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Nature of the collapse transition in interacting self-avoiding trails
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We study the interacting self-avoiding trail (ISAT) model on a Bethe lattice of general coordination q and on
a Husimi lattice built with squares and coordination q = 4. The exact grand-canonical solutions of the model
are obtained, considering that up to K monomers can be placed on a site and associating a weight ωi with an
i-fold visited site. Very rich phase diagrams are found with nonpolymerized, regular polymerized, and dense
polymerized phases separated by lines (or surfaces) of continuous and discontinuous transitions. For a Bethe
lattice with q = 4 and K = 2, the collapse transition is identified with a bicritical point and the collapsed phase is
associated with the dense polymerized (solidlike) phase instead of the regular polymerized (liquidlike) phase. A
similar result is found for the Husimi lattice, which may explain the difference between the collapse transition for
ISATs and for interacting self-avoiding walks on the square lattice. For q = 6 and K = 3 (studied on the Bethe
lattice only), a more complex phase diagram is found, with two critical planes and two coexistence surfaces,
separated by two tricritical and two critical end-point lines meeting at a multicritical point. The mapping of
the phase diagrams in the canonical ensemble is discussed and compared with simulational results for regular
lattices.
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I. INTRODUCTION

When a polymer is placed in a solution, eventually, as the
temperature (or the solvent quality) is lowered, it undergoes a
transition from an extended (coil) to a collapsed (globule) con-
figuration. This collapse transition is related to the competition
of two interactions: the excluded volume interaction, whose ef-
fect is to extend the chain, and the unfavorable polymer-solvent
interaction, which tends to bring the chain into a more compact
configuration. A concept that is related to this transition is the
� temperature, at which the two effects are in balance and
therefore the chain is in a ideal configuration, such as the one
of a random walk. At the � temperature, the second-order term
of the virial expansion of the osmotic pressure in powers of
the concentration of the polymer vanishes [1,2]. In general,
the critical miscibility temperature, above which the polymer
is in a coil configuration, differs from the � temperature, but
in the limit of an infinite polymeric chain they are equal, and
in this paper we will be always working in this limit. Although
we are discussing here a situation where the polymer-solvent
system displays an upper critical solution temperature (UCST)
in the concentration-temperature plane, lower critical solution
temperatures (LCSTs) and closed coexistence curves, with
both the UCST and LCST, are also found [2]. In a seminal
work, which allowed the application of the ideas of the
renormalization group to polymer physics, de Gennes was
able to show the equivalence of the polymer problem in the
grand-canonical ensemble with the magnetic n-vector model,
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in the formal limit n → 0 [3]. In this mapping, the activity
of end-point monomers of a chain is related to the magnetic
field in the n-vector model and thus if this activity is finite,
the phase transition is destroyed. In other words, only in the
limit of infinite chains, a polymerization transition exists. In an
extension of this theory to interacting chains, it was possible
to identify the collapse transition as a tricritical point [4]. A
review of both the theoretical and the experimental results
related to the collapse transition may be found in [5].

A lattice model for the polymer in a solvent may be
obtained if each cell of the lattice is occupied by either
a monomer or a solvent molecule and monomer-monomer,
solvent-solvent and monomer-solvent interactions in first-
neighbor cells are introduced. Besides these Ising lattice gas
interactions, monomers occupying nearest neighbor sites may
connect forming polymer chains, represented by self-avoiding
walks (SAWs) on the lattice. Such a model actually has been
applied to describe the equilibrium polymerization of sulfur
solutions [6]. Although usually experiments on polymers in
solution happen in a canonical situation, equilibrium polymer-
ization of pure sulfur and sulfur solutions is a realization of
the grand-canonical ensemble. In a particular limit, this model
is equivalent to SAWs with attractive interactions between
monomers that are on nearest-neighbor sites of the lattice and
not consecutive along the chain [7], the so-called interacting
SAWs (ISAWs) model.

The grand-canonical solution of the ISAWs model on
hierarchical (Bethe and Husimi) lattices exhibits the expected
tricritical point [8]. Exact results for this model on regular
two-dimensional lattices lead to the tricritical exponents
νθ = 4/7 [9] (this exponent is defined by the asymptotic
relation between the size R of a chain and the number of
monomers N , R ∼ Nν) and it is believed that νθ = 1/2 in three
dimensions, corresponding to the classical (mean-field) value,
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TIAGO J. OLIVEIRA AND JÜRGEN F. STILCK PHYSICAL REVIEW E 93, 012502 (2016)

since d = 3 is the upper critical dimension for a tricritical
point [4]. These exponents, in the so-called θ -universality
class, are also found when interactions between next-nearest
monomers are included in the system [10,11]. Interestingly, if
the site (monomer) interaction is replaced by a bond interaction
(between bonds on opposite edges of elementary squares), the
phase diagram may change, due to the appearance of a stable
dense polymerized phase for the model defined on a q = 4
Husimi lattice built with squares [12] and on the square lattice
[13].

As already discussed, the collapse transition is of much
interest from a more fundamental point of view, but it also
is a central issue in areas such as biophysics. The problem of
protein folding is actually a collapse transition of a heteropoly-
mer and the basic issue is the relation between the sequence
of monomers in the protein chain and the conformation of the
globule [14], which corresponds to the folded protein chain.
While there are experimental results for this transition that
support the scaling predictions at the tricritical transition [15]
predicted by the ISAW model, with a nonclassical exponent ν,
as expected, other experimental findings reveal a discontinuous
transition [16] and even intermediate phases between the
extended and collapsed phases in three dimensions [17]. It
is worth remarking that the inclusion of vibrations of the chain
in the potential minimum of the ISAW model may lead to a
discontinuous collapse transition [18]. Computer simulations
of the ISAW model both in three and in two dimensions [19]
are consistent with other theoretical results for the model.

