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Nonholonomic diffusion of a stochastic sled
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A sled is a stylized mechanical model of a system which is constrained to move in space in a specific orientation,
i.e., in the direction of the runners of the sled or a blade. The negation of motion transverse to the runners renders
the sled a nonholonomic mechanical system. In this paper we report on the unexpected and fascinating richness
of the dynamics of such a sled if it is subject to random forces. Specifically we show that the ensuing random
dynamics is characterized by relatively smooth sections of motion interspersed by episodes of persistent tumbling
(change of orientation) and sharp reversals resembling the random walks of bacterial cells. In the presence of
self-propulsion, the diffusivity of the sled can be enhanced and suppressed depending on the directionality and
strength of the propulsive force.
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I. INTRODUCTION

Constraints are of key importance for many mechanical
systems and determine their dynamic behavior. For example,
a mathematical pendulum is constrained by the distance of
the pivot and the bob, and this constraint, in conjunction
with gravity, determines its oscillatory, rotational, and—in the
presence of a driving force—chaotic dynamics. Holonomic
constraints limit the movement of the system to a subspace and
correspondingly reduce the degrees of freedom and numbers
of variables necessary to describe the system. Nonholomic
constraints limit the movement of the system only locally
while allowing the system to fully explore its state space. A
simple model for a nonholonomic system which captures all
relevant features, but yet can be solved analytically, is the
Chaplygin-Carathéodory (CC) sled [1–7]. Such a sled can
move anywhere in a two-dimensional (2D) plane, but the
direction of its velocity is locally constrained by the orientation
of a blade which can rotate around a pivot point. Each point
in the 2D plane can be reached, but prohibition of sideways
motion renders motion planning necessary. Most automotorists
experience such dynamics (some with more frustration than
others) and the need for motion planning, when forced to
execute the process of “parallel parking” or when trying to
maneuver a vehicle with a trailer backward into a garage [8].

The dynamics of such a system is remarkably rich as the
nonholonomic constraint couples orientational and transla-
tional motion of the sled. This leads to translational instabilities
that depend on the orientation of the sled with respect to
the direction of motion, establishing stable and unstable
orientations of motion. The main focus of this paper is on the
stochastic behavior of a microscopic sled, subject to fluctuating
forces of the environment, a prototype of nonholonomic
Brownian motion. While one expects diffusive behavior of
such a sled, it is clear that due to the local constraints of
motion and the coupling of orientation and translation, the
diffusive behavior is far richer than that of traditional Brownian
particles. It is demonstrated, for example, that the random
motion of the sled is interspersed by bursts of tumbling.

As the literature on the dynamics of such systems is
scattered over time and journals (much of it not available in the

English language), we start off this paper with a brief summary
of the nonlinear dynamics of the deterministic 2D CC sled,
which might help the reader better appreciate the differences
and similarities with our model of the stochastic sled. In Sec. III
we investigate the dynamics of a 2D stochastic sled coupled
to an equilibrium heat-bath. While the Brownian motion of
the sled is nonstationary, its dynamics in momentum space
(velocity and angular velocity) is stationary, and we establish
average velocities, angular velocities, and the partition of
translational and rotational energies. As expected the sled
exhibits diffusive behavior over longer time scales, but the
diffusivity depends on the coupling between translation and
orientation. The diffusive behavior is particularly interesting
in the presence of a propulsion force (see Sec. IV). The
diffusivity can be amplified if the sled is driven along its stable
direction or it can be strongly suppressed when it is propelled
along its unstable direction. The latter results in a rotational
bistability, where the sled switches between clockwise and
counterclockwise rotation. Analytical predictions obtained
through an approximated linearization scheme are shown to
compare well with the outcome of numerical simulations.

Finally, in Sec. V we comment on the observed similarities
between the diffusive dynamics of a stochastic self-propelled
sled and active microswimmers, although we don’t suggest
that the stochastic sled model is a bona-fide model for
microswimmers [9–11].

II. THE CHAPLYGIN-CARATHÉODORY SLED

In the absence of external drives, the sled’s equations of
motion were derived by Chaplygin, within the Lagrangian
formalism [1], and by Carathéodory, through a force balance
method [2],

mv̇ = maω2,
(1)

IP ω̇ = −maωv,

where v and ω are, respectively, the linear velocity along the
oriented sled axis x̂′ and the angular velocity around the pivot
point. For simplicity, the center of mass O and the pivot
point P are assumed to rest on the sled’s axis at a distance

2470-0045/2016/93(1)/012606(9) 012606-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.012606


JUNG, MARCHEGIANI, AND MARCHESONI PHYSICAL REVIEW E 93, 012606 (2016)

FIG. 1. Sketch of an ellipsoidal CC sled. The pivot point P and
the center of mass O sit on the major sled axis; the inertial reference
frame x,y and the body reference frame x ′,y ′ are introduced in the
text.

a that quantifies the eccentricity of the constraint (Fig. 1).
The velocity coordinates v and ω are related to the spatial
coordinates of the sled’s pivot point P in the plane, x and y,
and to its orientation, φ, by the equations

ẋ = v cos φ, ẏ = v sin φ, φ̇ = ω, (2)

where φ denotes the angle between the sled and the positive x

axis.
For practical purposes we make use of Steiner’s identity,

IP = IO + ma2, to relate the sled’s moments of inertia relative
to P , IP , and the center of mass, IO , and then scale all lengths
by means of the characteristic length l, defined by IO ≡ ml2;
that is, x → x/l, y → y/l, v → v/l, a → α = a/l, and IP =
1 + α2. The CC equations can thus be reformulated as

v̇ = αω2,
(3)

ω̇ = − α

1 + α2
ωv.

