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Shell formation in short like-charged polyelectrolytes in a harmonic trap
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Inspired by recent experiments and simulations on pattern formation in biomolecules by optical tweezers,
a theoretical description based on the reference interaction site model (RISM) is developed to calculate
the equilibrium density profiles of small polyelectrolytes in an external potential. The formalism is applied
to the specific case of a finite number of Gaussian and rodlike polyelectrolytes trapped in a harmonic potential.
The density profiles of the polyelectrolytes are studied over a range of lengths and numbers of polyelectrolytes
in the trap, and the strength of the trap potential. For smaller polymers we recover the results for point charges.
In the mean field limit the longer polymers, unlike point charges, form a shell at the boundary layer. When the
interpolymer correlations are included, the density profiles of the polymers show sharp shells even at weaker trap
strengths. The implications of these results are discussed.

DOI: 10.1103/PhysRevE.93.012503

I. INTRODUCTION

Optical tweezers are excellent tools to trap and manipulate
colloidal particles [1]. Focusing an intense laser beam into a
colloidal solution of nanoparticles [2–5] or polymers [6–8]
generates a field gradient which can cause their aggregation.
Due to this capability, it serves as a principal technique
for controlled two- and three-dimensional (2D and 3D)
pattern formations in biomolecules which has applications in
optical sorting of biological systems, cells micromachines, and
manipulation of biopolymers [9–12]. In recent experiments
the polymers have been deposited on a 2D substrate by laser
beams [6,13]. The formation of microstructures in flexible
biomolecules on metallic nanostructures has provided a mech-
anism for their application in the development of biosensors
[14,15]. These biopolymers form ring structures under the
laser radiation forces. Such kinds of pattern formations have
also been observed in trapped liquid crystals [16–19] and in
point-particle plasmas [20–23]. The pattern formations in the
trapped systems are often a result of competing effects of
the repulsive interactions, such as electrostatic or hydrophobic
interactions and the trap potential, causing reversible phase
transitions in polymer gels [24] or the shell structure in
plasmas. Many biomolecules, for instance, the rodlike virus
or liquid crystals or the helical DNA or RNA molecules,
have finite sizes and their geometries play a critical role
in the formation of these patterns [9–11,18,19]. It is very
important to understand how the finite-sized particles behave
in the trapping potential of the optical tweezers. While the
theoretical and simulation studies on trapped point-charges
are extensive [25–33], very few theories exist for finite-sized
charges in traps. The objective of this work is to theoretically
study the distribution of charged polymers in a trap potential
to understand the underlying mechanisms of the structure
formation in charged biomolecules. In many colloidal and
plasma systems, the pattern formation is due to the presence
of some short-ranged attractive forces in the system [34–40].
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Here we show that the pattern formations can occur even in
the absence of the attractive interactions, primarily due to the
competing effects of the trap and the electrostatic repulsions.

In many optical traps the trapping potential can be well
approximated by a harmonic well [41,42]; hence in this work
we specialize to the case of harmonic traps. Wrighton et al.
have developed a theory, based on classical density functional
theory (DFT) and hypernetted chain approximation (HNC),
to study the shell formation in a system of finite number of
point charges in a harmonic trap [25–27]. They found that
strong correlations are essential to the formation of shells
they successfully predict the location, number, and filling
of the shells. The extension of their theory to polymers is
not straightforward because of the additional orientational
degrees of freedom, constraints of connectivity, and finite
size of the polymers. Additionally, in the case of polymers,
due to their finite sizes, intrapolymer correlations have to be
taken into account together with the interpolymer correlations.
The reference interaction site model (RISM) by Chandler
et al. provides a tool to calculate the density profile of the
polymers in the presence of an external potential and include
both kinds of correlations [43,44]. In this formalism the
equilibrium density at each site of a polymer is a functional
of the external potential and correlations at that site. This
approach, however, is not very convenient, as a coupled
set of nonlinear equations corresponding to each site needs
to be solved to obtain the density profile at each site. For
uniform polymer systems, Schweizer and Curro [45–47] have
developed a theory by averaging over the sites of the polymers,
popularly known as the polymer reference interaction site
model (PRISM). The PRISM theory has been successfully
applied to a variety of polymer systems, including polymer
crystallization, symmetric as well as asymmetric polymer
blends, and block copolymers. In the spirit of the PRISM
formalism, we compute the average equilibrium polymer
density in nonuniform systems by replacing the site quantities
by their corresponding site averages. This vastly reduces the
complexity of the problem of solving matrix equations in the
RISM formalism. As a result of this we obtain a single equation
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for the site-averaged density of the polymers as a function of
the site-averaged correlations and external potential.

