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Influence of molecular-weight polydispersity on the glass transition of polymers
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It is well known that the polymer glass transition temperature Tg is dependent on molecular weight, but the
role of molecular-weight polydispersity on Tg is unclear. Using molecular-dynamics simulations, we clarify
that for polymers with the same number-average molecular weight, the molecular-weight distribution profile
(either in Schulz-Zimm form or in bimodal form) has very little influence on the glass transition temperature Tg ,
the average segment dynamics (monomer motion, bond orientation relaxation, and torsion transition), and the
relaxation-time spectrum, which are related to the local nature of the glass transition. By analyzing monomer
motions in different chains, we find that the motion distribution of monomers is altered by molecular-weight
polydispersity. Molecular-weight polydispersity dramatically enhances the dynamic heterogeneity of monomer
diffusive motions after breaking out of the “cage,” but it has a weak influence on the dynamic heterogeneity of
the short time scales and the transient spatial correlation between temporarily localized monomers. The stringlike
cooperative motion is also not influenced by molecular-weight polydispersity, supporting the idea that stringlike
collective motion is not strongly correlated with chain connectivity.
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I. INTRODUCTION

Polymers are good glass formers due to their inherent dif-
ficulties in forming crystals, and they are often used as model
systems to study the glass transition [1–4]. When approaching
the glass transition temperature Tg , the microscopic structure
of supercooled liquids varies only slightly, and glass is known
as frozen liquids due to its similar microstructure with liquids
[5–8]. However, its dynamic behavior changes dramatically:
Relaxation time varies by more than ten orders of magnitude
over a narrow temperature range near Tg [5–8]. It is still
a challenge to provide a unified microscopic picture of the
glass transition despite many years of extensive studies [5,6].
Research of the polymer glass transition is very important for
both understanding the nature of the glass transition and the
application of most industrial polymer products.

Most synthetic polymers have molecular-weight polydis-
persity, which has a dramatic influence on many features
of polymers, such as phase behavior [9], rheology [10], and
processing instabilities [11]. Molecular-weight polydispersity
is also a vital factor influencing polymer mechanical proper-
ties, and Tg can be used as a single parameter to estimate
the mechanical properties when defined consistently [12].
Whether there is any relation between Tg and molecular-weight
polydispersity is very important for polymer applications and
for understanding the nature of the glass transition. However,
little attention has been paid to the influence of molecular-
weight polydispersity on polymer Tg [2,13]. It is well known
that Tg increases with molecular weight and saturates at
high molecular weight, as illustrated in Fig. 1. This can be
described by the Fox-Flory equation as Tg = Tg∞ − K/M .
However, the origin of this dependence still remains elusive
[14,15]. In practice, “the mass” in the above equation has
been controversially taken as the number-average or the
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mass-average molecular weight. Previous research about the
mass dependence of polymer Tg actually has not distinguished
between them.

As an analogy with critical phenomena, there is an
expectation that slower relaxation can be related to a growing
length scale [16,17]. The growing cooperatively rearranging
regions (CRRs) upon cooling are the cornerstone of the
famous Adam and Gibbs (AG) [18] and random first-order
transition (RFOT) [19] theories. However, the commonly used
dynamic or static length scale [17,20–22] is relatively small,
suggesting that it is a relatively local feature of the glass
transition. The local segment dynamics and CRR analysis are
necessary for understanding the influence of molecular-weight
polydispersity on the polymer glass transition.

In addition, dynamic heterogeneity (DH) [23,24], which
describes the spatial-temporal fluctuations in local dynamical
behavior [16], is another key feature that characterizes glass
formers. All disordered systems with glassy dynamics are
reported with the existence of dynamic heterogeneity [16]. DH
could be characterized by analyzing non-Gaussian parameters
[25], multipoint correlations, and susceptibilities [6,16,26,27].
The analysis of the clusters of mobile and slow particles also
provides a physical picture of DH [17]. Molecular-weight
polydispersity inherently introduces the heterogeneity in the
chain length. Whether this inherent heterogeneity influences
the dynamic heterogeneity of supercooled polymer liquids is
still an intriguing question.