In the following we treat α as a tunable parameter with α ∈
[0,∞]. However, one should not forget that for a homogeneous
2D body of given mass, the distance OP is no larger than half
the maximum diameter; that is, α � αl , where αl depends on
the particle conformation. For instance, for a thin rod, αl =√

3, and for a solid disk, αl = 2.
Without entering the details of the derivation of CC

Eqs. (3), we limit ourselves to a qualitative interpretation
of the sled dynamics in the “momentum” space, v and ω.
Due to the constraint, the longitudinal axis of the sled and its
velocity v is always tangential to the P trajectory. The first
Eq. (3) simply tells us that the sled accelerates along its long
axis with the centrifugal acceleration, αω2, generated by its
simultaneous rotation around P . The second equation equals
the time derivative of the sled’s angular momentum relative
to the pivot point, to the torque associated with the tangential
force applied in P .

On a first glance it may appear that such a model is
only narrowly defined through the nonholonomic constraint.
Carathéodory himself first raised the question of whether an
unconstrained dissipative system with a very large damping

constant for motion perpendicular to the long axis can be
modeled as a nonholonomic constrained one. Carathéodory
himself ruled out this option [2], Fufaev [6], however, proved
rigorously the contrary. Today we know that a large class
of nonholonomic constraints is obtainable by means of
appropriate procedures involving some “infinite” friction limit
of an appropriate Hamiltonian system [3].

The nonlinear Eqs. (3) are explicitly integrable [3]. To
this purpose we first notice that the sled’s kinetic energy
is a constant of motion. On multiplying the CC equations,
respectively, by v and ω and then adding them up term by term
we obtain d[v2 + (1 + α2)ω2]/dt = 0, which implies that the
kinetic energy,

E = 1
2 [v2 + (1 + α2)ω2], (4)

is conserved. This result is consistent with the fact that the
constraint forces, holonomic or not, do not do work either
parallel or perpendicular to the sled’s axis [12]. Note that the
translational and rotational degrees of freedom are coupled by
the constraint in P so that the relevant kinetic energy terms
are not separately conserved.

The sled’s equations, Eqs. (3), can be solved analytically in
the 2D momentum space v,ω, namely, for a given value of E

and v(0) = 0,

v(t) = vE tanh

(
α

1 + α2
vEt

)
(5)

ω(t) = ± vE/
√

1 + α2

cosh[αvEt/(1 + α2)]
, (6)

with vE = √
2E. The sled’s orbits in the momentum plane

are elliptical arcs of Eq. (4). However, the pivot point P

does not trace an entire ellipse, because the positive v axis
attracts all solutions. Indeed, on each ellipse there exists
one attracting orbital point representing the asymptotic so-
lution, (v,ω) = (vE,0), and two equivalent unstable tumbling
points, (0, ± √

2E).
The P trajectories in the x,y plane can be determined by

integrating Eqs. (2) for the known solutions v(t) and ω(t). The
analytical expression of φ(t) is easily obtained by inserting
Eq. (6) into the third Eq. (2) and integrating with respect to
time for φ(0) = 0; that is,

φ(t) = ±
√

1 + α2

α
arctan

[
sinh

(
α

1 + α2
vEt

)]
. (7)

Equations (2) for x(t) and y(t) can be solved numerically
only, except for a few particular cases [1,7]. As illustrated in
Fig. 2, a sled is launched at t = −∞ at an infinite distance
with a negative velocity, −vE , and zero angular velocity.
A negative velocity implies that the sled is moving with a
negative orientation with respect to its internal coordinate axis
x̂ ′ (see Fig. 1), i.e., pivot point, P , ahead of center of mass,
O. In this situation, the sled decelerates with time since the
first Eq. (3) implies v̇ > 0 and the rate of rotation increases,
thereby preserving its total energy v2

E/2. Hence, the negative
orientation of motion constitutes the unstable orientation of
motion mentioned earlier. At t = 0 the sled reaches zero
velocity at a maximum turning rate ω but subsequently
continues to move with a positive velocity in a positive x
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FIG. 2. Examples of deterministic CC trajectories for different
�φ∞ = πc, with c = √

(1 + α2)/α2.

