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Improved efficiency of heat generation in nonlinear dynamics of magnetic nanoparticles
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The deterministic Landau-Lifshitz-Gilbert equation has been used to investigate the nonlinear dynamics of
magnetization and the specific loss power in magnetic nanoparticles with uniaxial anisotropy driven by a rotating
magnetic field. We propose a new type of applied field, which is “simultaneously rotating and alternating,” i.e.,
the direction of the rotating external field changes periodically. We show that a more efficient heat generation by
magnetic nanoparticles is possible with this new type of applied field and we suggest its possible experimental
realization in cancer therapy which requires the enhancement of loss energies.
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I. INTRODUCTION

Nonlinear dynamics of the magnetization in single-domain
ferromagnetic nanoparticle systems has received considerable
attention due to a wide range of their applicability such
as magnetic resonance imaging, ultrahigh density magnetic
data recording, spintronics, and ferrofluids and in biomedical
engineering, in particular, drug delivery or hyperthermia [1–3].
Among many forms of hyperthermia, the local induction of
heat via magnetic nanoparticles seems a fruitful strategy with
promising preclinical results in different cancer modes [4].
The unique feature of magnetic nanoparticle hyperthermia
is that the energy is transported in the body by means of
an ac magnetic field. At present the clinical application is
partly limited due to the efficacy of the heat transfer and the
poor controllability of temperature parameters [5]. Thus, the
study of relaxation mechanisms of magnetic nanoparticles
is a very active research field, both in its theoretical and
material-science aspects.

Among many controllable parameters, the applied external
magnetic field is one of the most easily variable to increase the
efficiency of heat generation. Indeed, there is an increasing
interest in the literature to consider the case of rotating
external magnetic field [6–16] instead of the commonly
applied alternating one, see, for example, Ref. [17]. Some of
these studies compare the efficiency of the two types of applied
fields. For example, in Ref. [16] it was argued that the use of
an alternating-like external field is favorable, in particular,
an orthogonal synchronized bidirectional field is proposed
as a most efficient heat generation. Another experimental
work [10] suggests that the alternating and circulating applied
fields produce the same heating efficiency in the limit of low
frequency.

In order to clarify the above question and to look for the
most efficient heat generation one has to take into account
two other important effects: the role of magnetic anisotropy
which is inevitably present in magnetic nanoparticles and the
influence of thermal fluctuations. For example, in Ref. [8],
isotropic nanoparticles were considered without taking into
account the thermal effects and the alternating applied field
was found to be considerably more favorable than the rotating

one. However, it was shown in Ref. [12] that the effect
of thermal fluctuation modifies the results obtained for the
alternating field with isotropic nanoparticles and results in a
small difference between the heating efficiency of the rotating
and alternating applied fields in the limit of small frequency.
Let us note that the inclusion of thermal fluctuations [12] only
slightly modifies the findings of the rotating field obtained for
isotropic nanoparticles without thermal effects [8].

Magnetic anisotropy can also influence this picture, espe-
cially in the case of a rotating applied field. An important
feature of the rotating external field is the presence of stable
steady states (precession modes). Independently of the initial
positions, the magnetic moments of nanoparticles tend to the
steady state and the dissipated energy can be easily calculated.
However, for relatively large anisotropy, more than one steady
state appears [6]. Thus, one can study the influence of the
transition between these modes on heating [7,11]. For example,
in Refs. [14,15] the effect of strong anisotropy on the heating
efficiency has been studied and its enhancement is shown
for large frequencies near the boundary of various regimes
of forced precession (steady states) of the parameter space
in case of a rotating applied field. However, it was argued
in Ref. [15] that thermal fluctuations do not modify the
results but the frequencies where the enhancement is observed
are too high for a medical treatment, i.e. for hyperthermia.
Another example where the presence of uniaxial anisotropy
was considered is Ref. [13], where it was shown that in the
low-frequency limit, an easy-axis anisotropy turned out to
leave unchange (or slightly decrease) the calculated loss power
if no transitions between the various precession modes (steady
states) are taken into account which is the case for relatively
moderate anisotropy. In summary, the alternating applied field
is found to be slightly more favorable for low frequencies
which is suitable for hyperthermia and the small or moderate
anisotropy does not change this picture.

