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Analysis of spatial correlations in a model two-dimensional liquid through eigenvalues
and eigenvectors of atomic-level stress matrices
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Considerations of local atomic-level stresses associated with each atom represent a particular approach to
address structures of disordered materials at the atomic level. We studied structural correlations in a two-
dimensional model liquid using molecular dynamics simulations in the following way. We diagonalized the
atomic-level stress tensor of every atom and investigated correlations between the eigenvalues and orientations of
the eigenvectors of different atoms as a function of distance between them. It is demonstrated that the suggested
approach can be used to characterize structural correlations in disordered materials. In particular, we found that
changes in the stress correlation functions on decrease of temperature are the most pronounced for the pairs of
atoms with separation distance that corresponds to the first minimum in the pair density function. We also show
that the angular dependencies of the stress correlation functions previously reported by Wu et al. [Phys. Rev. E
91, 032301 (2015)] do not represent the anisotropic Eshelby’s stress fields, as it is suggested, but originate in the
rotational properties of the stress tensors.
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I. INTRODUCTION

It is relatively easy to describe structures of crystalline
materials due to the presence of translational periodicity. This
periodicity implies that atoms whose coordinates differ by
a vector of translation would have identical atomic environ-
ments, if all atoms were at equilibrium positions. In glasses
and liquids, in contrast, there is no translational periodicity
and every atom, in principle, can have a distinct atomic
environment [1,2]. Largely for this reason the description
of disordered materials continues to be a challenge. Many
different approaches have been suggested to describe disor-
dered structures. However, none of them allows establishing
a clear link between the structural and dynamic properties of
disordered matter [1,2].

The concept of local atomic-level stresses was introduced to
describe model structures of metallic glasses and their liquids
[2–6]. For a particle i surrounded by particles j , with which
it interacts through pair potential U (rij ), the αβ component of
the atomic-level stress tensor of atom i is defined as [3–6]:

σ
αβ

i = 1

Vi

∑
j �=i

[
dU

drij

](
rα
ij r

β

ij

rij

)
. (1)

The sum over j in (1) is over all particles with which
particle i interacts. In (1) Vi is the local atomic volume. In
the present considerations it is assumed that Vi is just the
inverse of the average atomic number density Vi ≡ 1/ρo. By
convention, the definition without Vi corresponds to the local
atomic-level stress element [7,8]. Note that the α component
of the force acting on particle i from particle j is f α

ij =
[dU (rij )/drij ](rα

ij /rij ), where �rij = �rj − �ri is the radius vector
from i to j . Also note that the atomic-level stress tensor (1) is
symmetric with respect to the indexes α and β. Thus in three
dimensions it has six independent components [4–6], while in
two dimensions it has three independent components.

There are several important results associated with the
concept of atomic-level stresses. One result is the equipartition
of the atomic-level stress energies in liquids [4–6]. Thus
the energies of the atomic-level stress components were
defined and it was demonstrated for the studied model liquid
systems in three dimensions that the energy of every stress
component is equal to kbT /4. Thus the total stress energy,
which is the sum of the energies of all six components, is
equal to 6 × kbT /4 = (3/2)kbT , i.e., the potential energy of
a classical three-dimensional (3D) harmonic oscillator. An
explanation for this result has been suggested [4–6]. The
equipartition breaks down in the glass state. Then there was
an attempt to describe the glass transition and fragilities of
liquids on the basis of atomic-level stresses [9]. Another result
is related to the Green-Kubo expression for viscosity. Thus
the correlation function between the macroscopic stresses
that enter into the Green-Kubo expression for viscosity
was decomposed into the correlation functions between the
atomic-level stress elements. Considerations of the obtained
atomic-level correlation functions allowed demonstration of
the relation between the propagation and dissipation of shear
waves and viscosity. This result, after all, is not surprising in
view of the existing generalized hydrodynamics and mode-
coupling theories [10,11]. However, in Refs. [7,8,12,13] the
issue has been addressed from a new perspective and the
relation between viscosity and shear waves was demonstrated
very explicitly.

Recently it has been claimed in Ref. [14] that considerations
of the correlations between the atomic-level stresses allow
observation of the angular-dependent stress fields, which are
present in liquids in the absence of any external shear. In many
respects our attempt to understand the results presented in
Ref. [14] lead to the present publication.

Here we demonstrate that the angular dependencies of
the stress correlation functions presented in Ref. [14] do not
correspond to the angular-dependent stress fields (which can
exist in the system). We show that the angular dependencies of
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the stress correlation functions observed in Ref. [14] originate
from the rotational properties of the stress tensors.

However, the ideas presented here go beyond the scope of
Ref. [14]. Here we address the atomic-level stresses and cor-
relations between the atomic-level stresses of atoms separated
by some distance from a new and yet very natural perspective.
It is surprising that this approach has not been investigated in
detail before. Reasoning in a similar direction was presented
in Refs. [15,16]. However, considerations presented there do
not address correlations between the atomic-level stresses of
different atoms.

This paper is organized as follows. In Sec. II the idea of
the approach is presented. Section III is a reminder about
transformational properties of the stress tensors. Atomic-level
stress correlations functions are discussed in the context of the
present approach in Sec. IV. In Sec. V the connection between
the Eshelby’s inclusion problem and the atomic-level stress
correlation functions is analyzed. In Sec. VI the results of our
MD simulations are described. We conclude in Sec. VII.

II. STRESS TENSOR ELLIPSES

The atomic-level stress tensor σ
αβ

i defined with Eq. (1) is
real and symmetric. Thus it can be diagonalized and, in two
dimensions, two real eigenvalues (λ1

i and λ2
i ) and two real

eigenvectors can be found. The tensor σ
αβ

i in two dimensions
has three independent components. These three parameters
determine two eigenvalues and the rotation angle that describes
orientation of the orthogonal eigenvectors with respect to the
reference coordinate system. Let us associate with each atom
i an ellipse with principal axes oriented along the eigenvectors
of σ

αβ

i and having lengths λ1
i and λ2

i , as depicted in Fig. 1.
Previously atomic-level stresses were discussed mostly

in three dimensions. In 3D symmetric atomic-level stress
tensors have six independent components. Thus, previously,
in particular in discussions related to the atomic-level stress
energies, it was assumed that the local atomic environment of
an atom is described by six independent stress components.
However, in view of the present considerations, it is clear that

Y

X

λ ϕ
1

2
λ

FIG. 1. Atomic-level stress tensor of any atom can be diagonal-
ized. Obtained eigenvalues, λ1 and λ2, can be associated with the
lengths of the principal ellipse’s axes. The orientation of the ellipse
with respect to the reference coordinate system is given by the angle,
ϕ, between the longest ellipse’s axis and the x axis of the reference
frame.

if the atomic-level stress tensor is diagonalized then its three
eigenvalues describe the geometry of local atomic environ-
ment, while its three eigenvectors describe the orientation of
the associated ellipsoid with respect to the chosen coordinate
system.

In model metallic glasses in three dimensions atoms often
have 12 or 13 nearest neighbors [1,2,17]. Working with atomic-
level stresses effectively reduces the richness of all possible
local atomic geometries to just three numbers. Of course, that is
more convenient than dealing with more numbers associated,
for example, with the description based on Voronoi indexes
[1,2]. However, it is unclear for which purposes it is enough to
consider only three numbers and for which purposes it may not
be enough. In consideration of the stress correlations between
two atoms in three dimensions there are 12 physically relevant
parameters: six eigenvalues (three on each atom) describe the
geometries of the two ellipsoids and six parameters describe
orientations of the ellipsoids with respect to the line from
one ellipsoid to another. A representation in a particular
coordinate frame needs another three parameters that describe
the orientation of the line from one atom to another.

In Refs. [15,16] correlations between the eigenvalues of the
same atom has been considered for 2D and 3D Lennard-Jones
liquids. There it was argued that there are correlations between
the stress eigenvalues of the same atom.