The outline of the paper is as follows. In Sec. II
we phenomenologically derive an integral equation for the
equilibrium site-averaged density of polymer in an external
potential based on the RISM formalism. From this equation we
obtain a closure relation to the PRISM equation similar to the
one obtained by Laria, Wu, and Chandler (LWC) for the pair
correlation functions [48], which is the molecular equivalent
of the HNC equation. In the limit of small polymer length we
recover the HNC equation for the point-particle density. We
apply our formalism to the specific case of finite number of
polyelectrolytes trapped in a harmonic potential. We derive the
density profiles of Gaussian polyelectrolytes in the mean field
approximation in Sec. III. The polymer-polymer correlations
are calculated using the LWC and PRISM equations in Sec. IV.
We go beyond the mean field approximation and obtain the
monomer densities with the full many-body correlations. The
dependence of the correlated densities on the geometry of
the polyelectrolytes and the strength of the trap potential
are worked out. In Sec. V we briefly look into the density
profiles of rodlike polyelectrolytes and compare them with
the Gaussian polyelectrolytes to investigate dependence of
the shell formation on the polymer model. We discuss the
limitations of the averaging procedure and the range of validity
of our model in Sec. VI.

II. THE FORMALISM

Consider a system of N polyelectrolytes each consisting of
L monomers. Each monomer has a length σ and charge q. For
simplicity we assume the hard core diameter of the polymers
equals the monomer length σ . Thus the length and charge of
each polymer would be Lσ and Lq, respectively. The polymers
are confined by a harmonic potential of the form φ(r) = 1

2Kr2.
The schematic diagram of the system is shown in Fig 1. The
electrostatic interactions between polymers has a Coulomb
form V (|r − r′|) = 1/|r − r′|. The coordinate of the polymers
at segment s is parameterized by a field x(s). The Hamiltonian
of the system reads

H =
N∑

i=1

∫ L

0
dsφ[xi(s)]

+q2

2ε

∑
i �=j

∫ L

0
ds

∫ L

0
ds ′V [|xi(s) − xj (s ′)|], (1)

where ε is the dielectric constant of the medium. The average
intermonomer distance r0 is related to the average monomer
density ρ̄ by 4π

3 r3
0 ρ̄ = 1. If R is the size of the trap (the

position of the outermost polymer in the trap), then the
average monomer density is given by ρ̄ = NL

(4π/3)R3 . R can be
approximately obtained from the position of the outermost
polymer such that the average forces on it would be zero,

1
εR2 q

2LN = KR [25]. We define the dimensionless distance
by r∗ = r/r0 and the dimensionless polymer segment field
by x∗(s) = x(s)/r0. The dimensionless monomer length is
defined in a similar way, σ ∗ = σ/r0. The dimensionless total

FIG. 1. (a) Schematic diagram showing polyelectrolytes trapped
in a harmonic trap. (b) Concentric ringlike structures form due to the
competing effects of the trap force and the electrostatic forces in 2D.
In 3D (not shown) concentric shells are formed.

potential is given by

βV = �

2

⎡
⎣ N∑

i=1

∫ L

0
dsx∗

i
2(s)

+
N∑

i �=j

∫ L

0
ds

∫ L

0
ds ′ 1

|x∗
i (s) − x∗

j (s ′)|

⎤
⎦, (2)

where the inverse thermal energy is β = 1/kBT and � =
βq2/εr0 is the strength of the Coulomb interactions among
two monomers. The thermodynamic parameter � measures
the strength of the Coulomb potential between the monomers
relative to the kinetic or thermal energy kBT . For a given
trap strength K , if some polymers are dropped into the trap
they would come to equilibrium such that the electrostatic
repulsions are balanced by the trap potential. Since � is
determined in terms of the average intermonomer distance,
which is obtained from the force balance condition, K and �

are not independent. In fact, they are the same in the special
case when the distances are scaled with respect to r0 and the
trap is harmonic, as we see in Eq. (2). From now on we use �

for the strength of the trap.
We relate the potential to the density of the polymers

through the RISM formalism developed by Chandler et al [44].
In the rest of the discussions we use only the dimensionless
quantities and to keep their notations simple we drop ∗.
The density at site α,ρα(r) can be expressed in terms of
the intramolecular pair correlation function ωαβ(|r − r′|), the
local chemical potential ψα(r) = μα − φα(r), and the direct
correlation function cαβ(|r − r′|):