Instead of trying to decide whether an alternating or a
rotating external magnetic field is more suitable for magnetic
nanoparticle hyperthermia, here we propose a new type of
applied field, which is “simultaneously rotating and alter-
nating.” In particular, we demonstrate that a more efficient
heat generation by magnetic nanoparticles is possible if the
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direction of the rotating external field changes periodically and
the particles exhibit a moderate anisotropy. We show results of
this new and successful attempt which enhances the loss energy
drastically by means of abrupt changes in the applied magnetic
field (sudden change of the direction of the rotating field after
every circle). The change in the direction of the rotating applied
field dislocates the magnetic moment of the nanoparticle out of
its steady state, i.e., the precession mode. Since the steady-state
solution corresponds to minimal dissipation, a more effective
heating can be achieved if the system is out of the steady state.
We argue that the loss energy achievable by changing the
direction of a rotating field is worth studying as a possible tool
to enhance the heat in hyperthermia. The calculation has been
done for a single, simple configuration, but the stunning result
is worth checking experimentally. Indeed, we propose another
new type of rotating applied field which has a periodically
alternating direction, similarly to the case of “sudden change”
studied in the present work but with a feature of being more
suitable for experimental realisation.

The paper is organized as follows. In Sec II, we discuss
the deterministic Landau-Lifshitz-Gilbert equation in case
of uniaxial anisotropy with rotating applied field where
overall units and parameters suitable for hyperthermia are
also considered. Some known results on the specific loss
power and loss energy obtained in the steady-state solutions
of the Landau-Lifshitz-Gilbert equation for oblate (positive
anisotropy) particles is summaries briefly in Sec. III and new
results for prolate (negative anisotropy) particles are discussed.
New findings related to the loss energy per cycle out of the
steady state are shown in Sec. IV. In Sec. V we propose a
novel type of applied field which is rotating with periodically
changed direction. Proposal for experimental realization of the
new applied field is discussed in Sec. VI. Finally, Sec. VII
stands for the summary and a detailed discussion for the
optimized set of parameters for magnetic particle hyperthermia
is given.

II. LANDAU-LIFSHITZ-GILBERT EQUATION

Of the many phenomenological equations of motion for
the relaxation of magnetization [18] the Gilbert equation [19]
has proved to give the one of the most realistic descrip-
tion of the dynamics of single-domain magnetic particles
at strong damping (Ref. [2] represents another frequently
used approach). Such a particle, being too small to ac-
commodate a domain wall, can be fully characterized with
a single vector, its magnetic moment m. An important
feature of Larmor precession is that |m| = mS does not
change under the influence of the external field, including
the anisotropy field. Hence it is convenient to rewrite the
equation of motion of the magnetization m of a single-
domain particle in terms of the unit vector M = m/mS , mS

being the saturation magnetic moment (e.g., mS ≈ 105 A/m
for single crystal Fe3O4) [20]. Then the Gilbert equation
reads as

d

dt
M = γ0M ×

[
∇MV + μ0η

d

dt
M

]
, (1)

where γ0 = 1.76 × 1011 Am2/Js is the gyromagnetic ratio of
the electron spin (with opposite sign), μ0 = 4π × 10−7 Tm/A

(or N/A2) is the permeability of free space, V is the potential
energy and η is the damping factor, both of them normalized
for unit M . To describe the system, the potential energy must
contain the Zeeman energy in the external applied magnetic
field and the anisotropy energy [7]

V = −μ0M · Hext − μ0

2
HaM

2
z , (2)

where Mz is the z component of the normalized magnetization
vector and the external applied field is a rotating one (perpen-
dicular to the anisotropy field)

Hext = H0 ( cos(ωt), sin(ωt),0), (3)

with the angular frequency ω. We define the vector Heff , which
contains the external applied magnetic field and the effect of
the anisotropy of the magnetic particle

Heff = − 1

μ0
∇MV = − 1

μ0
(∂Mx

,∂My
,∂Mz

)V

= H0 ( cos(ωt), sin(ωt),λeffMz), (4)

with λeff = Ha/H0. Clearly, if λeff > 0 (Ha > 0), the
anisotropy will turn the magnetization towards the z axis, and,
if λeff < 0 (Ha < 0), into the xy plane. Giordano et al. [21]
treated the shape anisotropy of the isotropic ellipsoidal
particles using a different notation, where L is the parameter
giving the deviation from spherical symmetry. The link to our
parameters is Ha = (3L − 1)mS . Although our model does
not specify the source of anisotropy, given the material used
in hyperthermia, we have to deal with shape anisotropy.