Motivated by the above questions, we have systematically
studied the glass transition of polymers with Schulz-Zimm as
well as bimodal molecular-weight distributions using a bead-
spring model [28,29] with molecular-dynamics simulations.
The influence of molecular-weight distribution on the glass
transition temperature, segment dynamics, CRRs, and DH
have been clarified in detail. The paper is organized as
follows: The details of the model and simulation method are
presented in Sec. II. Then we present the results and analyze
their implications in Sec. III. Finally, the paper ends with a
discussion and conclusions in Sec. IV.
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II. MODEL CONSTRUCTION AND SIMULATION DETAILS

A. Model construction

In this study we have adopted the bead-spring model [28],
which is a generic coarse-grained polymer model that is widely
used in studies of the glass transition of polymers. This model
has successfully reproduced many experimental phenomena
[2,29–34]. Compared with all-atom models, we can access a
larger length scale and time scale through this model, which
provides an efficient way to study the general characteristics
of polymeric glass formers [1]. In this model, monomers
(represented by a “bead”) that are not directly bonded interact
with a truncated and shifted Lennard-Jones (LJ) potential,

ULJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
+ C(rcut). (1)

Here, ULJ is set to zero for r > rc = 2 × 21/6σ , and the
constant C ensures that the potential vanishes continuously
at rc. Lennard-Jones units are employed, and all qualities are
in reduced units, with length in units of σ , temperature in
units of ε/kB (kB is the Boltzmann constant), and time in
units of (mσ 2/ε)0.5. All the monomers are identical. Chain
connectivity is controlled by a harmonic potential,

Ubond(r) = 1
2k1(r − r0)2. (2)

Here, k1 = 1111.0 and l0 = 0.967 [29]. The bending potential
is defined as

UB(θ ) = 1
2kθ (θ − θ0)2, (3)

and the function form of the torsion potential is

UT(φ) = 1
2kφ[1 − cos(3φ)]. (4)

Here, θ0 = 120◦, θ is the bending angle, and φ is the dihedral
angle. Through tuning kθ and kφ , we can regulate chain rigidity,
which can be characterized by persistent length:

lp = l0(C∞ + 1)

2
, C∞ = 1 − cos(θ )

1 + cos(θ )

1 + cos(φ)

1 − cos(φ)
. (5)

Here, C∞ is the characteristic ratio and l0 is the average
bond length [35]. Four kinds of chain rigidity are considered:
(kθ ,kφ) = (0,0), (0.8754,0), (12,1), and (25,2), thus lp takes
values 1.27, 1.69, 1.78, and 1.94, respectively. It should be
noted that lp values of many real polymers can be found in
the literature (normally in units of nm); however, lp values in
our generic model are in reduced units. The two kinds of lp
could not be compared directly. At the lowest temperature in
our simulations, the maximum value of the bond-orientation
order q6 [36] is only about 0.14, hence our systems are safe
from crystallization.

Following Ref. [29], we obtain the Tg’s for polymer melts
with different chain lengths for monodisperse polymers by
using MD simulations. The dependence of Tg on the chain
length of monodisperse polymers with different persistence
lengths in our model is shown in Fig. 1. Apparently, Tg

increases with increasing chain length, especially for chains
with larger rigidity. To reflect the influence of the polydis-
persity index (PDI) on Tg , we focus on two number-average
chain lengths (〈N〉): 〈N〉1 = 12 and 〈N〉2 = 40, which are
in the “increasing region” and “plateau region” in Fig. 1,

FIG. 1. (a) The chain length dependence of Tg for monodisperse
polymers with different persistence lengths. (b) The fitting of Tg ∼
1/N to the Fox-Flory equation. For lp = 1.69, 1.78, and 1.94, the
corresponding Tg∞ are 0.45, 0.63, and 0.79, respectively. It is clear
that the mass dependence of our bead spring chain model conforms to
the Fox-Flory equation, which is in accordance with previous reports
[14,15].

respectively. We consider two distribution forms: Schulz-
Zimm (SZ) distribution and bimodal distribution, to represent
chain length dispersity in this study. SZ distribution spreads
from the uniform distribution (PDI = 1.0) to the most probable
distribution (PDI = 2.0), defined as

fw(x)dx = abxb−1e−ax

�(b)
dx, Mn = b

a
, Mw = 1 + b

a
,

PDI = Mw

Mn

= 1 + 1

b
. (6)

Here, x is a parameter describing the chain length, a and b

are two adjustable parameters, and �(b) is the � function
of b. Figure 2 describes the variation of the Schulz-Zimm
distribution with the PDI value for systems with 〈N〉 = 12.
According to Eq. (6), we generate a different number of
polymer chains with required chain lengths to construct a
polymer melt system with SZ molecular weight distribution.
As for bimodal molecular weight distribution, we mix the
short chains with the long chains according to the required
PDI values; the details are shown in Table I.