direction. A positive v indicates that the sled is now moving
in the positive direction with respect to its axes x̂ ′, i.e., center
of mass ahead of the pivot point. The second Eq. (3) now
implies that the rate of rotation is decreasing while the first
equation implies that the sled will accelerate until it reaches
its asymptotic velocity vE at t = ∞. During this phase of the
motion, the sled moves in its stable orientation. We have termed
this sequence of events which results in an abrupt change of
velocity (see below) and a change in orientation a “tumble,”
inspired by the tumbling of self-propelled Escherichia coli
bacterial cells. The sled’s incoming and outgoing directions,
φ±∞ = ±π

√
1 + α2/2α, are mirror symmetric with respect to

the tumbling axis, φ = 0, and the angle between them is given
by �φ∞ = π

√
1 + α2/α. Under the condition �φ∞ = nπ ,

with n being a positive integer, the incoming and the outgoing
directions are parallel; n − 1 is the number of full turns
executed by the sled in addition to the tumbling event at t = 0.

III. THE STOCHASTIC SLED

A miniaturized CC sled placed in a fluctuating environment
in equilibrium at temperature T will be subject to viscous and
random perturbations, which must be incorporated in Eqs. (3),
namely,

v̇ = αω2 − γ v +
√

γ θξv(t),
(8)

ω̇ = − α

1 + α2
ωv − 
ω +

√

θ

1 + α2
ξω(t),

where ξv(t) and ξω(t) are stationary Gaussian noises with zero
mean and autocorrelation functions 〈ξi(t)ξj (0)〉 = 2δij δ(t),
with i,j = v,ω and θ = kT /l2. The noise force ξv(t) accel-
erates the sled along its long axis, while ξω(t) acts like a
stochastic torque driving the rotation of the sled around its

FIG. 3. Stochastic CC sled with p = 0: (a) 〈Ev(α)〉 and (b) 〈v(α)〉
vs α for θ = 0.1 and different values of γ = 
. Symbols represent
the data points obtained by numerically integrating Eqs. (8); the solid
curves are the analytical approximations for ε 
 1 derived in the text,
Eqs. (15) and (17).

pivot point, P . We treat the damping constants γ and 
 for
translation and rotation, respectively, as independent model
parameters, although in thermal equilibrium they are known
to be related [9].

Coupling the CC sled to a fluctuating environment stabilizes
its trajectories in the momentum space v,ω. The ensuing
stationary stochastic dynamics can be characterized in terms of
the first two moments of the variables v and ω, that is, by com-
puting the average velocity 〈v〉 and the average translational,
〈Ev(α)〉 = 〈v2〉/2, and rotational kinetic energy, 〈Eω(α)〉 =
(1 + α2)〈ω2〉/2 (Fig. 3). In the overdamped regime, i.e., for
large γ and 
, such quantities can be evaluated analytically.

A. Average total kinetic energy

If the CC sled is coupled to the heat bath symmetrically with

 = γ , its energy can be proven to satisfy the equipartition
energy. On multiplying Eqs. (8), respectively, by v and ω, one
derives two simple coupled multiplicative stochastic equations
for the translational part, Ev = v2/2, and the rotational part,
Eω = (1 + α2)ω2/2, of the system kinetic energy:

Ėv = αω2v − 2γEv +
√

2γ θEvξEv
(t),

(9)
Ėω = −αω2v − 2γEω +

√
2γ θEωξEω

(t),

where ξEv
(t) and ξEω

(t) have the same properties as ξv(t) and
ξω(t) in Eq. (8) and the multiplicative noise terms are defined
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according to the Stratonovitch prescription [13]. According to
Ito’s prescription Eqs. (9) must be rewritten as

Ėv = αω2v − 2γEv + γ θ +
√

2γ θEvξEv
(t),

(10)
Ėω = −αω2v − 2γEω + γ θ +

√
2γ θEωξEω

(t).

Adding these two equations term to term yields a simple
Langevin equation for the total kinetic energy, E = Ev + Eω,
which, transformed back into the more compact Stratonovich
notation, reads

Ė = −2γE + γ θ +
√

2γ θEξE(t), (11)

with ξE(t) defined, again, like the noises in Eq. (9). The
explicit solution of this equation shows that the sled energy
thermalizes independently of α with 〈E(α)〉 = θ ; the corre-
sponding Fokker-Planck equation for the stochastic variable E

returns a stationary probability density of Boltzmann’s type,
P (E) = e−E/θ/θ .

We remark here that the thermalization law of Eq. (11)
applies only for γ = 
. Still this is a remarkable property
when one considers that, due to the nonholonomic nature of the
system at hand, the Langevin Eqs. (8) do not satisfy a detailed
balance [14]. As a matter of fact, for α �= 0, the stationary
solution of the corresponding 2D Fokker-Planck equation in
the momentum space v,ω is not of the Boltzmann type.