Equation (4) implies a uniaxial anisotropy with a potential
energy −(μ0/2)H0λeffM

2
z , which has its minima at |Mz| = 1

for λeff > 0 and Mz = 0 for λeff < 0. Two ellipsoids of
revolution have the shapes with the geometry of this energy:
for λeff > 0 oblate (cigar shape) and for λeff < 0 prolate (lens
shape).

The Gilbert equation (1) can be rewritten in such a way
that it has a functional form similar to the Landau-Lifshitz
equation [22]. This is called the Landau-Lifshitz-Gilbert
(LLG) equation,

d

dt
M = −γ ′[M × Heff] + α′[[M × Heff] × M], (5)

where γ ′ = μ0γ0/(1 + α2) and α′ = γ ′α with the dimension-
less damping factor α = μ0γ0ηmS . For example, α = 0.1 was
chosen in Ref. [15] and α = 0.3 was used in Ref. [21].

Writing Eq. (5) in polar coordinates (M,θ,ϕ) allows us to
drop the constant (M), leaving but two equations:

dθ

dt
= ωL sin φ + αN cos θ cos φ − αNλeff sin θ cos θ,

(6)
dφ

dt
= ωL cos φ

cos θ

sin θ
+ ω − αN

sin φ

sin θ
− ωLλeff cos θ,

where ωL = H0γ
′ and αN = H0α

′. Note that (6) is written in
a new coordinate system rotating with the applied field: the
azimuthal angle (ϕ) has been cut into the rotation (ωt) and a
measure (φ) of the lag of M with respect to the rotation of the
applied field: ϕ = ωt − φ.

Knowing that in practice [23] H0 ≈ 18 kA/m we find that
ωL is of the order of 109 Hz. In hyperthermia the frequency
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of the applied field is advised to be chosen between 105 and
5 × 105 Hz, so ω is four orders of magnitude below ωL. Fur-
thermore, αN = α ωL. For example, a set of parameters of (6)
typical for hyperthermia (with α = 0.1 and H0 = 18 kA/m),

ω = 5 × 105 Hz, ωL = 4 × 109 Hz, αN = 4 × 108 Hz, (7)

and the dimensionless anisotropy parameter λeff depends on
the shape and geometry of the nanoparticle. The left sides
of (6) being derivatives of angles with respect to time, the units
of all terms in the equations must be s−1. Their dimension
can be taken of introducing a dimensionless “time” t̃ = t/t0
where t0 = 0.5 × 10−10s is chosen in this work, thus, e.g., the
dimensionless form of (7) reads

ω → ωt0 = 2.5 × 10−5,

ωL → ωLt0 = 0.2, (8)

αN → αNt0 = 0.02.

Let us note, t0 is chosen to be in the range of the attempt time
τ0 used in Neel relaxation. Typical values for τ0 are between
10−10 and 10−9 s.

III. STEADY-STATE SOLUTION OF THE LLG EQUATION

The solution of Eq. (6) is shown in Fig. 1 for a particular
set of (dimensionless) parameters given in the caption. As
expected below the critical value of the anisotropy |λeff| <

λc, only a single attractive fixed point appears [13], which
corresponds to a steady-state solution of the original LLG
equation (5) (single periodic precession mode),

Mx(t) = ux0 cos(ωt) − uy0 sin(ωt),

My(t) = ux0 sin(ωt) + uy0 cos(ωt), (9)

Mz(t) = uz0.
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FIG. 1. Orbit map in the rotating frame obtained by solving the
LLG equation, below the critical value of anisotropy (there is a single
attractive fixed point in the figure). The parameters are αN = 0.1,
ω = −0.01, ωL = 0.2, and λeff = 1.1.

where ux0 and uy0 are determined by ω, ωL, αN , and λeff .
The loss energy is calculated using these attractive fixed point
solutions in the formula for the energy dissipated in a single
cycle,

E = μ0mS

∫ 2π
ω

0
dt

(
Heff · dM

dt

)
= μ02πmSH0(−uy0), (10)

(see also Eq. (12) in Ref. [13]) which has the following form
in the low-frequency ω � αN and small anisotropy |λeff| � 1
limits:

E ≈ 2πμ0mSH0

[
αNω

ω2
L + α2

N

− αNω2
Lω3(

ω2
L + α2

N

)3 (1 + 2λeff)

]
.