B. Simulation details

In our simulations, there are around 18 000 monomers
in each polymer system. We perform a stepwise isothermal-
isobaric (NPT ) cooling process with a step of �T = 0.03
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FIG. 2. The variation of Schulz-Zimm distribution for systems
with 〈N〉 = 12. It shows that with increasing PDI, both the number
of short chains and the length of the longest chain increase. The total
number of polymer chains is 1500.

from 1.1 to 0.2 for systems with 〈N〉 = 12 and from 1.2 to
0.3 for systems with 〈N〉 = 40; the pressure is set to 1.0.
The equilibrium initial configurations are prepared at a higher
temperature, T = 2.0. The Nosé-Hoover thermostat and An-
derson barostat are used to control temperature and pressure,
respectively. The time step for integrating the equations of
motion is 0.001. The cooling rate can be roughly determined
as 6 × 10−6. We then perform isochoric-isothermal (NV T )
simulations using the configurations obtained from NPT

cooling runs with equilibrium densities as starting points.
At each temperature, to guarantee that our systems are in
equilibrium before data analysis, we have run simulations at
least two times longer than the longest relaxation time when
the monomer mean-square displacement (MSD) is comparable
to the largest end-end mean-square distance R2

ee of the longest
chain in our systems. All the simulations are performed with
periodic boundary conditions by using GALAMOST software
[37].

III. RESULTS AND DISCUSSION

A. The glass transition temperature

Despite its dependence on preparation history, the glass
transition temperature Tg is a vital property for polymers
[8,12]. We locate Tg by measuring specific volume variation

TABLE I. The details of bimodal distribution. N and n represent
the length and the number of chains, respectively. The subscripts
1 and 2 for N and n stand for the short chain and the long chain,
respectively. The superscripts a and b of the PDI values indicate that
systems are with 〈N〉 = 12 and 40, respectively.

PDI: 1.444a 2.333a 5.0a 1.375b 2.43b 4.06b

N1: 4 4 4 10 5 5
n1: 750 1125 1350 180 292 360
N2: 20 36 84 60 105 180
n2: 750 375 150 270 148 90

TABLE II. The glass transition temperatures of polymers with
different values of the PDI. The distribution forms without a
superscript are Schulz-Zimm distributions. The distribution forms
with superscript a are bimodal.

〈N〉 = 12; (lp = 1.27)
PDI: 1.0 1.1 1.3 1.5
Tg: 0.406 0.405 0.405 0.406

〈N〉 = 12; (lp = 1.69)
PDI: 1.0 1.1 1.3 1.5
Tg: 0.439 0.440 0.440 0.438

〈N〉 = 12; (lp = 1.78)
PDI: 1.0 1.3 1.9 1.444a 2.333a 5.0a

Tg: 0.589 0.589 0.588 0.590 0.585 0.587

〈N〉 = 40; (lp = 1.78)
PDI: 1.0 1.3 1.9 1.375a 2.43a 4.06a

Tg: 0.633 0.632 0.632 0.636 0.634 0.632

〈N〉 = 40; (lp = 1.94)
PDI: 1.0 1.3 1.9 1.375a 2.43a 4.06a

Tg: 0.777 0.774 0.774 0.774 0.774 0.777

with T , and we adopt the function ln[v(T )] = c + dT (c,d are
fitting parameters) to fit the data; see Refs. [29,38] for more
details. The Tg value determined by the volumetric method
is sensitive to the cooling rate. Compared with conventional
experiments, our cooling rate is about a factor 108 faster. But
extensive studies for a polymer model similar to the one used in
this study shows that the cooling rate effects for these models
are really weak [29]. Moreover, we adopt the same cooling
process for systems with the same 〈N〉 to avoid the influence
of the cooling rate on our conclusion. As Table II shows, once
the number-average molecular weight and chain rigidity are
fixed, the Tg value varies little between polymer systems with
different chain length distribution forms and PDI values. The
choice of chain rigidity lp and number-average chain length
〈N〉 does not influence our conclusion. Although it had been
reported in experiments that the PDI has very little influence
on Tg for polydisperse polycarbonates [39], our result based
on a generic polymer model clarifies that polymer Tg should
be irrelevant to the PDI, even though Tg is dependent on the
polymer molecular weight. As our model is independent of
chemical details, our findings should apply to various polymers
with linear chains. Moreover, as Tg is irrelevant to the PDI, the
number average mass dependence of polydisperse polymers
should be the same as that of monodisperse polymers (shown
in Fig. 1).