ρα(r) =
∏
γ �=α

ωαγ ∗ exp(fγ ), (3)

where

fγ = ψγ +
∑

η

cγ η ∗ ρη. (4)

(Note that we use the direct correlation function of a uniform
system for simplicity.) We use the symbol ∗ for the convolution
operation p ∗ q = ∫

dr′p(r)q(|r − r′|) and have dropped the
position dependence to keep notations simple. Like the PRISM
theory [45,47], we replace the quantities at each site by
the corresponding site-averaged quantity. This simplifies the
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algebra of Eq. (3) considerably. Summing over the index α

and replacing ωαγ by ω = 1
L

∑
αγ ωαγ , we get

ρ =
∑

α

ρα ≈
∏
γ

ω ∗ exp(fγ ). (5)

Chandler proposed an additional convolution on the right-hand
side of Eq. (3) with the single polymer site-site pair correlations
ωαβ for polyatomic systems. Here we convolute with the site-
averaged pair correlations instead [44]:

ln ρ ≈
∑

γ

ln
[
ω ∗ exp(fγ ) ∗ ω/L

]
. (6)

Expanding the exponential on the right-hand side of the above
equation until the first-order term we get

ln ρ ≈
∑

γ

ln(1 + ω ∗ fγ ∗ ω/L)

≈ ω ∗
∑

γ

fγ ∗ ω/L

= ω ∗ f ∗ ω/L. (7)

Using the explicit form of f in Eq. (4) the final expression of
the equilibrium density becomes

ln ρ = ω ∗ ψ ∗ ω + ω ∗ c ∗ ρ ∗ ω/L, (8)

where ψ = ∑
α ψα and ρ = ∑

α ρα . This is the equation for
the monomer density in terms of the local chemical potential.
When one of the polymers is fixed at the origin, it would act
as source of the external potential. In this case φ(r) = V (r)
and density in Eq. (8) becomes the pair correlation function
between the polymers, ρ(r) = ρ̄g(r) [49]:

ln g = ω ∗ (−βV ) ∗ ω + ρ̄ω ∗ c ∗ (g − 1) ∗ ω/L. (9)

Using the PRISM equation [47]

g − 1 = ω ∗ c ∗ ω + ρ̄ω ∗ c ∗ (g − 1), (10)

we see that Eq. (9) is identical to the HNC formalism of Laria,
Wu, and Chandler (LWC) [48] for molecular systems, except
for an extra convolution of ω in the second term on the right-
hand side. If we put the distance dependence in Eq. (8) and use
the external potential instead of the local chemical potential,
we get the relation between the monomer density and the
external potential,

ln[ρ(r)λ3/z] = −
∫

dr′dr′′ω(|r − r′|)βφ(|r′ − r′′|)ω(r ′′) +
∫

dr′dr′′dr′′′ω(|r − r′|)c(|r′ − r′′|)ρ(|r′′ − r′′′|)ω(r ′′′)/L, (11)

where λ =
√

h2/2πmkBT is the thermal wavelength and z is the fugacity of the system. The direct correlation function c(|r − r′|)
in the above equation is calculated using the LWC equation [48],

ln g(r) = −
∫

dr′dr′′ω(|r − r′|)βV (|r′ − r′′|)ω(r ′′) + h(r) −
∫

dr′dr′′ω(|r − r′|)c(|r′ − r′′|)ω(r ′′), (12)

and the PRISM equation,

g(r) − 1 =
∫

dr′dr′′ω(|r − r′|)c(|r′ − r′′|)ω(r ′′) +
∫

dr′dr′′ω(|r − r′|)c(|r′ − r′′|)ρ̄h(r ′′), (13)

where ρ̄ = 1
V0

∫
drρ(r) and h(r) = g(r) − 1. V0 is the volume of the trap.

We can get rid of the unknown fugacity z on the left-hand side of Eq. (11) by imposing the constraint that there are N polymers
on average in the system ∫

drρ(r) = NL. (14)

This gives

ρ(r) = NL
exp[−�U (r)]∫

dr′ exp[−�U (r ′)]
, (15)

where

U (r,�,N ) =
∫

dr′dr′′ω(|r − r′|)φ(|r′ − r′′|)ω(r ′′) + N∫
dr′ exp[−�U (r ′)]

∫
dr′dr′′dr′′′

× ω(|r − r′|)c̄(|r′ − r′′|) exp[−�U (|r′′ − r′′′|)]ω(r ′′′), (16)

with the notation c̄(|r − r′|) = −c(|r − r′|)/�.