Here we are interested in the correlations between the stress
elements of different atoms. If we want to consider stress
correlations between two different atoms in two dimensions
then we associate ellipses with both atoms and consider the
correlations between the eigenvalues and the orientations of the
ellipses, see Fig. 2. It is clear that in isotropic one-component
liquids all physically meaningful pair correlation functions
should depend only on distance rij .

If the local atomic-level stress tensor is known in the
reference frame then its eigenvalues and eigenvectors can be
found. In two dimensions we have:

λ
1,2
i = (1/2)

[(
σxx

i + σ
yy

i

) ±
√(
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)2 + 4
(
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i

)2]
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(
ϕ

1,2
i

) = (
V

1,2
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1,2
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) = σ
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i

/(
λ

1,2
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)
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jiϕ
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ij i ij
ψ   =   ϕ   −   θ ijji j
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FIG. 2. The orientations of the ellipses with respect to the line
connecting atoms i and j are given by the angles ψij and ψji . The
orientation of the line connecting atoms i and j with respect to the X

axis of the reference frame is given by the angle θij .
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Further we will assume that ϕi ∈ (−π/2,π/2]. Physically
angle ϕi is defined up to an integer multiple of π as rotation
by angle π does not change the ellipse.

In the orthogonal coordinate system based on the eigen-
vectors of a particular local atomic stress tensor this stress
tensor is diagonal with eigenvalues λ1 and λ2 on the diagonal.
In potentials with repulsive and attractive parts the values of
some λ can be negative. The negative value of λ corresponds
to the case when the atomic environment of an atom is dilated
along the eigenvector associated with this λ. Here we assume
that potentials that we consider are purely repulsive. Such
systems are held together at some density by periodic boundary
conditions. In such cases, both λ1 and λ2 are positive and we
order them to have λ1 � λ2.

III. TRANSFORMATIONS OF STRESS TENSORS
UNDER ROTATIONS

In this section we provide some well-known facts about
transformations of stress tensors under rotations [18]. We will
need these facts in our further considerations.

Let us suppose that there are A and B coordinate frames
in two dimensions and that frame B is rotated with respect
to frame A on angle θ in the counterclockwise direction. The
components of the stress tensor S in frame B can be expressed
through the components of the stress tensor in frame A using
the rotation matrix R(θ ):

SB = R(θ )SART (θ ), R(θ ) ≡
[

cos(θ ) sin(θ )

− sin(θ ) cos(θ )

]
, (4)

where RT (θ ) is the transpose of R(θ ). In terms of components,
(4) leads to:

σxx
B = σxx

A [cos(θ )]2 + σ
yy

A [sin(θ )]2 + σ
xy

A sin(2θ ), (5)

σ
yy

B = σxx
A [sin(θ )]2 + σ

yy

A [cos(θ )]2 − σ
xy

A sin(2θ ), (6)

σ
xy

B = −(1/2)
[
σxx

A − σ
yy

A

]
sin(2θ ) + σ

xy

A cos(2θ ). (7)

Let us now suppose that the angle between the first
eigenvector of atom i and the x̂ axis of our reference frame is
ϕi . In the frame of its eigenvectors the components of the stress
tensor of atom i are σxx

i = λ1
i , σ

yy

i = λ2
i , σ

xy

i = 0, σ
yx

i = 0.
In order to find the components of the stress tensor of atom
i in our reference frame we should rotate the components of
the stress tensor in the frame of its eigenvectors on angle −ϕi

using (5), (6), (7). Thus we get:

σxx
i = λ1

i cos2(ϕi) + λ2
i sin2(ϕi), (8)

σ
yy

i = λ1
i sin2(ϕi) + λ2

i cos2(ϕi), (9)

σ
xy

i = (1/2)
(
λ1

i − λ2
i

)
sin(2ϕi). (10)

Note also that: σxx
i − σ

yy

i = (λ1
i − λ2

i ) cos(2ψij ).

IV. CORRELATION FUNCTIONS BETWEEN THE
ELEMENTS OF ATOMIC-LEVEL STRESS TENSORS

OF DIFFERENT ATOMS

In this section we derive the expressions for selected
correlation functions between the atomic-level stress elements
in terms of eigenvalues and eigenvectors of atomic-level stress
matrices.

A. Correlation functions in the directional frame

It is useful to start this section from an argument that plays
a very important role in this paper.

Let us consider a pair of atoms i and j separated by radius
vector r ij = rj − r i . We associate with the direction of r ij a
directional coordinate r ij frame whose x̂ axis is along r ij . The
notations σ

αβ

ij (i) and σ
δγ

ij (j ) will be used for the αβ and δγ

components of the stress tensors of atoms i and j in the r ij

frame. Further, we consider the products σ
αβ

ij (i)σ δγ

ij (j ) in the
r ij -directional frame and average such products over the pairs
of atoms separated by radius vector r ij = r . It is important
that this averaging is performed over the values of the stress
tensor components in the representation associated with the
r ij frame.

For the following it is necessary to realize that for isotropic
systems of particles, the averaging

〈
σ

αβ

ij (i)σ δγ

ij (j )
〉
r ij =r (11)

should not depend on the direction of r , while it can depend
on r = |r|. This is essentially what isotropicity means.

B. Transformation of correlation functions under rotations

Our goal in this section is to express the correlation
functions between the stress tensor components in an arbitrary
frame in terms of the correlation functions in the r ij frame
introduced in the previous subsection.

If the direction from atom i to atom j forms angle θij with
the x axis of our reference coordinate frame, then the x axis of
the directional coordinate frame also forms angle θij with the
x axis of our reference frame. Therefore, in order to find the
stress tensor in our reference coordinate frame it is necessary
to rotate the stress tensor in the representation associated with
the directional coordinate frame on angle −θij . Thus, let us
express the product σxy(i)σxy(j ) in the reference coordinate
frame, which is rotated on the angle −θij with respect to r ij

frame in terms of stress tensor components in the r ij frame.
For this we should rotate, according to (5), (6), (7), the

stress tensor components of atoms i and j in the r ij frame on
the angle −θij and then form the products of the stress tensor
components in the rotated frame. From (7) we get:

σ
xy

θij
(i)σxy

θij
(j ) = (1/4)

[
σxx

ij (i) − σ
yy

ij (i)
]

× [
σxx

ij (j ) − σ
yy

ij (j )
]
[sin(2θij )]2

+ (1/4)
[
σxx

ij (i) − σ
yy

ij (i)
]
σ

xy

ij (j )[sin(4θij )]

+ (1/4)σxy

ij (i)
[
σxx

ij (j ) − σ
yy

ij (j )
]
[sin(4θij ))]

+ σ
xy

ij (i)σxy

ij (j )[cos(2θij )]2. (12)
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The right-hand side of (12) can be expanded in terms
containing the products of the stress tensor components in
the r ij frame.

Let us now average (12) over the pairs of atoms i and
j separated by r ij = r (this fixes the value of θij = θ ). For
briefness and as an example let us consider a particular term,
σ

xy

ij (i)σxy

ij (j )[cos(2θij )]2, that appears on the right-hand side
of (12). In performing the averaging we get:

〈
σ

xy

ij (i)σxy

ij (j )[cos(2θij )]2
〉
r ij =r (13)

= 〈
σ

xy

ij (i)σxy

ij (j )
〉
r ij =r [cos(2θ )]2. (14)

In the transition from (13) to (14) the [cos(2θij )]2 was taken
out of the averaging since the averaging is performed for a
fixed value of r ij = r and it also means that the averaging
is performed for a fixed value θij = θ . It follows from
the previous section (Sec. IV A) that in isotropic medium
〈σxy

ij (i)σxy

ij (j )〉r ij =r should not depend on the direction of r ,
but can depend on r = |r|.

Thus, in performing the averaging of the products of the
stress tensor components in (12), as it was done in (13), (14),
it is possible to average over all pairs of atoms separated by
rij = r irrespective of the direction of r . It is only necessary to
ensure that the values of the stress tensor components on the
right-hand side of (12) are always calculated in the directional
r ij frame corresponding to each pair of atoms i and j .