(11)

It is clear that for positive (negative) λeff the energy per cycle
is decreased (increased) by the anisotropy albeit for relatively
large frequencies. Since λeff appears only at the next-to-leading
terms, if one takes the low-frequency limit (ω → 0) the effect
of anisotropy is irrelevant. This result has been discussed in
Ref. [13] and can be seen in Fig. 2, which shows that for
|λeff| < λc, and for small frequencies, the loss energy per cycle
becomes identical to that in the isotropic case, independently
of the sign of λeff .

For large anisotropy, |λeff| > λc (if no transition between
the various precession modes is taken into account) the loss
energy per cycle tends to zero for λeff > 0 and to a constant
(almost identical to the isotropic value if ω → 0) for λeff < 0.
Similar observation holds for the loss energies in the steady
states which exist only above the critical anisotropy, see the
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FIG. 2. The loss energy per cycle as a function of the anisotropy
parameter λeff is shown for various frequencies: (a) ω = 0.15, (b)
ω = 0.1, (c) ω = 0.05, and (d) ω = 0.01. The calculation is based on
the attractive fixed point solutions of (6) with αN = 0.1, ωL = 0.2.
The vertical lines indicate the critical value λc. Solid and dashed
lines correspond to loss energies of steady-state solutions. The upper
lines (solid, dashed) always correspond to λeff < 0 while the lower
lines (solid, dashed) are related to λeff > 0. Dotted lines represent the
loss energy per cycle in case of rotating field where the direction is
changed periodically.
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dashed lines in Fig. 2. For low frequencies, the dashed lines
tend to zero for λeff > 0 and to a constant for λeff < 0. As
to the application in hyperthermia, these results confirm that
particles of lens shape provide an enhanced loss energy, but
at the allowed frequency the effect is not significant. It is
important to note that frequencies (ω = 0.01–0.15) shown in
Fig. 2 are too large for biomedical application.

IV. LOSS ENERGY PER CYCLE OUT OF THE STEADY
STATES

Until now, we studied the loss energy per cycle calculated
at the steady-state solution of the LLG equation (i.e., at the
attractive fixed point of Fig. 1). However, it is a relevant
question to address whether one can find a larger loss energy
in a single cycle out of the steady states. Indeed, in the 3D plot
of Fig. 3 we show the loss energy obtained in the first cycle
of the external field as a function of various starting points on
the (θ,φ) plane. Note that in the low-frequency limit (suitable
for hyperthermia), the solution of the LLG equation always
tends to the attractive fixed point very rapidly, i.e., it reaches
the fixed point with one percent accuracy in a quarter of a full
circle. In Fig. 3 the “well” corresponds to the attractive fixed
point which produces us the lowest loss energy per cycle while
the “hill” where the loss energy is the maximum is related to
initial conditions taken at the repulsive fixed point. Although
the results displayed in Fig. 3 are obtained numerically, an
approximative analytic derivation is possible for the isotropic
case (λeff = 0). Indeed, an approximate solution to the LLG
equation is given by Eq. (29) of Ref. [8] which reads

Mξ (t) = M
spec
ξ0 cos(�t) − M

spec
η0 sin(�t)

+ (
Mξ0 − M

spec
ξ0

)
e
− αN t√

2 ,

Mη(t) = M
spec
ξ0 sin(�t) + M

spec
η0 cos(�t)

+ (
Mη0 − M

spec
η0

)
e
− αN t√

2 ,

Mζ (t) =
√

1 − [Mξ (t)]2 − [Mη(t)]2, (12)

FIG. 3. Calculated loss energy, E/(2πμ0mSH0), in the first cycle
out of the steady states for small anisotropy (λeff = 0.05) as a function
of the initial conditions on the (θ,φ) plane.

where (Mξ,Mη,Mζ ) represents the magnetization vector in a
particular rotated coordinate system [8] and depends on the ini-
tial values of the Cartesian coordinates Mξ0 and Mη0 linearly.
(Mspec