In the rest of the sections we demonstrate the above
formalism by applying it to the case of Gaussian and rodlike
polyelectrolytes in harmonic traps. In the small polymer limit
we make connections to the point-particle results obtained
by Wrighton et al. [25]. We also compare our findings with
the existing literature on the pattern formation in colloidal
systems.

III. GAUSSIAN POLYELECTROLYTES: MEAN FIELD
APPROXIMATION

In this section we focus on the Gaussian polyelectrolytes
trapped in a harmonic potential with mean field interactions
among the polymers. We calculate their density profiles from
Eq. (16) and investigate their dependence on the geometry
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FIG. 2. Mean field. (a) Monomer densities calculated from Eq. (17) for different values of trap strengths � for N = 100 Gaussian polymers
each containing L = 8 monomers and monomer length (diameter) σ = 0.5. Stronger interactions lead to sharper shells. (b) Monomer densities
for various lengths L of 100 polymers with σ = 0.5 and � = 8. Also shown is the point-particle result, p-p. Longer polymers have sharper
outermost shells.

of the polymers as well as the strength of the trap (Coulomb
coupling parameter) � (or the inverse temperature). In the
mean field approximation the direct correlation function in
Eq. (16) is replaced by the bare interaction potential −�/r:

U (r,�,N ) =1

2

∫
dr′dr′′ω(|r − r′|)|r′ − r′′|2ω(r ′′)

+ N∫
dr′ exp[−�U (r ′)]

∫
dr′dr′′′ω(|r − r′|)

×
[

1

r ′

∫ r ′

0
dr ′′r ′′2 exp[−�U (|r′′ − r′′′|)]ω(r ′′′)

+
∫ R

r ′
dr ′′r ′′ exp[−�U (|r′′ − r′′′|)]ω(r ′′′)

]
.

(17)

In the limit of point particles, ω(|r − r′|) = δ(|r − r′|), we
recover the point-particle mean field equation of Wrighton
et al. [25].

For Gaussian polymers the single chain structure factor
ω̂(k) in Eqs. (16) and (17) is given by

ω̂(k) = (
1 − f 2 − 2f/L + 2f L+1/L

)
/(1 − f )2, (18)

where f = exp(−k2σ 2/6) [47]. The recursive integral equa-
tion (17) for U (r) is solved iteratively using the Picard’s

method [49], and using Eq. (15) we obtain the density. In
Fig. 2(a) we plot the monomer densities for the polymers
of length L = 8 for different strengths of the trap �. The
dimensionless average monomer density is defined as ρ̄r3

0 =
3/4π = 0.239. In Fig. 2 we see that the polymers close to
the center of the trap have a uniform density of 0.239, while
the outermost polymers form a shell which gets sharper with
increasing �. Thus on increasing �, which may be due to
the decrease in the temperature of the system or increase
in the polymer charges, the polymers at the boundary would
crystallize while the polymers at the center of the trap would
still remain in a fluid state. Though the sharpness of the shells
increases no new shells are formed. Unlike polymers, the
density profile of point particles is monotonically decreasing
and no shells are formed for any value of �. The differences
between the two cases can be understood from the fact that
the point particles do not have any internal structure and in the
mean field limit we do not get any shells. For polymers even
though the interpolymer correlations are neglected in the mean
field, the stronger fluctuations within the polymer represented
by ω(r) in Eq. (17) cause the formation of shells for longer
polymers at couplings � ∼ 8, as shown in Fig. 2(b). In other
words, the shells appear for the longer polymers when the
Coulomb or trap energy is approximately 8 times stronger the
thermal energy. The plot clearly shows that for small polymers

FIG. 3. Mean field. (a) Monomer densities for different values of the number of polymers in the trap N for L = 8 and σ = 0.5 at � = 8.
Increasing N does not add any new shell. Instead the outermost shell moves outward. (b) Dependence of the monomer density on the monomer
length σ of the polymers under the same conditions as in (a).
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we recover the point-particle limit. Increasing the length of the
polymers at a fixed � = 8 makes the outermost shell sharper;
hence it is easier for them to crystallize. From Fig. 3(a) we
see that on increasing the number of polyelectrolytes the
outermost shell moves outward. The added polymers move to
the inner fluid layer instead of populating the outermost shell
or forming any new shells. Figure 3(b) depicts that thicker
polymers or polymers with longer monomer lengths move
inward because of having lower surface charge density and thus
lower electrostatic repulsions. When either the electrostatic
interactions or the trap is strong, the mean field approximation,
which is valid at weak coupling strength, breaks down. In that
case the interpolymer correlations play an important role in
their shell structure and can no longer be neglected.