It follows from the above considerations that the value of the
correlation function 〈σxy(i)σxy(j )〉r ij =r at some r and θ can be
expressed as a linear combination of the correlation functions
between the atomic-level stress elements in the r ij frame
multiplied on some functions of θ . Note that the dependence
on θ in (12) appears in the result of rotation from the r ij

frame into the frame in which r ij forms angle θ with the x̂

axis. Thus, in an isotropic medium the physical essence of the
atomic-level stress correlations is contained in the correlation
functions associated with the r ij frame. In an isotropic medium
these correlation functions should depend only on distance.

C. Expressions for the selected stress correlation functions
in terms of eigenvalues and eigenvectors

in the r i j directional frame

It follows from the two previous sections (Secs. IV A, IV B)
that in order to find correlation functions of the atomic-level
stress components in any coordinate frame it is sufficient to
know correlation functions in the directional r ij frame.

It is easy to express the correlation functions in the r ij frame
in terms of eigenvalues and eigenvectors of the atomic-level
stress matrices. Let us suppose that the first eigenvectors of
the stress matrices of atoms i and j form angles ψij and ψji

with the direction r ij , as shown in Fig. 2.
From (8), (9) it follows that the rotation invariant atomic-

level pressure on atom i is

pi ≡ (1/2)
[
σxx

ij (i) + σ
yy

ij (i)
] = (1/2)

(
λ1

i + λ2
i

)
. (15)

Correspondingly,

〈pipj 〉r ij =r = (1/4)
〈(
λ1

i + λ2
i

)(
λ1

j + λ2
j

)〉
r ij =r . (16)

It also follows from (8), (9), (10) that:

〈
piσ

xy

ij (j )
〉
r ij =r = (1/4)

〈(
λ1

i + λ2
i

)(
λ1

j − λ2
j

)
sin(2ψji)

〉
r ij =r ,

(17)〈
pi

[
σxx

ij (j ) − σ
yy

ij (j )
]〉

r ij =r

= (1/2)
〈(
λ1

i + λ2
i

)(
λ1

j − λ2
j

)
cos(2ψji)

〉
r ij =r , (18)

〈
σ

xy

ij (i)σxy

ij (j )
〉
r ij =r

= (1/4)
〈(
λ1

i − λ2
i

)(
λ1

j − λ2
j

)[
sin(2ψij ) sin(2ψji)

]〉
r ij =r ,

(19)〈
σ

xy

ij (i)
[
σxx

ij (j ) − σ
yy

ij (j )
]〉

r ij =r

= (1/2)
〈(
λ1

i − λ2
i

)(
λ1

j − λ2
j

)[
sin(2ψij ) cos(2ψji)

]〉
r ij =r ,

(20)〈[
σxx

ij (i) − σ
yy

ij (i)
][

σxx
ij (j ) − σ

yy

ij (j )
]〉

r ij =r

= 〈(
λ1

i − λ2
i

)(
λ1

j − λ2
j

)[
cos(2ψij ) cos(2ψji)

]〉
r ij =r . (21)

Note that the right-hand sides of (15)–(21) depend on the
invariant parameters of the atomic-level stress ellipses and on
their rotation invariant orientations with respect to the direction
of r ij . Thus, in finding how (16)–(21) depend on r in isotropic
systems it is possible to average over all pairs separated by
r irrespective of the orientation of r . This is in agreement
with the argument from Sec. IV A that states that correlation
functions between the components of atomic-level stresses
in the directional r ij = r frame should not depend on the
direction of r .

D. Stress correlation function 〈σ x y(i)σ x y( j )〉r i j =r

in the arbitrary reference frame expressed in terms
of eigenvalues and eigenvectors

The correlation function 〈σxy(i)σxy(j )〉r ij =r in any fixed
reference frame depends on r , i.e., on r and θ . Using expres-
sions (12)–(14), (19)–(21) it is straightforward (although a bit
tedious) to obtain the following expression:

〈σxy(i)σxy(j )〉r ij =r

= (1/8)[F1(r) − F2(r) cos(4θ ) + F3(r) sin(4θ )], (22)

where

F1(r) ≡ 〈F1〉r ij =r

= 〈(
λ1

i − λ2
i

)(
λ1

j − λ2
j

)
cos(2ψij − 2ψji)

〉
r ij =r , (23)

F2(r) ≡ 〈F2〉rij =r

= 〈(
λ1

i − λ2
i

)(
λ1

j − λ2
j

)
cos(2ψij + 2ψji)

〉
r ij =r , (24)

F3(r) ≡ 〈F3〉r ij =r

= 〈(
λ1

i − λ2
i

)(
λ1

j − λ2
j

)
sin(2ψij + 2ψji)

〉
r ij =r . (25)

Note that the dependence of (22) on θ originates from (12),
i.e., from the rotation from the directional r ij frame into the
coordinate frame that forms angle θ with the direction of
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r ij = r = [r cos(θ ),r sin(θ ]. Thus the dependence of (22) on
θ merely reflects the rotational properties of the stress tensors.
Also note that all physically meaningful information about
correlations between the parameters of atomic-level stresses is
contained in functions F1(r), F2(r), and F3(r).

In finding F1(r), F2(r), and F3(r) in isotropic medium
the averaging can be performed over all pairs of atoms i

and j separated by distance r irrespectively of the direction
of r .

Two alternative derivations of the formula (22) are pre-
sented in Appendixes A, B. In particular, Appendix A contains
a very formal and general derivation of the above angular
dependencies from the rotational properties of the stress
tensors.

In order to understand the meaning of correlation function
F1 let us consider the contribution from some atoms i and j to
this function. It follows from (23) that:

(i) If one of the ellipses is a circle, for example λ1
i =

λ2
i , then the contribution from this pair of atoms is zero.

Thus, correlation function F1(r) contains contributions only
from those pairs of atoms in which there are finite shear
deformations of the environments of both atoms.

(ii) If the ellipses of atoms i and j have the same
orientation with respect to the line connecting them then
cos(2ψij − 2ψji) = 1 and the contribution from this pair of
ellipses is the maximum possible contribution from the pairs
of ellipses with the same distortions.

(iii) If the ellipses of atoms i and j are orthogonal to
each other, i.e., ψij = ψji ± π/2 then cos(2ψij − 2ψji) = −1
and the contribution from this pair is the minimum possible
contribution.

(iv) If ψij = ψji ± π/4 then the contribution is zero.
Note also the following. If the large axes of the ellipses of

atoms i and j are aligned then these ellipses have the same
orientation with respect to any line, not only the line that
connects them. Thus, it is likely that rather simple organization
of ellipses provides a maximum to the function F1. It is the
organization when all ellipses have the same shear distortions
and the same orientations. This observation might be of interest
for understanding the nature of viscosity. It follows from the
Green-Kubo expression that viscosity is determined by decay
in time of the function F1(r), i.e., for calculations of viscosity
it is necessary to consider stress of atom i at time zero and
stress of atom j at time t [F2(r) does not contribute since
integration over θ in (22) leads to zero].

In order to understand the meaning of correlation function
F2(r) from (24) note the following:

(i) As in the case with F1(r), only pairs of atoms in which
both atoms have shear distortions contribute.

(ii) The maximum contribution, for the given distortions,
comes from the ellipses for which ψij = −ψji , i.e., from those
ellipses whose orientations are mirror symmetric with respect
to the line connecting them.

(iii) If the deviation from the mirror symmetry is π/2,
i.e., ψij = −ψji ± π/2 then the contribution is the minimum
possible contribution.

(iv) If ψij = −ψji ± π/4 then the contribution is zero.
Due to a mirror symmetry we must have F3(r) = 0. This

is because reflection with respect to the direction from i to j

changes the signs of angles ψij and ψji , but does not change

the eigenvalues. In our simulations F3(r) averages to zero up
to the noise level.