ξ0 , M
spec
η0 depend on the parameters ω,ωL,αN defined by

Eq. (28) of Ref. [8] and � =
√

ω2 + ω2
L). According to (10),

the loss energy per cycle has a linear dependence on the initial
Cartesian coordinates Mξ0 and Mη0 as well. Thus, rewriting
them by polar coordinates

Mξ0 ∝ sin(θ ) cos(φ), Mη0 ∝ sin(θ ) sin(φ), (13)

one finds

E/(1st cycle) = A sin(θ ) cos(φ) + B sin(θ ) sin(φ), (14)

where A,B constants depend on the parameters ω,ωL,αN

which is in agreement to the numerical result of Fig. 3
obtained for small anisotropy. Finally, let us note that the
numerical results of Fig. 3 are related to the fact that the
steady-state solution corresponds to minimal dissipation, so
a more effective heating can be achieved if the system is out
of the steady state. This preliminary result does not define
a new method to enhance the loss energy but the difference
between the maximum and minimum on Fig. 3, being two
orders of magnitude larger than what can be achieved in the
steady state, is encouraging for further research on nonsteady
states.

V. ROTATING FIELD WITH PERIODICALLY
CHANGED DIRECTION

As a new idea let us consider the loss energy per cycle in
case of a rotating applied magnetic field where the direction
of rotation is changed periodically, i.e., after every full cycle
the sign of ω is switched in (4). By changing the direction, the
position of the steady-state solution is changed, i.e., for ω > 0
(ω < 0) it is below (above) the equator of the orbit map. Thus,
the magnetization vector always tends from a disappearing
steady state to an arising one. Note that we do not calculate
this effect above λc because in that case more than one stable
steady-state solution appears. The outcome is plotted in Fig. 2,
with dotted lines.

For high frequencies (ω = 0.15 and ω = 0.1), irrelevant to
the sign of λeff , there is an increase in the loss energy, tending
to constant values close to λc. The effect is larger for λeff > 0,
because in this case the positions of the steady-state solutions
(for ω < 0 and ω > 0) are far from each other.

For low frequencies (ω = 0.001) the situation completely
changes as the loss energy for λeff > 0 becomes larger than any
other calculated values, including those found for λeff < 0. For
example, for lower values of the damping, i.e., αN = 0.05 or
αN = 0.01, the loss energy monotonously increases with λeff ,
reaching a value that is about 15% or 100% larger as compared
to the isotropic case near (below) λc, see Fig. 4. Therefore, a
more efficient heat generation is possible for physical values
of the damping (i.e., for α = 0.1–0.3 where αN = αωL ≈
0.02–0.06), near the critical anisotropy λeff = λc ≈ 1, if the
direction of the rotating applied field is changed periodically.
In summary, the reason for the peaks of the dissipated energy
at |λeff| = 1 in Fig. 4 (dotted lines) is twofold: (i) it was shown
that a more effective heating can be achieved if the system
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FIG. 4. The loss energy per cycle as a function of the anisotropy
parameter λeff is shown for various values of αN (for fixed ω and ωL).

is out of the steady state which is achieved by the new type
of applied field (dotted lines) which is simultaneously rotating
and alternating and (ii) this enhancement effect becomes larger
at |λeff| = 1 where the system is close to the critical anisotropy
|λc| ∼ 1, where the dislocating effect caused by the change in
the direction of the rotation is the largest.

VI. PROPOSAL FOR EXPERIMENTAL REALIZATION

Finally, let us propose a new type of “rotating” applied field
which has a periodically alternating direction, similarly to the
case carefully analyzed above but with a feature of being more
suitable for experimental realization. Nonetheless, a “sharp
change” in the direction of the rotating field which is studied
previously is also feasible in practice. Our proposal for the
applied field is

Heff = H0 (cos(2ωt), sin(ωt),λeffMz), (15)

where the 2ω of the cosine naturally provides us with the
required change in the direction in every half cycle. Well-
separated and oriented anisotropic nanoparticles in an aerogel
matrix can serve as a good experimental setup to realize the
enhanced loss energy in case of an applied field as in Eq. (15).
The practical advantage of (15) is that it requires the use of
two frequencies ω and 2ω and no higher harmonics or no
rapid switchings are needed. Of course, one has to choose the
frequency ω in a way that 2ω should be in the range suitable
for hyperthermia.