B. Velocity moments

The stochastic average of the first Eq. (8) yields the exact
identities

〈v〉 = α〈ω2〉/γ, 〈ω〉 = 0. (12)

The first equation immediately tells us that the average velocity
〈v〉 only vanishes for α = 0, i.e., when the sled rotates
around its center of mass. This means that in the average
the sled spends the same time moving in positive and negative
orientation. For positive α, the average velocity 〈v〉 is positive,
indicating that the sled preferably moves in a positive direction.
This is the consequence of the instability of the movement in
the negative orientation we described in the previous section.
This bias towards a certain orientation of the sled during
movement does not imply a bias in any spatial direction of
the movement of the sled.

The first identity of Eq. (12) can be used to linearize the CC
equations as

v̇ = γ 〈v〉 − γ v +
√

γ θ ξv(t),
(13)

ω̇ = − α2

1 + α2

〈ω2〉
γ

ω − 
ω +
√


θ

1 + α2
ξω(t).

Such a linearization procedure holds good for

ε =
√

θ/γ
[α/(1 + α2)] 

√


/γ .

Indeed, the error made on replacing v by 〈v〉 in the second
Eq. (8) is of the order of

√
θωα/(1 + α2), which we want to

be small relative to the modulus of the damping term, −
ω,
we kept in the linearized Eq. (13) [Fig. 3(b)].

Accordingly, the results below apply for any α in the
overdamped regime, θ/
2 
 1, and for any thermal length,
θ/γ
, in the limits α → 0 and α → ∞. Multiplying both

sides of the second equation by ω and taking the stochastic
average yields the moment equation

1

2

d

dt
〈ω2〉 = −
〈ω2〉 − α2

1 + α2

〈ω2〉2

γ
+ 
θ

1 + α2
= 0,

whence, solving for 〈ω2〉 in steady state,

〈ω2(ε)〉 = 2θ/[(1 + α2)(
√

1 + 4ε2 + 1)]. (14)

Within the limits of validity of our linearization procedure,
the following approximations apply [Fig. 3(a)]:

〈Eω(α)〉 = (1 + α2)〈ω2(ε)〉/2 = θ/(
√

1 + 4ε2 + 1), (15)

〈v(α)〉 = α〈ω2(ε)〉/γ, (16)

and

〈Ev(α)〉 = [〈v(α)〉2 + θ ]/2 = [(α〈ω2(ε)〉/γ )2 + θ ]/2. (17)

The average energy Ev increases with increasing eccentricity
α because the phases of movement where the sled moves in its
stable orientation increase in duration, reducing the tumbling
events and hence the rotational energy Eω. Note that for γ = 


the approximate expressions in Eqs. (15) and (17) satisfy the
exact identity 〈E(α)〉v + 〈E(α)〉ω = θ , up to terms of order ε2.

C. Diffusion coefficient

The spatial diffusion of the stochastic CC sled in the plane
x,y is governed by the asymptotic diffusion law:

lim
t→∞〈r2(t)〉 = 4Dt.

D can be calculated from Eqs. (2) and (8) by applying Kubo’s
formula [15],

D =
∫ ∞

0
C(t)dt, (18)

where C(t) = 〈v(t) cos φ(t) v(0) cos φ(0)〉. For finite values of
α the diffusion constant D can be estimated as follows.

(i) We assume that C(t) factorizes as C(t) � 〈v(t)v(0)〉
〈cos φ(t) cos φ(0)〉. This assumption is consistent with the
linearization procedure introduced in Sec. III C and applies
for ε 
 1.

(ii) On combining the third Eq. (2) and the second Eq. (13),
we calculate the orientational diffusion law following [14]

〈cos φ(t) cos φ(0)〉 = (1/2) exp[−〈φ2(t)〉/2],

with

〈φ2(t)〉 = 2[θ
/
̃2(1 + α2)][t − (1 − e−
̃t )/
̃] (19)

and 
̃ = 
[1 + α2/(1 + α2)〈ω2(ε)〉/(γ
)]. For ε 
 1 one
sees immediately that 
̃ � 
(1 + ε2), so that 
̃ can be
conveniently replaced by 
. Accordingly, limt→∞〈φ2(t)〉 =
2Dφt , where

Dφ = θ/[
(1 + α2)] = ε2γ (1 + α2)/α2 (20)

is the sled’s angular diffusion constant in leading order of ε.
(iii) From the linearized Langevin equation for v in

Eq. (13) we obtain immediately the autocorrelation function
of the longitudinal velocity:

〈v(t)v(0)〉 � 〈v〉2 + θe−γ t .

012606-4



NONHOLONOMIC DIFFUSION OF A STOCHASTIC SLED PHYSICAL REVIEW E 93, 012606 (2016)

FIG. 4. Diffusion of the stochastic CC sled with p = 0. (a) D(α)
vs α for θ = 0.1 and different values of γ = 
. Symbols represent the
data points obtained by numerically integrating Eqs. (26); the solid
curves have been obtained by integrating Kubo’s formula, Eq. (21)
with 〈φ2(t)〉 given by Eq. (19). (b) Numerical data for D(0)/D0 with
D0 = θ/2γ vs θ compared with the predicted behaviors for small θ ,
Eq. (24), and large θ , Eq. (25) (dashed curves).