E. Stress correlation function 〈 piσ
x y( j )〉r i j =r

From (7), (15), (17), (18), similarly to how it was done for
〈σxy(i)σxy(j )〉r ij =r , we get:

〈piσ
xy

j 〉r ij =r = (1/4)[F4(r) cos(2θ ) + F5(r) sin(2θ )], (26)

where

F4(r) = 〈(
λ1

i + λ2
i

)(
λ1

j − λ2
j

)
sin(2ψji)

〉
r ij =r , (27)

F5(r) = 〈(
λ1

i + λ2
i

)(
λ1

j − λ2
j

)
cos(2ψji)〉r ij =r . (28)

In finding F4(r) and F5(r) in isotropic medium the averaging
can be performed over all pairs of atoms i and j separated by
distance r irrespective of the direction of r .

Due to mirror symmetry, the function F4 should average to
zero (it does in simulations).

In order to understand the meaning of F5 from (28) note
the following:

(i) The larger is the pressure on atom i and the shear
distortion of atom j , the larger is the contribution from this
pair to F5.

(ii) If the ellipse of atom j is aligned with the direction from
i to j then cos(2ψji) = 1 and there is the maximum possible
contribution for the given ellipses’ shapes.

(iii) If the ellipse of atom j is orthogonal to the direction
from i to j then cos(2ψji) = −1 and there is the minimum
possible contribution for the given ellipses’ shapes.

(iv) If ψji = π/4 then the contribution is zero.

F. Stress correlation function 〈(σ xx
i − σ

yy
i )σ x y

j 〉r i j =r

From (5)–(7) and (19)–(21), similarly to how it was done
for 〈σxy

i σ
xy

j 〉r ij =r , we get:
〈(
σxx

i − σ
yy

i

)
σ

xy

j

〉
r ij =r = (1/2)F1(r) sin(4θ ) + F6(r) cos(4θ ),

(29)

where F1(r) is given by expression (23) and:

F6(r) = 〈(
λ1

i − λ2
i

)(
λ1

j − λ2
j

)
cos(2ψij ) sin(2ψji)

〉
r ij =r . (30)

In finding F6(r) in an isotropic medium the averaging can be
performed over all pairs of atoms i and j separated by distance
r irrespective of the direction of r .

The function F6 should average to zero due to mirror
symmetry with respect to the direction from i to j since under
reflection cos(ψij ) does not change sign, while sin(ψji) does.
We verified this in our simulations.

G. Simpler correlation functions and normalization
of the correlation functions

Correlation functions F1,2,3,4,5,6 are somewhat complicated
as they represent averages over three or four parameters.
Before considering them it makes sense to consider simpler
correlation functions, which represent averaged products of
two parameters only. It is expected that stresses of particles that
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are far away from each other are not correlated. This makes it
reasonable to consider the following correlation functions:

Gpp(r) = (1/Z2
+)

〈(
λ1

i + λ2
i

)(
λ1

j + λ2
j

)〉
rij =r

− 1, (31)

Gmm(r) = (1/Z2
−)

〈(
λ1

i − λ2
i

)(
λ1

j − λ2
j

)〉
rij =r

− 1, (32)

Gmp(r) = (1/Z+Z−)
〈(
λ1

i − λ2
i

)(
λ1

j + λ2
j

)〉
rij =r

− 1, (33)

C2±(r) = 〈cos(2ψij ± 2ψji)〉rij =r , (34)

where Z± = 〈λ1
i ± λ2

i 〉.
Functions Gpp(r), Gmm(r), and Gmp(r) describe corre-

lations between the eigenvalues (or eigenstresses) of the
stress matrices of atoms i and j without taking into account
the orientations of the eigenvectors. Note that since pi =
(1/2)(λ1

i + λ2
i ) the function Gpp(r) from (31) is directly related

to the pressure-pressure correlation function between atoms
i and j . It follows from Appendix A and formula (2) that
the function Gmm represents correlations between the total
amounts of shear on atoms i and j . Finally, Gmp(r) describes
correlations between the total shear on atom i and the total
pressure on atom j . Functions C2±(r) from (34) describe
correlations in the orientations of the eigenvectors of the stress
matrices of atoms i and j without taking into account the
magnitudes of the eigenvalues.

It is also reasonable to introduce normalized versions of the
correlation functions F1,2,3,4,5,6:

F̃1,2,3,6(rij ) ≡ F1,2,3,6/Z
2
−, (35)

F̃4,5 ≡ F4,5/(Z+Z−). (36)

V. ANALOGY WITH ESHELBY’S INCLUSION PROBLEM

The ability of liquids to support shear stresses on the
timescales comparable to Einstein’s vibrational periods (and
larger) is well known. An early example of the relevant
considerations is represented by the Maxwell’s viscoelastic
model [19]. Recent investigations of the propagation of shear
stresses in glasses and liquids demonstrated, in particular,
their ability to support anisotropic shear stresses. Thus, it has
been shown that ellipselike deformations of small (≈10–20
particles) circular regions in glasses and liquids generate
atomic displacements and shear stress fields with angular
dependencies similar to those produced by Eshelby’s inclusion
in a continuous medium [20–28]. For this reason we discuss
in this section, from the perspective of Eshelby’s inclusion
problem [18,29–32], the stress correlation function, which
is analogous to the atomic-level stress correlation function
〈σxy

i σ
xy

j 〉r ij =r . In particular, we argue that the angular depen-
dence of the 〈σxy

i σ
xy

j 〉r ij =r stress correlation function obtained
in Ref. [14] is related to the rotational properties of the stress
tensors and not to the anisotropy of the stress field associated
with Eshelby’s solution, as it is suggested in Ref. [14].

In drawing the analogy with Eshelby’s inclusion problem,
we assume that every atom i with its nearest-neighbor shell is
analogous to Eshelby’s inclusion, I , which generates a stress
field in the matrix at point J (atomic stress on atom j ). There
are two points that we need from Eshelby’s solution.

(i) The final constrained strain and stress fields are the same
everywhere in the inclusion. These fields, of course, depend
on the unconstrained strain initially applied to the inclusion.

(ii) If the unconstrained strain applied to the inclusion is
known then the final constrained strain and stress fields in
the inclusion and in the matrix can be found. Further, it is
assumed that there is a one-to-one correspondence between
the constrained stress fields in the inclusion and in the matrix.
See also Appendix C.

We are interested in the correlation functions between the
inclusion, I , and some point, J , in the matrix. Similarly to
how it was done for the atomic-level stresses, we can associate
with I the stress ellipse whose parameters, (λ1

I , λ2
I ), and whose

orientation, ψIJ , with respect to the rIJ are known. The fact
that the constrained stress field is the same everywhere in the
inclusion serves well for this purpose.

Since the inclusion’s stress ellipse is known, the stress field
(tensor) at any point J in the matrix can be found. Therefore
it is possible to associate with point J its own stress ellipse
with parameters (λ1

J , λ2
J ) and the orientation ψJI with respect

to the rIJ . Thus, λ1
J , λ2

J , and ψJI are the functions of λ1
I , λ2

I ,
ψIJ , and rIJ :

λ1
J = λ1

J

(
λ1

I ,λ
2
I ,ψIJ ,rIJ

)
, (37)

λ2
J = λ2

J

(
λ1

I ,λ
2
I ,ψIJ ,rIJ

)
, (38)

ψJI = ψJI

(
λ1

I ,λ
2
I ,ψIJ ,rIJ

)
. (39)

In (37)–(39) angles ψIJ and ψJI are the angles between the
larger ellipses’ axes and the direction rIJ . Note that in isotropic
elastic medium λ1

J , λ2
J , and ψJI should not depend on the

direction of rIJ (the direction of the inclusion’s deformation
with respect to rIJ is taken into account by the angle ψIJ ). Note
also that the properties of Eshelby’s solution are embedded into
(37)–(39). These functions, in our view, represent the essence
of Eshelby’s solution. In Appendix C a particular case of the
inclusion’s shear transformation is discussed and functions
(37)–(39) for this case are derived.

