inversely,
polar molecules with permanent dipole moments may exhibit
a negative dielectric anisotropy, resulting in the opposite effect.

This ability to control viscosity through the application
of an external field (e.g., electric) makes the investigation of
stepwise LC dynamics of extreme interest for the development
of a tribotronic discipline. As an example, the ability to locally
(at the microscale) manipulate the lubricant flow in sliding
contacts has been recently demonstrated [4] to be the pathway
for the engineering of surfaces with on-demand contact
properties, such as (a constantly reduced) friction. This can be
effectively achieved by adopting a textured contact interface,
where the texture can be a lattice of surface (i) structural, (ii)
slippery, or (iii) viscosity defects (or both), i.e., a distribution
of inhomogeneities in the local flow conductivity field [1–4].
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FIG. 10. Schematic of a macroscopic contact pair (assumed, for
simplicity, infinitely wide in the out-of-plane direction) in a sliding
interaction. Both surfaces are macroscopically smooth; however,
the top surface is characterized by a microtexturing on the inlet
side. We consider two texture cases, namely (i) a microstructural
patterning, constituted by an ordered repetition of microgrooves
perpendicular to the sliding direction, and (ii) a microstructural (as
before) and microviscosity patterning. In the calculations below we
have assumed that the textured side is 1/2 of the total bearing length,
whereas the in-plane size of the generic texture defect is 1/2 of the
patterning lattice. In the BTH theory [1] the viscosity is assumed
constant across and along the gap under electrodes, an assumption
that is not quite in agreement with the theoretical results provided
above.

However, we stress that while the adoption of optimized
textured surfaces can result in a remarkable control of the
macroscopic contact properties, such as friction, on the other
side the optimal contact performances can be achieved only
(relatively) closely to the reference operating conditions [4].
Thus, an optimal texture, e.g., minimizing friction at a sliding
speed v1 will not be effective at different sliding velocities,
making questionable the adoption of surface texturing for
realistic applications. A possible solution for the previous issue
would be the active control of the microtexturing of fluid flow
conductivities, capable to comply with the varying contact
conditions. This can be achieved, e.g., adopting LC-lubricated
confined sliding plates with micropatterned electrodes, an
active viscosity micropatterning, which is expected to provide
a huge step forward to this research field.

In Fig. 10 we illustrate the schematic of a macroscopic
contact pair (assumed, for simplicity, infinitely wide in the
out-of-plane direction) in a sliding interaction. Both surfaces
are macroscopically smooth; however, the top surface is char-
acterized by a microtexturing on the inlet side. We consider
two texture cases, namely (i) a microstructural patterning
and (ii) a microstructural and microviscosity patterning. The
Bruggeman texture hydrodynamics (mean field) theory (BTH
[1]) can be applied here to analytically determine the friction
and supported normal load for textured interfaces. In particular,
we observe first that for such a macroscopic contact geometry
(flat-on-flat) a zero load (and, consequently, an infinite friction)
would be theoretically predicted in the absence of surface
texture.

However, by applying the BTH theory for the structural-
only texture (i), the minimum friction μopt = h0L

−1
0 (27 +

33 × 31/3 + 19 × 32/3)/8 is achieved for a groove depth
hd,opt = h0(−1 + 3−1/3 + 31/3)/2, where h0 is the nominal

FIG. 11. Normalized load FN/FN,opt as a function of the normal-
ized separation h0/h0opt, for an optimized bearing (i) microstructural
patterning (black line) and (ii) microstructural and microviscosity
patterning (dashed line).

interface separation. h0 is related to the normally applied load
FN,opt through FN,opt = ηvh−2

0 L2(3−1/3 + 31/3 − 2), where v

is the sliding speed and η the fluid dynamic viscosity (note:
FN,opt is a load by length). Thus, for a given hd,opt, when
increasing (decreasing) the normal load FN with respect
to FN,opt, the nominal separation h0 must accordingly de-
crease (increase) with respect the optimal separation h0opt =
2hd,opt/(−1 + 3−1/3 + 31/3). This is shown in Fig. 11 (black
curve), whereas the corresponding friction curve μ/μopt as a
function of the normalized load FN/FN,opt is reported in Fig. 12
(black curve). Note that, as expected, the friction nonnegligibly
increases once the normally applied load is varied from the
optimal-design value.