(iv) Thanks to the factorization in (i), Kubo’s integral of
Eq. (18) is finally approximated to

D = 1

2

∫ ∞

0
(〈v〉2 + θe−γ t )e−〈φ2(t)〉/2dt, (21)

with 〈v〉 and 〈φ2(t)〉 given, respectively, in Eqs. (16) and (19).
A comparison between simulation data and predictions based
on Kubo’s formula is displayed in Fig. 4(a).

The integral in Eq. (21) can be carried out explicitly for
appropriate parameter domains. For instance, in the limit
Dφ 
 
, i.e., for ε2 
 α2/(1 + α2)(
/γ ) or, equivalently,
θ/
2 
 1 + α2, the cos φ autocorrelation function decays
fast enough to justify the approximation 〈φ2(t)〉 = 2Dφt in
the exponential function [see Eq. (19)]. In conclusion,

D(α) = θ

2(γ + Dφ)
+ 〈v(α)〉2

2Dφ

� θ

2γ

[
1 + 


γ

α2

1 + α2

]
, (22)

where the second identity holds for ε → 0 and Dφ 
 γ .
Moreover, for α = 0 the integration in Eq. (18) can be

carried out exactly because the factorization of C(t) in (i)
and the expression in Eq. (19) for 〈φ2(t)〉 (with 
̃ = 
) are

rigorous. A straightforward calculation yields

D(0) = θ

2


(a)

∞∑
k=0

bk


(1 + k + a)
, (23)

with a = γ /
 + θ/
2, b = θ/
2, and 
(x) denoting the
gamma function.

The low- and high-temperature limits of D(0) can be either
extracted from Eq. (23) or calculated from the approximate
integral in Eq. (21). For both θ/
2 
 1 and Dφ 
 γ , this is
the same as setting α = 0 in Eq. (22), i.e.,

D(0) = θ

2γ

1

1 + θ/γ

. (24)

In the high-temperature regime, θ/
2 
 1 with Dφ 
 γ , the
autocorrelation function of cos φ decays much slower than
that of v, so that in Eq. (21) it has to be approximated by
〈φ2(t)〉 � θt2, and Kubo’s formula yields

D(0) =
√

πθ/8 eγ 2/2θ Erfc(γ /
√

2θ )

� 1

2

√
πθ

2

[
1 −

√
2

π

γ√
θ

+ · · ·
]
, (25)

where Erfc(x) denotes the complementary error function.
We have worked out this tedious algebra because the

final result is of some physical interest. At high temperature
the stochastic CC sled undergoes normal diffusion, but its
diffusion coefficient is not of the Einstein’s type; D(0) grows
with the square root of the temperature and not linearly with it,
like for a regular Brownian particle [16]. This conclusion can
be easily generalized to sleds with any α, as proven by direct
integration of Eq. (21) and supported by numerical simulation
(not shown).

IV. THE STOCHASTIC MOTORSLED

When equipped with an engine, the sled propels itself under
the action of a force p parallel to its axis. The engine pushes
the motorsled in the stable direction from P to O for p > 0
and in the unstable direction from O to P for p < 0. This
corresponds to adding a self-propulsion term in the Langevin
Eqs. (8), which now read

v̇ = αω2 − γ v + p +
√

γ θξv(t),
(26)

ω̇ = − α

1 + α2
ωv − 
ω +

√

θ

1 + α2
ξω(t).

This system can be regarded as a special case of the Appell-
Hamel problem [4,5]. Trajectory snippets of motorsleds
operated in reverse, p < 0, are displayed in Fig. 5. For
a positive force, p > 0, the sled performs with relatively
smooth random motion with little or no tumbling because the
propulsion force accelerates the sled in its stable direction. For
negative self-propulsion forces, p < 0, the sled is driven into
its unstable direction, and the result is more frequent tumbling.

A. Stability analysis

The stability of the Eqs. (26) in the noiseless regime ξv(t) =
ξω(t) = 0 is analyzed in Fig. 6. On imposing v̇ = 0 in the
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FIG. 5. Trajectory snippets of a stochastic motorsled with α =
0.5, θ = 0.5, γ = 1, and (a) p = 5.0, (b) p = −0.1, (c) p = −4.0,
and (d) p = −15. These values of p correspond to the different
diffusive regimes of Fig. 8. All snippets have the same time duration,
whereas their spatial axes have been scaled to fit the frame size.

first equation we obtain the identity v = (p + αω2)/γ , which
inserted in the second equation yields

ω̇ = −ω


[(
1 + p

|pt |
)

+ α

|pt |ω
2

]
≡ − d

dω
U (ω), (27)

where

pt = −γ
(1 + α2)/α < 0 (28)

FIG. 6. Stability analysis of the stochastic motorsled model with
α = 0.5, 
 = γ = 1, and p = 1 [panels (a) and (c)] and p = −3
[panels (b) and (d)]. Panels (a) and (b): Noiseless trajectories. Panels
(c) and (d): Contour plots of the probability densities P (v,ω) for
θ = 0.1. Crosses represent the stable points: 
0, panels (a) and (c),
and 
±, panels (b) and (d).