At this point it becomes apparent that considerations of the
correlations for Eshelby’s inclusion problem are quite similar
to the considerations that were already done for the atomic-
level stresses. Thus, the expressions for the stress correlation
functions between the inclusion and the matrix can be derived
in the same way as the expressions (22)–(26), (29) for the
atomic-level stress correlation functions. For example, for the
product σxy(I )σxy(J ) we get (see Ref. [33] for a brief reminder
on how the formula is derived):

σxy(I )σxy(J ) = (1/8)
[
F e

1 − F e
2 cos(4θIJ ) + F e

3 sin(4θIJ )
]
,

(40)

where θIJ is the angle between rIJ and the x axis of the
reference Cartesian coordinate frame and

F e
1 ≡ (

λ1
I − λ2

I

)(
λ1

J − λ2
J

)
cos(2ψIJ − 2ψJI ), (41)

F e
2 ≡ (

λ1
I − λ2

I

)(
λ1

J − λ2
J

)
cos(2ψIJ + 2ψJI ), (42)

F e
3 ≡ (

λ1
I − λ2

I

)(
λ1

J − λ2
J

)
sin(2ψIJ + 2ψJI ). (43)
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The upper index e in the formulas above originates from the
word “elastic”. Note again that λ1

J , λ2
J , and ψJI in (41)–(43)

are the functions of λ1
I , λ2

I , ψIJ , and rIJ . Also note that F e
1 ,

F e
2 , F e

3 do not depend on θIJ . Thus in (41)–(43)

F e
n = F e

n

(
λ1

I ,λ
2
I ,ψI ,rIA

)
, where n = 1,2,3, (44)

i.e., functionsF e
1 ,F e

2 , andF e
3 are determined by how the stress

field in the inclusion determines the stress field at point J .
Now we address the connection between the functions F e

1 ,
F e

2 , and F e
3 from (41)–(43) and the functions F1, F2, and F3

from (23)–(25). The functions F e
1 , F e

2 , and F e
3 are written for

a particular set of values λ1
I , λ2

I , ψIJ , and rIJ . In order to draw
a parallel with the atomic-level stress correlation functions in
liquids it is necessary to average the functions F e

1 , F e
2 , and

F e
3 over the possible values of λ1

I , λ2
I , and ψIJ which can be

associated with the parameters of the inclusion’s stress ellipse.
Thus:

Fe
n (rIJ ) = 〈

F e
n

(
λ1

I ,λ
2
I ,ψI ,rIJ

)〉
λ1

I ,λ
2
I ,ψIJ

, (45)

where n = 1,2,3. In (45) it is presumed that every set of
parameters at I deterministically leads to certain parameters at
J via Eshelby’s solution. In (45) there is no averaging over the
distance (scalar) rIJ . Correspondingly functions Fe

n depend
only on rIJ ≡ r .

In liquids there is no deterministic relationship between the
parameters and orientations of the atomic-level stress ellipses
of atoms i and j . In liquids there is only a probabilistic
relationship. Thus in calculations of F1(r), F2(r), and F5(r) in
liquids (23)–(25) the averaging goes not only over λ1

i , λ2
i , ψij ,

but also over λ1
j , λ2

j , ψji . Implicitly in calculations of (23)–(25)
there is also the averaging over the directions of r ij for a fixed
value of rij . In the case of Eshelby’s inclusion it is assumed that
the undistorted inclusion and the matrix are isotropic. Thus,
there is no need to average (45) over the directions of rIJ .

Note that if 〈σxy

I σ
xy

J 〉 were calculated from (B2) in a
particular reference frame, by averaging over the possible
distortions of the inclusion, it still would depend on θIJ .
This dependence, however, does not represent the angular-
dependent Eshelby’s stress field. Instead the dependence on
θIJ in (B2) reflects the rotational properties of the stress
tensors. The angular dependencies observed in Ref. [14]
correspond to the dependence of 〈σxy(I )σxy(J )〉 on θIJ in
(B2). This is not the angular dependence of Eshelby’s field.
The angular dependence of Eshelby’s stress field is embedded
in how λ1

J , λ2
J , ψJI depend on λ1

I , λ2
I , ψIJ , and rIJ .

Finally, note that the dependence of (B2) on θIJ does not
depend on the type of the inclusion’s distortion or on the
type of the dependence between the inclusion’s distortion and
the stress field in the matrix. The same angular dependence
would occur for any type of inclusion’s distortion and for any
type of connection between the stress fields in the inclusion
and in the matrix. All information about the nature of the
inclusion’s distortion and the connection between the stress
fields in the inclusion and in the matrix is contained in functions
〈F e

n(λ1
I ,λ

2
I ,ψI ,rIJ )〉.

VI. RESULTS OF MD SIMULATION

A. Stress correlation functions

In our molecular dynamics (MD) simulations we consid-
ered the same 2D one-component system of particles that has
been studied in Ref. [14]. Particles interact through Yukawa
potential, U (r) = Uo( σ

r
) exp [−λ( σ−r

σ
)], where in Lennard-

Jones units Uo = 1, σ = 1, λ = 8. The mass of every particle
is also one, m = 1. MD simulations were performed using
the LAMMPS MD program [34,35]. We studied the systems of
two sizes. In the small system the number of particles was
N = 2500, while the dimensions of the rectangular periodic
box were Lx = 50.1021, Ly = 43.3897. Our small system
has the same size as the system studied in Ref. [14]. Another
(large) system that we studied contained N = 22500 particles,
i.e., nine times more than the small system. The dimensions
of the large system were Lx = 150.306, Ly = 130.169. The
particles’ number densities in the small and large systems are
the same ρo = 1.15. We performed simulations in NVT and
NVE ensembles.

In all cases the systems were prepared by melting triangular
lattice at reduced temperature T = 5. After the equilibration
at T = 5 the temperature was reduced in several steps that
followed by equilibration at every temperature (in NVT
ensemble) or at every value of fixed total energy (in NVE
ensemble). The temperature in NVT ensemble was introduced
via Nosé-Hoover thermostat. The damping parameter corre-
sponded to 100 MD steps and also to 0.1 of the time unit.

In our simulations, we reproduced the dependence of po-
tential energy on temperature presented in Fig. 1 of Ref. [14].

Atomic configurations for calculations of the correlation
functions related to the eigenvalues and eigenvectors of
atomic-level stresses were collected on the small system in
the NVE ensemble at total energies, which corresponded
to the following temperatures: T (3) = 3.06 ± 0.04, T (2) =
1.97 ± 0.03, T (1.4) = 1.43 ± 0.02, T (1) = 0.99 ± 0.02. The
averaging was done over 1000 configurations at every tem-
perature. For the temperature T = 1 the time interval between
the two consecutive configurations was 104 MD steps. Each
MD step corresponded to 0.001 of the time unit. During these
104 MD steps the mean-square atomic displacement reaches
∼1.38σ .