B. Dynamics

In the following, to study further the influence of chain
length polydispersity on the glass transition, we take polymers
with lp = 1.78 and 〈N〉 = 12 as an example. As Sec. III A
shows, the choice of lp and the average chain length do not
influence the weak polydispersity dependence of Tg . The data
for lp = 1.78 are chosen to be shown here merely because
these data are more representative as compared to the data
for lp either smaller or larger. In addition, as shown in Fig. 1,
N = 12 is close to the “turning point” in the curve showing the
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dependence of Tg on chain length. Chain length polydispersity
may have more of an influence on the glass transition in this
range. Therefore, we have chosen chains with 〈N〉 = 12 as
our main target system. We have also checked other choices
of lp and 〈N〉 and found that these choices do not influence
our analyses. For simplicity, we show mainly the analyses for
polymers with lp = 1.78 and 〈N〉 = 12 in the following.

In general, dynamics studies on the glass transition are
conducted above the critical temperature of mode-coupling
theory TMCT [2,30–32,34]. Typically, TMCT ≈ 1.2 × Tg [40].
For our systems with lp = 1.78 and 〈N〉 = 12, 1.2 × Tg =
1.2 × 0.59 = 0.71. T = 0.74 is close to this value and is able
to capture the dynamics related to the glass transition. There-
fore, we choose it for most of the analyses in the following.
Figure 3 shows the bond orientational autocorrelation function
(ACF), defined as

P2 = 3
2 〈�bj (0)�bj (t)〉 − 1, (7)

and P3state(t), defined as the probability of an average dihedral,
has not visited all three states (gauche+, trans, and gauche−)
after a time period t [41]. In this equation, �bj (t) is the
j th bond vector at time t . Apparently, the molecular-weight
polydispersity of polymers does not influence P2(t) and
P3state(t). Figure 4 shows the average MSD over all monomers,
defined as

g0(t) = 〈|ri(t) − ri(0)|2〉, (8)

FIG. 3. (a) The bond orientational autocorrelation function, P2(t).
(b) The probability that a dihedral has not visited all three states
gauche+, trans, and gauche− after a given time t , P3state(t). The
PDI values for SZ distribution are 1.1, 1.3, and 1.9. The PDI values
for bimodal distribution are 1.444 and 5.0.

FIG. 4. The MSD over all monomers g0(t) and the MSD of the
mass center of chains g3(t) for systems with various PDIs at T = 0.74.
The PDI values for SZ distribution are 1.3 and 1.9. The PDI values
for bimodal distribution are 1.444 and 5.0. We have also determined
the number-average end-end mean-square distance R2

ee for systems
with various PDIs, and we find that the value, which is about 27σ 2, is
weakly influenced by polydispersity and temperature. Here, we use a
dashed line to label the time when g0(t) is comparable to R2

ee, which
is about 2.2 × 104(mσ 2/ε)0.5.

where ri(t) is the position of the ith monomer, and the MSD
of the mass center of chains g3(t),

g3(t) = 〈∣∣rcm
k (t) − rcm

k (0)
∣∣2〉

, (9)

where rcm
k (t) is the position of the mass center for the kth

chain at time t . It is shown that the PDI does not influence
monomer dynamics, but increasing the PDI results in faster
chain dynamics in the condition with the same chain length
distribution form. The influence of polydispersity on g3(t) is
also related to the distribution form: g3(t) for the PDI1.444
system with bimodal distribution and g3(t) for the PDI1.9
system with SZ distribution almost converge. As we know,
g0(t) describes monomer motion with time; P2(t) describes
orientation variations of the bond, which is related to two
connected monomers; P3state(t) describes state variations of
dihedral angle, which is related to four sequentially connected
monomers. On the other hand, g3(t) represents the average
chain motion for systems with various PDIs. Compared with
g3(t), very little influence of chain length polydispersity on
g0(t), P2(t), and P3state(t) can be attributed to the fact that
local relaxation properties are not sensitive to the difference in
chain length distribution. Angell et al. have pointed out that,
for polymers, the variation of volume is determined by liquid
rearrangement to which “only fairly short range coordinated
motions like the local segmental motions and the sub-Rouse
modes” contribute [42]. Therefore, the irrelevance of local
dynamics to chain length polydispersity means that polymer
Tg is not affected by molecular-weight polydispersity.