and U (ω) is an effective quartic potential. U (ω) is monostable,
with a minimum at ω0 = 0, for p � pt (stable motorsled), and
bistable, with minima at

ω± = ±
√

(pt − p)/α, (29)

for p < pt < 0 (unstable motorsled). Accordingly, the noise-
less dynamics of Eq. (26) gives one fixed point in the
momentum space v,ω for p > pt , 
0 = (v0,0) with v0 =
p/γ , and two fixed points for p < pt , 
± = (vt ,ω±) with
vt = pt/γ [Fig. 6(a)]. An unstable motorsled thus performs
circular orbits with radius rt , where

r2
t =

(
vt

ω±

)2

= (1 + α2)



γ

|pt |
pt − p

,

which shrinks as p grows smaller than pt [Fig. 6(b)]. The
transition of U (ω) from a monostable to a bistable potential
by lowering p across the critical value pt amounts to a
spontaneous breaking of the ω → −ω symmetry of Eqs. (26).

This point is further illustrated by linearizing Eqs. (26)
around their fixed points, namely,

δv̇ = −γ δv,
(30)

δω̇ = −
(1 + p/|pt |)δω,

around 
0, and

δv̇ = −γ δv + 2αω±δω,
(31)

δω̇ = −[α/(1 + α2)]ω±δv,

around 
+. [The dynamics around 
− is symmetric under
replacing ω± → −ω±.] In both cases δv and δω denote the
displacement of v and ω with respect to the respective fixed
values. One notices by inspection that all three fixed points are
attracting with 
0 a sink node [the trajectories converge toward

0 from all directions] and 
± spiral sinks with opposite
chirality [the trajectories approach 
± spiraling, respectively,
clockwise and counterclockwise, Fig. 6(b)]. The spiraling
dynamics around 
± can be better visualized by taking the
time derivative of the corresponding linearized equations,
that is,

δv̈ = −γ δv̇ − �2δv, δω̈ = −γ δω̇ − �2δω, (32)

with �2 = 2ω2
±α2/(1 + α2). In this formalism, the trajectory

orientation around 
± has to be set as an appropriate initial
condition.

We remark that the present stability analysis for the
self-propelled CC sled differs from that found in the current
literature on nonhononomic dynamics [7], due to the presence
of the viscous terms −γ v and −
ω. With regard to this,
we notice that as γ and 
 tend to zero, pt vanishes, so
that, as expected, for p < 0 there are two symmetric fixed
points, 
± = (±|p|,0), and for p > 0 none (
0 moves up to
infinity) [8]. In the frictionless regime, 
± are center fixed
points, around which the trajectories trace (clockwise and
counterclockwise) closed orbits of the equation v2 = v2

M −
(1 + α2)(αω2 − |p|)/α + |p| ln(αω2/|p|), for any vM �= 0.

B. Velocity moments

The additive noises ξv(t) and ξω(t) do not change the
stability properties of the linearized Langevin Eqs. (30) and
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(31). This is confirmed by the contour plots of Fig. 6, which
show how the probability densities P (v,ω), obtained by
numerical simulation, peak in the vicinity of 
0 for p > pt ,
panel (c), and 
± for p < pt , panel (d). The shift of the P (v,ω)
peaks from the fixed points 
0 and 
± is due to the absence
of a detailed balance in Eqs. (8) and, therefore, Eq. (26), for
α �= 0.

The first moment of the observable v(t) as a function of
p can be calculated as follows. The expression of Eq. (12)
for 〈v〉 is now modified to account for the force p, 〈v〉 =
(p + α〈ω2〉)/γ . At low temperatures, the quantity 〈ω2〉 can
be estimated from the linearized Langevin Eqs. (30) and (31)
upon restoring the noise terms of Eqs. (26), namely,

δv̇ = −γ δv +
√

γ θ ξv(t),
(33)

δω̇ = −


(
1 − p

pt

)
δω +

√

θ

1 + α2
ξω(t),

for p > pt , and

δv̇ = −γ δv + 2αω±δω +
√

γ θ ξv(t),
(34)

δω̇ = − α

1 + α2
ω±δv +

√

θ

1 + α2
ξω(t),

in the neighborhood of ω = ω± for p < pt . A simple moment
analysis [14] yields 〈δv〉 = 〈δω〉 = 0 and

〈δvδω〉 = 0, 〈δv2〉 = θ, 〈δω2〉 = θ

1 + α2

|pt |
p − pt

, (35)

for p 
 pt , and

〈δvδω〉 = 
θ

αω±
, 〈δv2〉 = θ

(
1 + 2




γ

)
,

(36)

〈δω2〉 = θ

2(1 + α2)

(
1 + 2




γ

)
+ θγ


2α2ω2±
,

for p 
 pt . Accordingly, the approximated expressions for
〈v〉 are

〈v(p)〉 = p/γ + θ
/(p − pt ), (37)

for p 
 pt , and

〈v(p)〉 = pt

γ
+ θ

2γ

α

1 + α2

(
1 + 2




γ

)
+ θ


2(pt − p)
, (38)

for p 
 pt . Predictions in Eqs. (37) and (38) compare well
with the numerical data reported in Fig. 7.