Different correlation functions per pair of particles are
shown in Figs. 3, 4, 5. The dependencies of the functions
F̃1, F̃2 and F̃5, i.e., all the nonzero ones, on distance are shown
in Fig. 5. At T = 1 we have Z− = 〈λ1

i − λ2
i 〉 ≈ 10.82 and

Z+ = 〈λ1
i + λ2

i 〉 ≈ 40.48.
Figures 3, 4, 5 demonstrate that there are rij -dependent

correlations between the parameters of the atomic-level stress
ellipses and in their orientations. These correlations gradually
decrease with increase of rij . It is clear that functions Gmm(r)
in Fig. 3(b) and 〈cos(2ψij − 2ψji)〉 in Fig. 4(a) exhibit more
pronounced changes than does PDF [Fig. 3(a)] on decrease of
temperature. It is also clear that the first peaks in F̃1 and F̃2

[Figs. 5(a), 5(b)] also demonstrate more pronounced changes
on decrease of temperature than does PDF. However, it is
also more difficult to interpret these changes. Yet, developing
features in 〈cos(2ψij − 2ψji)〉 suggest that some ordering
happens in the mutual orientations of the ellipses associated
with the atoms separated by the distance corresponding the
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FIG. 3. In every panel the curves from the top to the bottom
correspond to temperatures: T = 3, T = 2, T = 1.4, and T = 1. The
curves were shifted vertically for the clarity of the presentation. (a)
Pair density function. (b) Gmm correlation function from (32). (c) Gmp

correlation function from (33). (d) Gpp correlation function from (31).

first minimum in the PDF. There also appears to be a certain
similarity in the behaviors of 〈cos(2ψij − 2ψji)〉 and F̃1. This
similarity suggests that changes in F̃1 are caused by changes in
〈cos(2ψij − 2ψji)〉. See expression (23) for F1. Thus, changes
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FIG. 4. Evolutions with temperature of the functions 〈cos(2ψij −
2ψji)〉 and 〈cos(2ψij + 2ψji)〉. In both panels the curves from the top
to the bottom correspond to temperatures T = 3, T = 2, T = 1.4,
and T = 1. The curves were shifted vertically for the clarity of the
presentation.
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FIG. 5. Evolutions with temperature of the normalized functions
F̃1 from (23), (35), F̃2 from (24), (35), and F̃5 from (28), (36). In
every panel the curves from the top to the bottom correspond to
temperatures T = 3, T = 2, T = 1.4, and T = 1. The curves were
shifted vertically for the clarity of the presentation.

in F̃1 are likely to be caused not by changes in the eigenvalues
of the stress ellipses, but by changes in the mutual orientations
of the ellipses. However, also note that there are changes in
Gmm(r) in Fig. 3(b).

Figure 6 shows how the function F̃1(r)ρ(r) changes with
temperature. It follows from the figure that as temperature is
reduced there develops a pronounced minimum at the position
of the first minimum, r1

min, of ρ(r). Thus, changes in F̃1(r)

1 2 3 4 5
Distance,   r/σ

-0.2

0

0.2

0.4

F 1(r
)ρ

(r
)

F1(r)ρ(r)

FIG. 6. Evolution with temperature of the function F̃1(r)ρ(r).
The curves from the top to the bottom correspond to temperatures T =
3, T = 2, T = 1.4, and T = 1. The curves were shifted vertically
for clarity of presentation. The dashed curve shows the scaled ρ(r)
at T = 1.0. As temperature decreases the first minimum in ρ(r)
becomes deeper. This deepening overlaps with the development of
the minimum in F̃1(r). Thus, the development of the feature in F̃1(r)
at the position of the first minimum of ρ(r) is also well pronounced
in F̃1(r)ρ(r).
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FIG. 7. (a) Atomic level stress correlation function 〈σxy

i σ
xy

j 〉. See formula (22). The functions F1 and F2 in 〈σ xy

i σ
xy

j 〉 were normalized
according to (35). The function F3 is zero, besides the noise. It is clear that (a) of this figure is very similar to (a) of Fig. 5 in Ref. [14]. (b)
Atomic level stress correlation function 〈piσ

xy

j 〉. See formula (26). The function F4 in 〈piσ
xy

j 〉 averages to zero. Thus only function F5 is left. In
order to produce this figure we had to subtract the average pressure from the diagonal components of the atomic-level stress tensor. Effectively
this means that the value of λ averaged over λ1 and λ2 of all atoms, i.e., λave, was subtracted from the values of λ1 and λ2 of every atom. Because
of this subtraction we can not use normalization (33) since 〈λ1 + λ2 − 2λave〉 averages to zero. Thus we used normalization (32) instead. We
also scaled intensity on the z-axis by a factor of 4. It is obvious that (b) of this figure is very similar to the (b) of Fig. 5 in Ref. [14]. (c) Atomic
level stress correlation function 〈(σ xx

i − σ
yy

i )σ xy

j 〉. See Eq. (29). Only function F1 in 〈(σ xx
i − σ

yy

i )σ xy

j 〉 is nonzero. We scaled the function by a
factor of 10 along the z-intensity axis. It is clear that correlation function in (c) is rather similar to the correlation function in (c) of Fig. 5 in
Ref. [14]. There is a difference with the two circles at (r/a) � 1. It is possible that authors of Ref. [14] did not look into such small distances
and thus in their figure these circles fall into the central green region. Besides this difference their figures and ours look rather similar.

are also well observable in F̃1(r)ρ(r) despite the fact that the
number of atomic pairs separated by r1

min is relatively small.
The curves in Fig. 5 can be converted into the 2D intensity

plots equivalent to those presented in Ref. [14] using formulas
(22), (26), (29). Thus, if we want to find the stress correlation
function at a point with coordinates (x,y) we define r =√

x2 + y2 and θ = arctan (y/x). Using these values in (22),
(26), (29) the stress field at (x,y) can be found. This conversion
applies because for particles i and j with coordinates (xi,yi)
and (xj ,yj ) the values of rij and θij that go into the formulas
(22), (26), (29) are rij = √

(xj − xi)2 + (yj − yi)2 and θij =
arctan [(yj − yi)/(xj − xi)]. However, in making the 2D stress
correlation function plots it is assumed that the particle i is at
the origin.

The results of the conversion described above for T = 1
are presented in Fig. 7. It is obvious that the 2D plots in Fig. 7.
are very similar to those shown in Fig. 5 of Ref. [14]. Note
that the 2D plots presented in Fig. 7 were obtained from only
three functions, i.e., F1(r), F2(r), and F5(r), which depend
only on r . This proves that the dependencies on θ presented in
the 2D plots in Ref. [14] follow from the tensorial rotational
properties.

B. Is the studied system in a hexatic phase at T = 0.95?
Role of size effects

Finally, we comment on the following statement made in
Ref. [14]. It is stated there that at T = 1 the system is in a true
liquid state, while at T = 0.95 the system is in a hexatic state.

We would like to emphasize that our goal in this section
is not to make a definite conclusion about the state of the
system at T = 0.95 (is it hexatic or not?). Instead, our goal

is to demonstrate that in considerations relevant to the hexatic
phase and the bond-order correlation function in the discussed
system it is necessary to consider the size effects. Thus, the data
presented in this section give us an insight into the magnitude
of the size effects in our system. They also address the length
scales of the bond-order correlation function.

In order to make a distinction between the true liquid and
hexatic states, it was assumed in Ref. [14] that in a true liquid
state the bond-order correlation function decays exponentially
with increase of distance, while in the hexatic state the bond-
order correlation function decays algebraically. The following
definition of the bond-order correlation function, g6(r), was
used in Ref. [14]:

g6(r) ≡ 〈∗
i (r)j (0)〉, where i(r) ≡ 1

Nk

Nk∑
j=1

ei6θik .

(46)

The summation over j in (46) goes over the neighbors of
atom i. Two atoms are defined as neighbors if their separation
distance is smaller than the position of the first minimum in
the pair density function, i.e., (rij /a) � 1.36σ . The averaging
in (46) goes over the pairs of atoms separated by distance r . In
a perfect triangular lattice g6(r) is equal to 1 at distances that
correspond to the lattice spacings and it is 0 otherwise.

We calculated how the bond-order correlation function
(46) depends on distance in systems of two sizes. In the
small system containing N = 2500 particles (Ly/2) = 21.7.
In the large system N = 22 500 and (Ly/2) = 65.1. The small
system was used in Ref. [14]. The results are presented in
Figs. 8, 9.
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FIG. 8. Bond-order correlation functions for the system of N =
2500 particles. The upper set of curves is related to T = 0.95,
while the lower set of curves is related to T = 1.0. There are
10 cyan curves in the upper set curves. Every cyan curve is the
average over 1000 independent configurations. The mean-square
displacement between the consecutive configurations was larger than
the interatomic distance. There are also three blue curves in the upper
set of curves. These blue curves represent the mean over the 10 cyan
curves and the average ± the error of the mean. Finally, in the top
set of curves there is a smooth (red) curve that represents the fitting
exponential function obtained on the large system of particles. There
are 10 green curves in the bottom set of curves (T = 1.0). Every green
curve represents the average over 100 independent configurations. In
the lower set there are also three magenta curves which represent the
average over the green curves and the average ± the error of the mean.
The dashed (maroon) curve in the lower set shows the exponential fit
obtained from the larger system of N = 22500.