As we can expect from their constructions, g0(t) will
converge to g3(t) at long time scales for monodisperse systems,
as Fig. 4 shows. However, a new phenomenon emerges for
polydisperse systems: g3(t) surpasses g0(t) at long time scales.
We can define the mobility of a monomer with chain length
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L as D0L and the mobility of a chain with length L as D3L.
Let D0L = g0(t) and D3L = g3(t) for monodisperse systems.
For polydisperse systems, we define the fraction of chains
with length L as ρcL and the fraction of monomers in the
chains with length L as ρmL. Then g0(t) = ∑

k D0Lk
ρmLk

and
g3(t) = ∑

k D3Lk
ρcLk

. It is obvious that ρcLk
is larger than

ρmLk
when Lk is smaller than the average chain length. As

D0Lk
converges to D3Lk

at long time scales, to compare g0(t)
and g3(t) we should focus on the distribution of the chain
length. The fraction of shorter chains for constructing g3(t),
which increases with the PDI in polydisperse systems with the
same distribution form, is larger than the monomer fraction
in the corresponding shorter chains for constructing g0(t).
Therefore, g3(t) will exceed g0(t) in polydisperse systems at
long time scales. The time that g3(t) exceeds g0(t) decreases
with the PDI under the same distribution form. Our data for
the PDI dependence of the monomer and the center-of-mass
displacement are therefore consistent.

One definition of the α relaxation time τα is the time at
which g0(τα) = 1 [30,43–46]. It is the time that a monomer
succeeds in leaving its nearest-neighbor “cage” and covers
the distance of its own size [45,46]. Using this definition,
we locate the mode-coupling transition temperature Tc at
T = 0.62 from τα ∝ (T − Tc)−γ [47], and we determine Tg

as 0.54 from Vogel-Fulcher-Tammann (VFT) formula τα =
τ0exp[DT0/(T − T0)][τ0 = 1 and τα(Tg) = 1014] [30]. The Tg

value defined in this way is smaller than 0.59 determined
through the specific volume method, as we can expect. The
fitting temperatures for MCT and VFT fitting include 0.68,
0.69, 0.70, 0.71, 0.74, and 0.77. The effective cooling rate of
VFT fitting is slower, and therefore a lower Tg value can be
obtained, which is more in line with the experimental results.
Once again, Tc and Tg determined in this way are independent
of chain length polydispersity. The dynamic fragility D in
the VFT formula describes how rapidly τ (T ) changes with
temperature; a larger value of D corresponds to less fragile
glass formers [48]. We find that D, which is determined as
2.58 from the above VFT fitting, is apparently not altered
by chain length polydispersity in this study. The α relaxation
time can also be defined in other ways, such as through the
intermediate scattering function fq(t):

fq(t) =
〈

1

M

M∑
j=1

eiq[rj (t)−rj (0)]

〉
, (10)

and the bond orientation autocorrelation function P2(t). We
have defined the relaxation time through fq(τα) = 0.1 [2]. The
Tg (around 0.60) determined by VFT fitting using the same
fitting temperatures as above and the relaxation time obtained
from fq are also not influenced by chain length polydispersity.
Therefore, the definition of relaxation time will only alter the
absolute value of Tg due to the well-known decoupling from
the Stokes-Einstein relation, but not the qualitative conclusion
[49,50].

The above relaxation times are average characteristic
relaxation times. We can obtain the relaxation-time spectrum
by analyzing P2(t) using the CONTIN method [51–54], where

P2(t) =
∫ +∞

−∞
F [ln(τ )] exp[−t/(τ )]d(ln τ ). (11)

FIG. 5. The polydispersity (a) and temperature dependence (b) of
the normalized distribution function of the relaxation times F [ln(τ )]
for P2(t).