In conclusion, for appropriately low θ values, the curves
〈v(p)〉 approach the oblique asymptote 〈v+〉 = p/γ for
p → +∞ and the horizontal asymptote v̄− = −|pt |/γ for
p → −∞, with a zero at p0 = −α〈ω2(ε)〉 � −αθ/(1 + α2)
(stopping force). We remark that, in the regime of validity of
the present analysis, p0 and pt satisfy the inequality pt < p0

and tend to the same limits, respectively, p0 = 0 and pt =
−∞, for both α → 0 and α → ∞. From a physical viewpoint
this means that propelling the sled in the stable direction
boosts its mobility, whereas propelling it in the opposite
direction increases the tumble rate and thus suppresses 〈v(p)〉.
Suppression by tumbling is more prominent around α = 1,
where |pt | has a minimum.

FIG. 7. Dynamical instability of a propelled sled. (a) 〈v〉 vs p

for α = 1, θ = 0.1, and different γ (see legends). Numerical data
points approach the predicted asymptotes v̄ for p → ±∞ [Eqs. (37)
and (38), dashed lines]. (b) |v−| vs α for γ = 1; simulation data
points are plotted against the analytical curve of Eq. (38). Inset: The
corresponding stopping force: the numerical estimate, pm, vs the
analytical prediction, p0.

The p dependence of the kinetic energy follows im-
mediately from the approximate expressions for 〈v(p)〉 in
Eqs. (37) and (38). We compare here the asymptotic behaviors
of the translational energy 〈Ev〉 = (1/2)〈v2〉 and the rotational
energy 〈Eω〉 = (1/2)(1 + α2)〈ω2〉, by singling out the leading
terms in |p| for |p/pt | 
 1. For p 
 pt , 〈ω2〉 = 〈δω2〉 �
θ (γ
/αp) is negligible; hence

〈E〉 � 〈Ev〉 = p2/2γ 2.

Vice versa, for p 
 pt the translational term of the kinetic
energy approaches a constant, 〈Ev〉 � v2

−/2 = |pt |2/2γ 2,
while the rotational term increases with |p|, 〈Eω〉 � (1 +
α2)ω2

±/2 = pt (p − pt )/(2γ
). By adding these two quantities
we obtain

〈E〉 = (pt/2γ ) [p/
 − pt (

−1 − γ −1)] � ppt/(2γ
).

This result corroborates the mechanisms of mobility suppres-
sion by dynamical instability. The total kinetic energy 〈E〉
grows quadratically with p in the limit p → +∞ and linearly
only in the opposite limit p → −∞. Indeed, pushing the sled
harder in the stable direction increases its translational energy,
while pushing it in the unstable direction only makes it rotate
faster.
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FIG. 8. Dynamical instability of a propelled sled: D vs p for
γ = 1. (a) θ = 0.5 and different α. (b) α = 0.5 and different θ (see
legends). Data (points) from numerical integration and approximate
curves for D(p) [Eqs. (39), solid lines, and (42), dashed lines] are
compared.

C. Diffusion

We conclude this section by calculating the diffusion
coefficient D as a function of the self-propulsion force p at
low temperature. We do so by applying again Kubo’s formula,
Eq. (18), to the linearized version of the motorsled’s Langevin
equations, Eqs. (30) for p > pt and Eqs. (31) for p < pt .

For p > pt and ε 
 1 the derivation of D follows step by
step the derivation of Eq. (22), except that Dφ is now replaced
by Dφ → Dφ/(1 + p/|pt |)2 [see second Eq. (33)] and 〈v(α)〉
by 〈v(p)〉, Eq. (37), to account for the force p. With this
substitution, the first equality in Eq. (22) still applies, whereas
the second equality, correct in leading order of ε, now reads

D(p) � θ

2γ

[
1 + 


γ

α2

1 + α2

(
1 + p(p − pt )

ptp0

)2
]
, (39)

with p0 as defined in Sect. IV B. For α = 0 and large p

the approximate expression of Eq. (39) coincides with the
outcome of an exact calculation [16], D(p) = (p/γ )2
/2θ

[see Fig. 8(a)]. However, a crossover from a quadratic to a
quartic power law is predicted in the interval |p0| < p < |pt |,
for α > 0. The above estimate for D(p) appears to be in close
agreement with the numerical data of Fig. 8 even for values of
p well to the left of the minimum of D(p), pm � p0, which
corresponds with the zero of 〈v(p)〉. The coincidence of the

minimum of D(p) with the zero of 〈v(p)〉 is illustrated in the
inset of Fig. 7(b).