It follows from Figs. 8, 9 that on decrease of temperature
sixfold rotational symmetry undoubtedly develops in the
systems. The comparison of Fig. 8 with Fig. 9 suggests that
at T = 0.95 the small system exhibits observable size effects.
Note that at T = 0.95 the decay length is larger than (1/2)
of (Ly/2) in the small system. Thus, in the small system the
bond-order correlation function does not completely decay on
the half length of the simulation box. It also follows from the
data obtained on the large system that the exponential fit to the
data is better than any algebraic fit can be at both temperatures.
Thus, in our view, it follows from Figs. 8, 9 that it is impossible
to make a qualitative distinction between the liquid states at
T = 1 and T = 0.95 on the basis of the obtained data.

The observation of the hexatic phase was reported in
Ref. [14] on the basis of the algebraic decay of the bond-order
correlation function at T = 0.95 in the small system. The
comparison of our data from the small and large systems
demonstrates that algebraic decay of the bond-order corre-
lation function in the small system at T = 0.95 is likely to
originate from the size effects and thus it can not be reliably
attributed to the formation of the hexatic phase.

VII. CONCLUSION

It was demonstrated that it is possible to study liquid
(and glass) structures through considerations of correlations
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N = 22500

FIG. 9. Bond-order correlation functions for the system of N =
22 500 particles. The upper and lower sets of curves are related
to the temperatures T = 0.95 and T = 1.0 correspondingly. There
are 21 cyan curves in the upper set of curves. Every cyan curve is
the average over 100 independent configurations. The mean-square
displacement between the consecutive configurations was larger than
the interatomic distance. There are also three blue curves in the top
set of curves. These blue curves represent the mean over the 21 cyan
curves and the mean ± the error of the mean curves. In the top set
there is also smooth (red) curve that represents the exponential fit
to the average blue curve. It is possible that at distances larger than
r/σ = 30 at T = 0.95 there again appear size effects. There are three
green curves in the bottom set of curves. Every green curve is the
average over 200 independent configurations. The smooth dashed
(maroon) curve represents exponential fit to the data.

between the eigenvalues and eigenvectors of the atomic-level
stress tensors of different atoms. It was shown that on decrease
of temperature some of the studied correlation functions
exhibit pronounced changes in the range of distances that
corresponds to the first minimum of the pair density function.
These changes could not be guessed from the behavior of the
pair density function. Thus, the suggested method provides
additional information and it is of interest to investigate
evolution of stress correlations with this method in model
supercooled liquids on decrease of temperature.

We also demonstrated that interpretations of the angular
dependencies of the stress correlation functions reported in
Ref. [14] are essentially incorrect. In particular, the authors
of Ref. [14] associate the angular dependencies observed in
the stress correlation functions with the angular dependencies
of Eshelby’s stress field. We demonstrated that anisotropic
stress fields observed in Ref. [14] originate from the rotational
properties of the stress tensors. We also had shown that
information that is really related to the anisotropic Eshelby’s
stress fields is embedded into the isotropic stress correlation
functions F1(r), F2(r), and F5(r), which we studied in this
work.

From a purely pragmatic perspective we have shown that
eight 2D panels of the stress correlation functions presented
in Ref. [14] can be reproduced using only three correlation
functions, which depend only on r , i.e., from the functions
F1(r), F2(r), and F5(r) [36]. This clearly advances understand-
ing of the plots of the stress correlation functions presented
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in Ref. [14]. It also follows from our results that instead of
studying distance dependence of the integrals of the 2D stress
correlation functions over some angles, as it has been done in
Ref. [14], it is more reasonable to study how functions F1(r),
F2(r), and F5(r) depend on distance. We also demonstrated
that because of size effects the distinction made in Ref. [14]
between the normal liquid and hexatic states is invalid.

APPENDIX A: ALTERNATIVE DERIVATION
OF 〈σ x y

i σ
x y
j 〉 STRUCTURE

In two dimensions in a particular reference coordinate
frame numerical representation of the atomic-level stress
tensor σ̂ is a 2 × 2 matrix. This matrix is real and symmetric
(i.e., σyx = σxy), thus it can be diagonalized. We can work
directly with its components σαβ ; or with corresponding
pressure p and two shear components, s1 and s2; or with
real eigenvalues λ1,2 and the orientation of two orthogonal
eigenvectors:

σ̂ =
[
σxx σ xy

σ xy σ yy

]
=

[
p + s1 s2

s2 p − s1

]

= R̂(ϕ)

[
λ1 0
0 λ2

]
[R̂(ϕ)]T .

Here R̂(ϕ) is the 2 × 2 matrix of rotation in positive (or
counterclockwise) direction by angle ϕ:

R̂(ϕ) =
[

cos ϕ − sin ϕ

sin ϕ cos ϕ

]
.

Pressure and shear components are expressed through σαβ

components as

p = 1
2 (σxx + σyy), s1 = 1

2 (σxx − σyy), s2 = σxy .

It will be convenient for us to combine the shear components
into a single complex number s = s1 + i s2. The total amount
of shear is given by its absolute value:

|s| =
√

s2
1 + s2

2 =
√

1
4 (σxx − σyy)2 + (σxy)2,

while the argument of s is related to the shear’s direction.
Consider three reference frames (x,y), (x ′,y ′), and (x ′′,y ′′),

with (x ′,y ′) being obtained from (x,y) by a rotation in negative
(clockwise) direction by angle α, while (x,y) and (x ′′,y ′′)
are mirror reflections of each other with respect to x axis.
We will write down the quantities in (x ′,y ′) and (x ′′,y ′′)
frames with prime and double prime symbols, respectively.
The transformation properties of the stress tensor (5)–(7) result
in

s ′ = s exp(2i α), s ′′ = s∗,

where ·∗ denotes complex conjugation.
Since σxy = (s − s∗)/2i, we have:〈
σ

xy

i σ
xy

j

〉 = 1
16 [F1(r,θ ) + F ∗

1 (r,θ ) − F2(r,θ ) − F ∗
2 (r,θ )],

(A1)

where

F1(r,θ ) = 4〈sis
∗
j 〉, F2(r,θ ) = 4〈sisj 〉; (A2)

All the averages 〈·〉 are taken over the pairs of atoms i and j

with rij = r and θij = θ .
By checking how s and the angle θ are transformed by

rotations [s ′ = s exp(2i α) and θ ′ = θ + α] we get

F1(r,θ + α) = F1(r,θ ),
(A3)

F2(r,θ + α) = F2(r,θ ) exp(4i α) .

The function F1(r,θ ) does not depend on the angle θ at all.
By considering F ∗

1 (r,θ ) we exchange the roles of atoms i

and j , which is equivalent to the change θ → θ + π . Thus
F ∗

1 (r,θ ) = F1(r,θ + π ) = F1(r,θ ), i.e., we get F1 = F ∗
1 . All

this means that F1(r,θ ) = F1(r) is a real function of a single
parameter r .

If we put θ = 0 in (A3), we get F2(r,α) =
F2(r,0) exp(4i α). Mirror reflection (s ′′ = s∗ and θ ′′ =
−θ ) leads to F2(r, − θ ) = F ∗

2 (r,θ ). In particular, F2(r) =
F2(r,0) = F ∗

2 (r,0) is also a real function of just the distance
between the atoms r . Also, F2(r,θ ) = F2(r) exp(4i θ ).