Here, F [ln(τ )] is a normalized distribution function of relax-
ation times. CONTIN is a general-purpose program for inverting
noisy linear algebraic and integral equations by means of the
inverse Laplace transform. It provides a simple method to
obtain the inverse of Eq. (11) and get F [ln(τ )]. The peaks in
the distribution function F [ln(τ )] can be related to different
processes in the relaxation-time spectrum. As Fig. 5 shows,
at the temperatures in our study, we have observed three
main relaxation peaks. The left and middle peaks correspond
to secondary relaxations, which are weakly influenced by
temperature. As Fig. 5(b) shows, the right peak is in the range
of α relaxation [in the same range in which P2(t) relaxes
to 1/e], which shifts toward large time scales upon cooling.
Figure 5(a) shows that all the peaks are basically independent
of the PDI, which is consistent with our above observations.

C. Cooperative motion

According to AG and RFOT theories, a slower dynamics
upon cooling accompanies a larger length scale (a larger
scale of cooperative rearrangements), but both theories do not
include a microscopic presentation of the nature of cooperative
rearrangements. In recent years, several definitions of static
and dynamic length scales that may be responsible for the
growth of relaxation time scales were proposed [6,17]. Donati
et al. found that mobile monomers are spatially correlated,
and the mobile particles move cooperatively along stringlike
paths at two different times [20], which give a physical picture
for the growing length scale. According to Starr et al. [55],
the string size [20,21,30,56] appears to be the most consistent
measurement of CRRs for both AG and RFOT theories. Here,
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we check the influence of chain length polydispersity on
cooperative motion in our systems by analyzing the string
size.

Following the procedures proposed in previous works
[20,21,30,56], we have identified 6.5% of particles with the
largest displacement over any chosen time range t as mobile
particles [21,30,56]. For any two mobile monomers, if a
monomer replaces the other within a radius δ over a period
t , the two monomers are considered as being in the same
string:

min[|ri(t) − rj (0)|,|rj (t) − ri(0)|] < δ. (12)

Following Refs. [21,30], we choose δ = 0.55; see Ref. [21]
for more details. There are two different definitions of string
size. One is the number-averaged string length 〈Sn〉:

〈Sn〉 =
∑∞

s=1 sP (s)∑∞
s=1 P (s)

. (13)

The other is the weight-averaged string length 〈Sw〉:

〈Sw〉 =
∑∞

s=1 s2P (s)∑∞
s=1 sP (s)

. (14)

Here, s is the string size and P (s) is the probability of finding
a string with length s. The ratio 〈Sw〉/〈Sn〉, labeled as PDIS ,
which is referred to as the PDI of strings, can describe the
distribution of strings. Here, we use subscripts 1 and 2 to
represent the cases with or without considering the string with
s = 1, respectively. For example, 〈Sn2〉 is the number average
string size without considering s = 1.

As Fig. 6(a) shows, the qualitative behaviors are quite
similar for 〈Sn〉, 〈Sw〉, and the distribution of the string size
PDIS between the two cases. At short time scales, 〈Sn2〉 and
〈Sw2〉 are close to 2, and 〈Sn1〉 and 〈Sw1〉 are close to 1,
respectively, which means that at short time scales the mobile
monomers are not correlated. In the range between β and α

relaxation, the string size and the dispersity of the string size
distribution PDIS are the largest. After breaking out of the
cage, the mobile monomers are diffusive and do not tend to
replace each other, so the average string size is decreasing.

Figure 7 shows the temperature dependence of the string
size and its distribution for the monodisperse and polydisperse
system, respectively. The position of the peak moves to larger
time scales with decreasing temperature, implying a slower
relaxation. The peak value grows upon cooling, supporting
the idea that a slower relaxation is accompanied by a growing
length scale. This behavior is similar for both monodisperse
and polydisperse systems. We also find that chain length
polydispersity does not influence the evolution of the string
size and the distribution of the string size, as shown in Fig. 6(b).
Previous research [21] showed that stringlike collective motion
is not strongly correlated with chain connectivity. As chain
length polydispersity is related to chain connectivity, our
results are consistent with this observation. As we can find,
the string size in our systems is relatively small (the largest of
〈Sw2〉 < 3), i.e., the CRR length scale is rather small compared
to the average chain length, suggesting the local nature of the
glass transition of polymer systems.

FIG. 6. (a) A comparison between including and not including
s = 1 in the definition of the average string size and the corresponding
polydispersity index of the string size PDIS . (b) The influence of
chain length polydispersity on the string size 〈Sw2〉 and PDIS . The
PDI values for SZ distribution are 1.3 and 1.9.