IV. GAUSSIAN POLYELECTROLYTES: BEYOND
MEAN FIELD

In this section we explicitly consider the interpolymer
correlations and study their effects on the shell structure of
Gaussian polymers. We solve for the direct correlation function
self-consistently from the LWC equation (12) and PRISM
equation (13) by following the procedure outlined by Shew and
Yethiraj [50]. The pair correlation functions in Fig. 4 clearly
portray that the longer polymers are more strongly correlated,
as seen from the peaks in the correlation functions. The direct
correlation function is then plugged into Eq. (16) to obtain the
effect potential U (r) and from Eq. (15) the complete density
profile. Again, Picard’s algorithm is used to compute U (r)
in Eq. (16). The convergence of the numerical computations
becomes increasingly slow for longer polymers and at large
values of �. In that case mixing of different solutions produces
faster convergence [49].

Figures 5(a) and 5(b) show that after taking into account
the interpolymer correlations, sharp shells can occur at lower
� or smaller lengths of the polymers. In Fig. 5(a) we see that
on increasing the trap strength � the shells become sharper,
the trend we obtained earlier in the mean field case. In the
experiments and simulations on trapped colloidal systems,
the strength of the trap is the primary controlling parameter.
Increasing the strength of the trap leads to the formation of
sharper shells [25,35,36]. Our observations from Fig. 5(a)

FIG. 4. Interpolymer pair correlation function for Gaussian poly-
mers of lengths 2 and 4, respectively, � = 4 and σ = 0.5. The longer
polymer shows peaks in g(r) due to stronger correlations.

qualitatively agree with these experimental and simulation
results. As the shells become sharper and their overlap
becomes zero, it becomes more and more difficult for the
polymers to move from one shell to another. Thus the system is
effectively frozen in the radial direction but is in a fluid phase
within each shell, as concluded in Refs. [25,26,35]. At still
higher � the system crystallizes and the liquid state theories
are no longer valid.

Figure 5(b) shows that while the shorter polymers essen-
tially behave like point particles with no shells at moderate
�’s, the longer polymers by virtue of being more strongly
correlated produce sharp shells at such couplings. While in the
mean field on increasing the number of polymers in the trap
does not produce any new structure, for the correlated case
the behavior is different. New shells appear as the number
of polymers in the trap increases, as depicted in Fig. 6. The
new shells start forming at the origin and the outermost shell
moves outward to accommodate the newer ones, similar to the
point-particle case [25]. For the point particles, however, the
shells start forming at large � � 10 values [25], whereas for
longer polymers the shells form as low as � = 2. Figure 6 also
shows the dependence of the density structure on the diameter
(or monomer length) of the polymers. For thicker polymers the

FIG. 5. Correlated densities. (a) The dependence of the correlated density profile (solid, filled) for 100 polymers with L = 4 on �. Also
shown are the mean field density profiles (dashed, unfilled). Strong correlations at larger � produce sharper shells. (b) Correlated (solid) and
mean field (dashed) monomer densities for different lengths L of the polymers at � = 4. Longer polymers are more strongly correlated and
hence have sharper shells. All the polymers have the same σ = 0.5.
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FIG. 6. Correlated densities. On increasing the number of poly-
mers with L = 4 at � = 4 in the trap, new shells are formed unlike
in the mean field case. Polymers of monomer lengths σ = 0.5 (solid,
filled) and 1 (dashed, unfilled) are considered.

sharpness of the shells decreases slightly, although the effect
of the variation of the polymer diameter is less pronounced
after including the correlations.

V. RODLIKE POLYELECTROLYTES

In this section we look at rigid rodlike polymers, which is
the opposite limit to the flexibility of the Gaussian polymers we
studied in the earlier sections. For rodlike polymers the single
chain structure factor ω̂(k) in Eqs. (16) and (17) is given by
[50]

ω̂(k) = 1 + 2

L

L−1∑
j=1

(L − j )
sin jkσ

jkσ
. (19)

The mean field densities for the rods show a sharper outermost
shell than the Gaussian polymers in Fig. 7. This is due to
the stronger correlations in the rods than the Gaussian poly-
mers, which results in their having sharper outermost shells.
Figures 8 and 9 on the correlated densities show that the
shells of rodlike polymers are sharper and are shifted more
outward than the Gaussian polymers. The rigidity causes
strong repulsions among the rods compared to the Gaussian
polymers, and they move outward to minimize the repulsions.