Putting these results for F1 and F2 into the expression (A1)
we finally get

〈
σ

xy

i σ
xy

j

〉 = 1
8 [F1(r) − F2(r) cos(4θ )] . (A4)

Note that the angular dependence of this correlation function
was obtained solely by checking how the atomic-level stress
tensors are transformed under rotations (and mirror reflec-
tions). Thus, the physical properties of the liquid prescribe the
r dependence of F1,2(r), but not the θ dependence in (A4).

APPENDIX B: ANOTHER DERIVATION
OF THE EXPRESSION FOR 〈σ x y

i σ
x y
j 〉

Let us suppose that the first eigenvectors of atoms i and
j form angles ϕi and ϕj with the x̂ axis of our reference
coordinate frame. See Fig. 2.

From (10) the product σ
xy

i σ
xy

j in our reference coordinate
frame has the form:

σ
xy

i σ
xy

j = (1/4)
(
λ1

i − λ2
i

)(
λ1

j − λ2
j

)
sin(2ϕi) sin(2ϕj ). (B1)

Note that the dependence on angles ϕi and ϕj appears
in (B1) from the rotations (10) of the stresses from the
coordinate frames of their eigenvectors into our reference
coordinate frame. Thus, dependence of (B1) on ϕi and ϕj

reflects transformational properties of the stress tensors under
rotations.

We then, using Fig. 2, express angles ϕi and ϕj through the
angles ψij , ψji , and θij : ϕi = ψij + θij and ϕj = ψji + θij .
Substitution of these expressions for ϕi and ϕj into (B1) (with
the following averaging) leads to:
〈
σ

xy

i σ
xy

j

〉
θij =θ

= (1/8)[F1 − F2 cos(4θ ) + F3 sin(4θ )], (B2)

where F1, F2, and F3 are given by expressions (23)–(25). Note
that (40) is identical to (22) and (A4).

Since the dependence of (B1) on ϕi and ϕj appeared from
the rotational properties of the stress tensors the dependence
of (40) and (22) on θ also reflects the rotational properties of
the stress tensors.
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APPENDIX C: ESHELBY’S STRESS FIELD IN THE
DIRECTIONAL FRAME FOR A CASE OF SHEAR
DEFORMATION OF A CIRCULAR INCLUSION.

FUNCTIONS F e
1 , F e

2 , F e
3

In this section we derive the expressions relating the
eigenvalues and eigenvectors of the stress fields in the inclusion
and in the matrix for a particular case of unconstrained
traceless shear strain applied to the inclusion. Then we
calculate functions F e

1 , F e
2 , F e

3 for the considered example.
We start from the known formulas for Eshelby’s stress field
[18,29–32]. In particular, we use the expressions provided in
Ref. [32].

We consider a particular case of unconstrained shear strain
applied to the initially circular inclusion:

ε∗
αβ = ε∗(2n̂αn̂β − δαβ), (C1)

where n̂ is a 2D unit vector that determines the direction of
deformation:

n̂x = cos(ψIJ ), n̂y = sin(ψIJ ). (C2)

The expression for the final stress field in the inclusion (in
the absence of external driving force) from formula (14) of
Ref. [32] is

σ I
αβ = gε∗

αβ,g ≡ −E
4(1 − ν2)

, (C3)

where E is the Young’s modulus, while ν is the Poisson’s ratio.
The eigenvalues and eigenvectors of the stress tensor (C3) can
be easily found:

λ1
I = +gε∗, V 1

I = [ + cos(ψIJ ), + sin(ψIJ ) ], (C4)

λ2
I = −gε∗, V 2

I = [ − sin(ψIJ ), + cos(ψIJ ) ]. (C5)

The expression for the final stress field in the matrix,
according to formula (A25) of Ref. [32], is

σM
αβ = −gε∗

{
[. . .]αβ − 4ν

(
a2

r2

)[
2(n̂r)2

r2
− 1

]
δαβ

}
, (C6)

where

[. . .]αβ = −4(1/r̃)2{(1 − 2ν) + (1/r̃)2}
· {(n̂r̂)(n̂αr̂β + n̂β r̂α) − r̂α r̂β}
+ (1/r̃)2{2(1 − 2ν) + (1/r̃)2}{2n̂αn̂β − δαβ}
− 4(1/r̃)2{1 − 2(1/r̃)2}{2(n̂r̂)2 − 1}r̂α r̂β

+ 4(1/r̃)2{1 − (1/r̃)2}
· {(n̂r̂)(n̂αr̂β + n̂β r̂α) − 2(n̂r̂)2r̂α r̂β}
+ 2(1/r̃)2{1 − (1/r̃)2}{2(n̂r̂)2 − 1}δαβ. (C7)

In (C7) r̃ ≡ r/a. We are interested in the expression for the
stress field in the coordinate frame associated with the direction
from I to J . In this frame r̂ = (1,0), while (n̂r̂) = cos(ψIJ ).
Also note that n̂x r̂x = cos(ψIJ ) and n̂y r̂x = sin(ψIJ ), while
n̂x r̂y = 0 and n̂y r̂y = 0. It is straightforward to obtain from
(C7) the following expressions:

[. . .]xy =
(

a

r

)2{
2 − 3

(
a

r

)2}
sin(2ψIJ ), (C8)

[. . .]xx =
(

a

r

)2{
− 4(1 − ν) + 3

(
a

r

)2}
cos(2ψIJ ), (C9)

[. . .]yy =
(

a

r

)2{
4ν − 3

(
a

r

)2}
cos(2ψIJ ). (C10)

Using expressions (C6) and (C8)–(C10) for the stress field
in the matrix we get:

σM
xy (J ) = −gε∗

(
a

r

)2{
2 − 3

(
a

r

)2}
sin(2ψIJ ), (C11)

σM
xx (J ) = −gε∗

(
a

r

)2{
− 4 + 3

(
a

r

)2}
cos(2ψIJ ), (C12)

σM
yy (J ) = −gε∗

(
a

r

)2{
− 3

(
a

r

)2}
cos(2ψIJ ). (C13)

Formulas (C11)–(C13) give the components of the stress tensor
at point J in the frame associated with the direction rIJ . These
stress components are expressed in terms of the magnitude of
the inclusion’s unconstrained strain, i.e., ε∗, and the direction
of the strain, i.e., ψIJ , with respect to the direction rIJ .

The eigenvalues, λ1
M and λ2

M , and eigenvectors, V 1
M and

V 2
M , of the stress matrix in the frame associated with rIJ can

now be found:

λ1
M = −gε∗

(
a

r

)2{
− 4[cos(ψIJ )]2 + 3

(
a

r

)2}
, (C14)

λ2
M = −gε∗

(
a

r

)2{
+ 4[sin(ψIJ )]2 − 3

(
a

r

)2}
, (C15)

V 1
M = [ + cos(ψIJ ), − sin(ψIJ )], (C16)

V 2
M = [ + sin(ψIJ ), + cos(ψIJ )]. (C17)

It follows from (C4), (C5) and (C16), (C17) that:

ψJI = −ψIJ . (C18)

Now we are in a position to write expressions for the
functions F e

1 , F e
2 , F e

3 from (41)–(43). It follows from (C4),
(C5) that for the inclusion we have:

λ1
I − λ2

I = 2gε∗, (C19)

while for the matrix from (C14), (C15):

λ1
M − λ2

M = −2gε∗
(

a

r

)2{
− 2 + 3

(
a

r

)2}
. (C20)

Thus,

fo(r) ≡ (
λ1

I − λ2
I

)(
λ1

M − λ2
M

)
(C21)

= −(2gε∗)2

(
a

r

)2{
− 2 + 3

(
a

r

)2}
. (C22)

By taking into account that ψJI = −ψIJ from (41)–(43) we
get:

F e
1 = fo(r) cos(4ψIJ ), F e

2 = fo(r), F e
3 = 0. (C23)
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In order to find the average values of the functions above
it is necessary to average them over all values of ψIJ .
Note that the function F e

1 averages to zero. This fact is

of interest since in liquids 〈F e
1 〉 is not zero and it is the

function that is the most directly related to viscosity, see
Fig. 5.
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