VII. SUMMARY

In this work we showed that a more efficient heat generation
by magnetic nanoparticles is possible if the direction of the
rotating external field changes periodically. We would like to
emphasize that the heating efficiency of the new type of applied
field is larger than those of the rotating and alternating ones
which are almost identical in the limit of small frequency, see,
for example, Refs. [10,12]. Based on this finding, we make

a proposal to apply a magnetic field regularly stopping its
rotation, which should increase the loss energy. Conditions
used in the proposed work towards an enhance of heating
efficiency are the followings.

A. Applied field

A new type of “rotating” applied field is proposed here
which has a periodically alternating direction either using the
form (4) where ω is assumed to change sign in every full circle
or using (15) where the 2ω of the cosine naturally provides
us with the required change in the direction in every half
cycle. The frequency is in the range of hyperthermia, i.e.,
ω = 1–5 × 105 Hz and the amplitude of the applied filed is
H0 ≈ 0.2 × 105A/m. Note that (15) produces a change in the
rotation in every half circle compared to the sudden change
where the direction of the rotation changes in every full circle.
We argued that in the low-frequency limit, the solution of
the LLG equation always tends to the attractive fixed point
very rapidly, i.e., it reaches the fixed point with one percent
accuracy in a quarter of a full circle. Thus, it is expected that
the proposed external field (15) possesses the same properties
found for the case of sudden change.

B. Anisotropy

The nanoparticles are assumed to be oblate ellipsoids where
the shape anisotropy is moderate, i.e., λeff = Ha/H0 ≈ 1
(which implies L ≈ 1.2/3 = 0.4 according to Ref. [21] for
Ha = 0.2 × 105 A/m and Ms = 105 A/m). In this case the
nanoparticle has a single precession mode. However, for larger
anisotropy, i.e., λc < λeff which has been discussed in [15]
(where h̃ = λ−1

eff ), more than one precession modes appear.
In Ref. [15] an enhancement of the heating efficiency was
found near the boundary of these regimes of forced precession.
The largest increase is observed between the periodic and
quasiperiodic regimes; however, it exists only for large values
of the reduced frequency used in Ref. [15] which is not
allowed in hyperthermia. Nevertheless, it is expected that in
case of an applied field, Eq. (15), which can be considered a
rotating field (with alternating direction) where the magnitude
changes slightly, the effect of the increased upward heating
becomes even stronger due to the transition between the
two periodic modes. Finally, let us note that regarding the
anisotropy, one has to take into account the structure formation
and synchronization of interacting magnetic nanoparticles
which have been studied, e.g., in Ref. [24] for rotating
fields.

C. Orientation

The anisotropy field (shape anisotropy caused by oblate
particles) is assumed to be perpendicular to the plane where
the applied field rotates. In practice, this special situation can
be achieved by switching on a strong static field which orients
all the nanoparticles and then the rotating field applied while
the static field switched off. For an appropriate size of the
nanoparticle (with an average diameter d = 14 nm [25]), the
orientation of the major part of the nanoparticles remains
unchanged (for long-enough time) and only the magnetic
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moment has a dynamics under the rotating field. Number of
parameters (for example, biomedical coating) can be tuned
in order to design the nanoparticles (see, e.g., Ref. [26])
for biomedical application incorporating the requirement for
particle size and shape anisotropy. Furthermore, in Ref. [15] it
was argued that if the average diameter is chosen to be in the
range (dmin,dmax), then the nanoparticles have single domains
and one finds no restriction on the applied frequency and their
dynamics is almost deterministic. The boundary values, dmin

and dmax, depend on the parameters such as the anisotropy
factor: e.g., in case of relatively large anisotropy (h̃ = 0.1) one
finds dmin = 13.7 nm. Thus, our choice d = 14 nm indicates
that the description of the dynamics of the nanoparticle
magnetic moments by the deterministic LLG equation is well
justified [15] and it is expected that they retain their orientation
for long-enough time [25].

D. Damping

The dimensionless damping constant is chosen to be in the
range α = 0.1–0.3, which was used in Refs. [15,21]. Accord-
ingly, the enhancement effect shown in this work is 100%–15%
(in case of a smaller damping the enhancement is larger).
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Appl. Phys. 110, 023901 (2011); H. El Mrabti, P. M. Déjardin,
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