FIG. 7. The temperature dependence of the string size 〈Sw2〉
and the distribution PDIS for monodisperse (a) and polydisperse
(b) systems.
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D. Heterogeneous dynamics

The above analyses of string size have given us a physical
picture of the dynamic heterogeneity of polymeric glass
formers. To further understand the effects of chain length
polydispersity on dynamic heterogeneity in our systems, we
first partition the monomers of each polymer system into six
equal groups with index G0–G5 according to the monomer
tags in the simulations both for monodisperse and polydisperse
systems in the same way. For polydisperse systems, a larger
number (for example, G5) means that the monomers belong to
longer chains. It can be seen in Fig. 8 that for the monodisperse
system, g0(t) of monomers in different chains have the same
behavior. However, various groups in polydisperse systems
move differently: monomers belonging to longer chains move
slower. These results clearly illustrate that chain length
polydispersity affects the motion distribution of monomers
in the systems.

To quantify the difference in dynamic heterogeneity be-
tween polymer systems with various PDIs, we have measured
the non-Gaussian parameter for monomers [25], which is
defined as

α2 = 3
〈
g4

i (t)
〉

5
〈
g2

i (t)
〉2 − 1. (15)

Here, gi(t) is the MSD of the ith monomer at time t . The
non-Gaussian parameter α2 quantifies the deviation of the
monomer motion distribution from the Gaussian distribution
of simple diffusive motion. A larger α2 indicates that the

FIG. 8. MSD of different groups in monodisperse (a) and poly-
disperse (b) systems. The larger number means that the monomers
belong to longer chains for polydisperse systems. For clarity, we leave
out the data of G2 and G4.

FIG. 9. Non-Gaussian parameters for systems with various poly-
dispersity at the same temperature (a) and at different temperatures
(b). The PDI values for SZ distribution are 1.1, 1.3, and 1.9. The PDI
values for bimodal distribution are 1.444 and 5.0.

motion distribution of monomers is more heterogeneous [2].
From Fig. 9, we can observe that there is a peak for the
non-Gaussian parameter, which is on time scales between
α and β relaxation time [25,57]. The position of the peak
is at the time when a monomer begins to break out of the
cage formed by nearby monomers [2]. As shown in Fig. 9(b),
the magnitude of the peak increases and the position of
the peak shifts to a larger time scale upon cooling, which
implies an enhanced dynamic heterogeneity [25]. At the same
temperature, there is a similar but much weaker trend with
increasing PDI at the same chain length distribution form,
as shown in Fig. 9(a). When focusing on the right side of
the peak, compared with monodisperse systems, we find a
rather sharp jump in the non-Gaussian parameter, implying a
considerable enhanced dynamic heterogeneity at these time
scales. α2 increases quickly with the PDI in the same time
range, suggesting that the dynamic heterogeneity of monomer
motion after breaking out of the cage is enhanced dramatically
by increasing the chain length polydispersity. After breaking
out of the cage, the monomers can explore larger regions and
can feel more the influence of chain length polydispersity. This
alters the monomer dynamic heterogeneity very much, but it
has only a weak influence on the average monomer motion.
As shown in Fig. 9(b), the α2 value for polydisperse systems
at the right side of the peak decreases instead of increasing
upon cooling at the same time range, which is obviously
distinct from classical dynamic heterogeneity behavior for
monodisperse polymer systems around the peak. The effect
of chain length polydispersity on α2 is related not only to
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FIG. 10. The variation of four-point susceptibilities with temper-
ature and PDI. The PDI values for SZ distribution are 1.1, 1.3, and
1.9. The PDI values for bimodal distribution are 1.444 and 5.0.

the PDI value but also to the chain length distribution form,
just as the effect of chain length polydispersity on g3(t)
(cf. Fig. 4).