For p 
 pt , the autocorrelation function to be inserted in
Kubo’s formula, Eq. (18), factorizes as

C(t) = v2
−〈cos φ(t) cos φ(0)〉

+ 〈δv(t)δv(0) cos φ(t) cos φ(0)〉
� cos(ω±t)〈cos δφ(t) cos δφ(0)〉[v2

− + 〈δv(t)δv(0)〉],
(40)

where δφ(t) = φ(t) − ω±t , v− is the leading term of Eq. (38),
v− = −|pt |/γ , and we made use of the linearization arguments
of Sec. IV A to set the cross terms 〈sin δφ(t) cos δφ(0)〉 to
zero. From the linearized Langevin equations of the preceding
section, we also have

〈δv(t)δv(0)〉 = 〈δv2〉e−γ t/2 cos(ω1t), (41)

with 〈δv2〉 = (1 + 2
/γ )θ and ω2
1 = �2 − (γ /2)2. The an-

gular fluctuations, cos δφ(t), decay much slower than the
speed fluctuations, δv(t), namely, 〈cos δφ(t) cos δφ(0)〉 =
(1/2)e−D̃φ t , with D̃φ = (Dφ/4)[pt/(pt − p)]2. The effective
diffusion constant D̃φ has been extracted from the linearized
Langevin equation,

ω̇ = −dU (ω)/dω − 
ω +
√


θ/(1 + α2) ξω(t)

[see Eq. (27)], upon expanding U (ω) in the neighborhood of
its minima ±ω±. As a consequence, the spatial diffusion of
an unstable motorsled is governed by the fluctuations of its
longitudinal velocity, v(t). Accordingly, to compute Kubo’s
integral in leading order it suffices to approximate C(t) �
(1/2)〈δv(t)δv(0)〉 cos(ω±t); hence

D(p) � θ

4γ

(1 + 2
/γ )(γ /ω±)2[1 + 2α2/(1 + α2)]

[1 − 2α2/(1 + α2)]2 + (γ /ω±)2
. (42)

This asymptotic expression for D(p) is inverse proportional to
ω2

±; the sled’s diffusivity is thus suppressed according to the
power law

D(p)

D0
∝ pt

pt − p
, (43)

for all α except for α = 1, where D(p) = (1 + 2
/γ )D0.
The estimates of Eqs. (39) and (42) for D(p) are in close
agreement with the simulation results plotted in Fig. 8(b),
where for p > pt and p 
 pt the ratio D(p)/D0 is apparently
independent of θ/γ 2. The case α = 1 is remarkable. The
horizontal asymptote of D(p) for p → −∞ signals a sort
of resonant diffusion effect: For α = 1 the angular frequency
associated with the symmetry breaking mechanism, ω±, and
the angular frequency of the orbits spiraling around the fixed
points 
± in the v,ω plane, �, coincide; as a consequence,
the sled diffuses insensitive to p, as if it were a free Brownian
particle with the effective temperature (1 + 2
/γ )θ/4.

The existence and position of the D(p) peak are consistent
with the phenomenological analysis of Ref. [17], according
to which the dependence of the drift speed, 〈v〉, and the
diffusivity curve, D, on the external driving parameter, p,
would be closely related. In particular, an excess diffusion peak
is expected to occur where the gradient of |〈v〉| has a maximum,
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that is, for p ∼ pt . A comparison of the numerical data of
Figs. 7(a) and 8(a) for p < p0 confirms such a coincidence.

V. CONCLUSIONS

As an additional motivation of the present work, we
point out similarities of the behavior of our stochastic
nano-motorsled and the tumble-and-run dynamics of active
microswimmers at low Reynolds numbers. An artificial mi-
croswimmer enhances its diffusivity by harvesting kinetic
energy from an active suspension fluid [10,11], as a result
of some sort of functional asymmetry of its own [18,19]. The
active particle thus propels itself with constant speed v0, as if
subjected to an effective propulsion force [20], p, such that
v0 = p/γ . However, its center of mass and the center of the
effective force propelling it (say, a bimetallic colloidal Janus
particle [10]) may well not coincide. The nano-motorsled can
then stylize a wide class of eccentric artificial microswimmers.

As an experimental example, we mention the reported case
[21] of an active swimmer moving in a thin layer of suspension
fluid, subject to gravity: If the substrate is touched with a snag,
this acts as a pivot point, very much like the blade of a sled. For
a noneccentric swimmer, α = 0, the approximate expression
derived for the diffusion constant, Eq. (39), in the limit of
large p, coincides with the quadratic expression adopted in
the current literature, D = v2

0/2Dφ , as long as one identifies
v0 = p/γ and Dφ = θ/
.

Vice versa, for α > 0 a motorsled operated in the unstable
mode behaves like an overdamped microswimmer with propul-
sion speed v0 and angular frequency ±ω1 [see Eq. (41)]. It will
spiral either clockwise or counterclockwise [22], switching
orientation at random. The ensuing random sequence of runs
and tumbles is thus predicted to suppress the swimmer’s
diffusivity, no matter how strong the applied force (e.g., the
fuel concentration in the suspension [19]).
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