FIG. 7. Mean field. The monomer densities of 100 rodlike (solid)
and Gaussian polymers (dashed) for different polymer lengths at
� = 4. All the polymers have a monomer length of 1. The outermost
shell is sharper for the rods than the Gaussian polymers. The three
sharp peaks at the boundary are not individual shells but part of the
outermost shell.

On changing the parameters � and L in Figs. 8(a) and 8(b),
the rodlike polymers qualitatively behave in the same way
as Gaussian chains. However, the correlated densities of rods
in Fig. 9 have a strong dependence on the diameter of the
rods (or monomer length) than the Gaussian polymers in
Fig. 6. This is again due to the rigidity of the rods causing
a decrease in the charge density due to the increase in the
diameter (or monomer lengths), which has a stronger effect on
the correlated densities.

VI. CONCLUSIONS AND DISCUSSIONS

We presented a theoretical description of polymer systems
in an external potential. We have phenomenologically devel-
oped our theory for polymer systems in an external potential
based on the RISM formalism of Chandler et al. [43,44] and
have obtained an integral equation for the equilibrium density.
Unlike most polymer field theoretic approaches where most
of the computations are done in mean field, this theory goes
beyond mean field and incorporates correlations though the
LWC and PRISM formalisms. We have also looked at the
specific case of the Gaussian and rodlike polymers trapped in
a harmonic potential. In the small polymer limit we obtain the

FIG. 8. Correlated densities. The density profile of 100 rodlike polymers (solid) and Gaussian polymers (dashed) for different values of (a)
�’s at L = 4 and (b) L’s at � = 4. The shells move outward for rodlike polymers due to stronger electrostatic repulsions. All polymers have
σ = 0.5.
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FIG. 9. Correlated densities. The density profile for rodlike
polymers of length 4 at � = 4 showing more shells formed in the
case of N = 100 and 200 polymers in the trap. Polymers of different
monomer lengths σ = 0.5 (filled) and 1 (unfilled) are also considered.
The density depends strongly on the diameter of the rods, unlike the
Gaussian polymers in Fig. 6.

point-particle results of Wrighton [25]. The density profiles
both in the mean field approximation and beyond mean field
are explored for different models of the polymers and strengths
of the trap potential. This work is effectively a generalization
of the formalism developed by Wrighton et al. [25,26] for
trapped point-charge to trapped polyelectrolyte systems.

This formalism would provide a useful description for the
microstructures that form in polymer colloids confined in
optical traps. In recent years structural transitions in trapped
colloids as well as plasmas have attracted the attention of
experimentalists as well as theorists [34–39]. The colloidal
and dusty plasmas have been found to form shell structures
in 3D and rings in 2D similar to the predictions by our
model. At strong trap strengths we get sharp shells where
the intershell transitions do not occur, while the polymers
inside each shell remain in a fluid phase as was concluded
in Refs. [35] and [36]. In most of these studies the presence of
an attractive potential or multiple species causes the formation

of additional structures. Including attractive interactions in our
model would enable us to explain the self-assembly of trapped
colloids and these new phases. The studies on structural
transitions of colloidal systems in traps have considered
spherical particles and are simpler than the biomolecules
considered in our theory because of their complex geometries
and additional length scales. Most experimental studies focus
on the trapping of single molecules. Although trapping of
multiple charged molecules can done through a technique
called optical bottle [4,51], analysis of the pattern formations
like the one in this work have not been done yet, to the best
of the authors’ knowledge. Simulations and experiments on
the pattern formations in charged biomolecules would provide
an important test for the many-body theories such as the one
developed here.

Since the theory is based on the averaging over polymer
sites for inhomogeneous polymer systems, it would describe
the smaller polymers more accurately. For short polymers,
however, the end effects become important and the averaging
process would run into problems. The problem with the
averaging related to the effects of the end points would not
arise in ring polymers. For longer polymers the computations
of the correlations become increasing difficult. The equation
for the density has been derived through linearization, which
would be valid for weak to moderate couplings. Simulations
have to be performed to check the accuracy of the model at
strong coupling. Most real life systems are better described
by semiflexible polymers of which the Gaussian and the
rodlike polymers are special cases. The semiflexible polymers,
however, have an additional directional degree of freedom
which adds to the complexity of the problems. We will tackle
these problems in a subsequent paper.
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