The non-Gaussian parameter α2 reflects the behavior of
temporarily localized (“caged”) monomers. To determine the
influence of chain length on the transient spatial correlation
between temporarily localized monomers, we calculate the
four-point susceptibility χ4(t), which also describes the het-
erogeneity of the systems:

χ4(t) = βV

N2
[〈Q2(t)〉 − 〈Q(t)〉2],

Q(t) =
N∑

i=1

w[|ri(t) − ri(0)|]. (16)

Here, ri(t) is the position of the ith monomer at time t , β

is 1/(kBT ), w(x) is a function that is unity for x � a = 0.3
and zero otherwise, and Q(t) is the number of monomers
that remain within a distance a of their original positions at
time t , which describes the configuration overlap through a
period time t [26,27]. The height of the peak is related to the
volume with which the local structural relaxation processes are
correlated [16], therefore it corresponds to a dynamic length
scale. As shown in Fig. 10, the peak value of χ4(t) increases
upon cooling, implying a growing correlation length. The peak
position shifts to larger time scales upon cooling, suggesting a
slower relaxation. Although there are some fluctuations, we
can conclude that the transient spatial correlation between
temporarily localized monomers χ4(t) and the corresponding
dynamic correlation length are not affected by chain length
polydispersity.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we present the results of molecular-dynamics
simulations for polydisperse polymer systems, and we show
that the glass transition temperature Tg is not influenced by
molecular-weight polydispersity. The segment dynamics and
dynamic heterogeneity of supercooled polydisperse polymer

systems suggest that Tg only relates to the local relax-
ation of the polymer chains. The analysis of the stringlike
cooperative motion implies the local nature of the glass
transition. In the study of the mass dependence of the Tg

nanoconfinement effect, Torkelson and co-workers have found
that the polydisperse polystyrene sample (made with a blend
of high and very low molecular-weight polystyrene, i.e.,
bimodal distribution) has a very similar Tg to that of a nearly
monodisperse polystyrene system. This result suggests that
chain end segregation, which is different for systems with
different chain length polydispersity, has very little effect on
the local relaxation behavior (Tg nanoconfinement effect) [58].
Analogously, the chain length distribution may not be able
to affect the glass transition effectively since Tg is primarily
dependent on the local relaxation of polymer segments.
Therefore, our results emphasize that bulk Tg is determined
by chain end concentration (number-average chain length),
rather than by chain end segregation (polydispersity). Paul
and Smith stated that monomers were caged before realizing
that they belong to chains in the classical bead-spring model,
which leads to a similar Tc for the classical bead-spring model
and Lennard-Jones “atomic” liquids [4]. Likewise, monomers
in situations with the same chain end concentration (which is
determined by 〈N〉) may not feel the existence of chain length
distribution when the temperature approaches Tg .

Our results imply that polymers with a different mass-
average molecular weight can have the same Tg value if they
have the same number-average molecular weight. The more
relevant factor for the mass dependence of Tg is the number-
average one rather than the mass-average one. Recently,
Zaccone and Terentjev proposed a model to explain the melting
transition mechanism of amorphous solids in terms of the
lattice energy lost to this nonaffine motion [59]. In their work,
Tg is determined based on the sharp drop of the low-frequency
shear modulus upon raising the temperature from the low-
temperature glass. The average number of connectivities per
atom is defined as z. The connectivity due to van der Waals
potentials (nonbonded potential) is defined as zLJ. Another
important contribution to z is from covalent bonds, defined as
zco. For polymer chains of n units, zco = 2(1 − 1/n). The total
constraints from other monomers is therefore z = zco + zLJ.
According to the theory of Zaccone and Terentjev, when z

exceeds the critical value zc, the system loses its fluidity and
becomes rigid and glassy; when z is smaller than zc, materials
are unstable and unable to support shear or tensile stress. The
temperature at which z = zc can be determined as the glass
transition temperature Tg . Zaccone and Terentjev found that
for polymers, zc = (12 − 4)zco. As zco is determined by the
degree of polymerization n, Zaccone and Terentjev obtained
a relation between molecular weight and Tg for polymers,
which recovers the Fox-Flory equation (for more details, see
Ref. [59]). As this approach shows, it is evident that Tg is
controlled by a global rigidity transition that depends on the
average connectivity per atom, zco. In our studies, we find
that zco = 1.833 for 〈N〉 = 12 and zco = 1.95 for 〈N〉 = 40,
and polydispersity has little influence on the value of zco.
Therefore, zco is determined by the number average length
〈N〉: zco = 2(1 − 1/〈N〉). What matters for zco is the number
average bond number per chain, rather than its fluctuations due
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to the polydispersity. According to these theoretical results
and our analyses, chain length polydispersity should hardly
affect Tg .

To conclude, although molecular-weight polydispersity
affects the processing properties of polymer materials, our
results show that it has very little influence on the glass
transition temperature. Deliberate control over molecular-
weight distribution may largely improve the polymer pro-
cessing properties while keeping the mechanical properties
unchanged.
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