Supported by the results of the static analysis for spatially
periodic piecewise external field provided above, here LCs can
be adopted with sliding patterned electrodes to provide an ac-
tive control of the microflow dynamics through the generation
of a viscosity patterning superposed to the microstructural
patterning; see, e.g., the schematic of Fig. 10 [case (ii)]. In
particular, friction can be kept to the minimum value at varying
load conditions (see Fig. 12, dashed curve) by adopting the
LCs viscosity as a function of the normalized load reported in
Fig. 13, whereas (remarkably) leaving the bearing load curve

FIG. 12. Normalized friction FN/FN,opt as a function of the
normalized separation h0/h0opt, for an optimized bearing (i) mi-
crostructural patterning (black line) and (ii) microstructural and
microviscosity patterning (dashed line).

012701-8



NEMATIC LIQUID CRYSTALS IN A SPATIALLY STEP- . . . PHYSICAL REVIEW E 93, 012701 (2016)

FIG. 13. LCs normalized viscosity (minimizing the sliding fric-
tion) as a function of the normalized load, corresponding to the
bearing load curve of Fig. 11 (dashed line) and to the friction curve
of Fig. 13 (dashed line).

(see Fig. 11, dashed curve) mostly unaffected by the adoption
of the viscosity patterning.

In the BTH theory [1] employed above, the viscosity is
assumed constant across and along the gap under electrodes, an
assumption which seems to fail accordingly to the theoretical
results provided in the previous sections. Moreover, we have
also showed that the decaying length of the LC director across
the stepwise field variation is ≈h0, a phenomenon that is not
taken into account in the mean-field lubrication model [1].
However, we observe that while the latter (and in particular
the lubrication assumption) has to be reformulated in order
to include the mechanisms highlighted above, the stepwise
patterning of the LCs apparent viscosity seems to promote a
breakthrough in the development of effective smart interfaces
with controllable tribological properties, such as friction.

VI. CONCLUDING REMARKS

We have used the Frank’s equations to model the static
properties of a simple liquid crystal device consisting of a
nematic material between two parallel plates whose texture is
distorted by the application of a step-wise electric field. This

serves as an archetype for more complex but realistic liquid
crystal devices of practical importance.

A systematic asymptotic analysis has been applied and
solution derived for two different regimes of the dimensionless
applied field: close to the Fréedericks threshold and in the high
field regime. In particular, we have established the influence
of the geometry on the behavior of the critical threshold.
Just beyond the threshold, the solutions have a single Fourier
mode along z and even periodic symmetry along x. We have
also explored the behavior of θ in the center of the cell at
z = d/2. In this region the z derivative can be neglected and we
have shown that the initial sinusoidal buckling profile evolves
into a quasi-stepwise profile as the field strength is raised.
Finally, we have shown through the application of the recent
Bruggeman texture hydrodynamics theory to a simple plain
bearing geometry that the stepwise micropatterning of the
LCs apparent viscosity can be adopted for the development
of effective smart interfaces with on-demand tribological
properties, such as friction.

We observe that, in view of a reformulation of a lubrication
theory in the presence of a textured electric or magnetic field,
one must take into account that the derivative along the flow
direction (x axis) cannot be neglected with respect to the
derivative along the thickness (z axis) as commonly assumed
[17,22]. In fact, we have shown that there are regions of the
cell, in particular close to the stepwise discontinuity, where
the physical scenario is quite in disagreement with classical
lubrication assumptions. This behavior has to be taken into
account in any coherent theory of lubrication that involves
nematics, which will be the subject of a dedicated contribution.

Finally, we stress that our model is expected to quan-
titatively fail in its application to geometries that exhibit
edges or to nematic cells whose thickness is comparable with
the nematic coherence length (of the order of few tens of
nanometres). In these limits, as discussed in Ref. [23], the
confinement can induce biaxiality, thus the Frank model cannot
be applied to. However, the latter scenario can be predicted
recurring to the Landau-de Gennes theory for nematics.
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