An alternative to the two-site interactions of the ISAW
model is to consider walks that may pass more than once
through a lattice site, without any restriction on bonds, and
associate a negative energy with multiply occupied sites. If
up to K monomers are allowed to occupy a site, we have
the multiple monomer per site (MMS) model proposed by
Krawczyk et al. [20]. Monte Carlo simulations of this model
for K = 3 on the square lattice suggest that it can display both
continuous and discontinuous coil-globule transitions [20].
However, exact solutions of the MMS model on hierarchical
lattices show that the collapse transition is always continuous,
but its nature can be critical or tricritical, depending on the
energies involved [21,22]. If the configurations of the MMS
model are restricted such that each edge of the lattice is
occupied at most by a single polymer bond, the resulting walks
are called interacting self-avoiding trails (ISATs) [23]. Figure 1
shows the differences among ISAW, ISAT, and MMS chains.

FIG. 1. Three walks on the square lattice (from left to right): a
SAW, a SAT, and a MMS configuration. The MMS walk and trail
shown here visit each lattice site at most twice. For trails on the
square lattice, this is the upper limit for the number of visits of a site.

All SAWs are valid configurations of ISATs and all ISATs are
allowed in the MMS model, so the models are in an order of
increasing generalization. Notice that the maximum number
of monomers per site K in the MMS model can assume any
value, while for ISAT this maximal number will be q/2 or
(q − 1)/2 for even or odd coordination number q, respectively.
It is apparent in the figures that in all models the chains are
linear, that is, each monomer that is not an end point is bonded
to two other monomers. Nevertheless, the configurations of
self-avoiding trail (SAT) resemble the ones found in branched
polymers (BPs), where a monomer may be bonded to more
than two other monomers, which present rich phase diagrams
[24,25]. Indeed, as will be discussed below, on the Bethe
lattice, BPs with even ramification can be mapped on the ISAT
model.

When a site is visited more than once in the ISAT model,
there will be multiple ways to connect the incoming bonds,
as may be seen in Fig. 1. If the trails are not allowed to
cross themselves, we have the vertex-interacting self-avoiding
walk model proposed by Blöte and Nienhuis [26], whose
coil-globule transition in two dimensions is associated with a
different tricritical point, with νBN = 12/23 [27]. This model
presents a very rich phase diagram when the parameter space
is increased by including stiffness [28] so that the chains are
semiflexible. In contrast, for the more general ISAT model,
where the trails are allowed to cross themselves, the nature
of its collapse transition was a subject of long debate in
the literature: While some works presented evidence of a
continuous collapse transition in Blöte-Nienhuis (BN) [29] or
undetermined [30–33] universality classes, the possibility of a
discontinuous transition was also suggested in [34]. Recently,
the universality class of the collapse transition in this model
has been understood exactly and it was verified that ν = 1/2
when crossings are present [35]. It seems to be no surprise that
the inclusion of crossings in the BN model leads to additional
difficulties in its theoretical understanding. For instance, if
next-nearest-neighbor (diagonal) interactions are introduced
in the square lattice Ising model, since the lattice becomes
nonplanar, no exact solutions are known and a quite rich phase
diagram is found, including a critical line with continuously
varying critical exponents [36].

In order to shed some light on these controversies, here
we solve the ISAT model on Bethe and Husimi lattices
considering that up to K monomers can be placed on a
site. Rich grand-canonical phase diagrams are found with
nonpolymerized, regular polymerized, and dense polymerized
phases separated by critical and coexistence lines or surfaces.
Particularly for lattice coordination q = 4 and K = 2, which
is an approximation for the ISAT on the square lattice, the
solution on both lattices shows that the collapse transition is
associated with a bicritical point. For the Bethe lattice with
q = 6 and K = 3, which mimics cubic or triangular lattices,
two tricritical and two critical lines meeting at a multicritical
point are found. The mapping of the phase diagrams in the
canonical ensemble is discussed, as well as their similarities
to numerical results for regular lattices. Although of course
solutions on hierarchical lattices are not suited to answer
questions related to the universality class of phase transitions,
since they lead to classical exponents, they may be useful to
approximate the thermodynamic properties of the models, such
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as their phase diagrams and the nature of the phase transitions
in the system.

The rest of this work is organized as follows. In Sec. II
we define the model in more detail and present its solution
on the Bethe lattice in terms of recursion relations. The ther-
modynamic behavior of the model on this lattice is discussed
in Sec. III. The solution of the model on a four-coordinated
Husimi lattice is presented in Sec. IV. A discussion and
summary may be found in Sec. V.

II. DEFINITION OF THE MODEL AND SOLUTION
ON THE BETHE LATTICE IN TERMS

OF RECURSION RELATIONS

We consider ISATs on the Bethe lattice (the core of a Cayley
tree [37]) with arbitrary coordination number q. In this model,
at most one polymer bond can occupy a lattice edge. However,
the lattice sites can be occupied by up to K distinguishable
monomers. A statistical weight ωn is associated with each site
with n monomers. As usual, the end points of the walks are
placed on the surface of the tree. The sites at the surface may be
empty or have a monomer placed on them, and the statistical
weights of these two configurations determine only the initial
conditions of the solution of the model on treelike lattices
in terms of recursion relations and thus they will have no
influence on its thermodynamic behavior. The grand-canonical
partition function of the model will be given by

Y =
∑

N1,N2,...,NK

ω
N1
1 ω

N2
2 · · ·ωNK

K , (1)

where the sum is over all configurations of the walks on the
tree, while Nn is the number of sites visited n times by the
walks. In Fig. 2, an example of a Cayley tree with three
generations of sites is shown, with a particular configuration
of ISATs that contributes to the partition function. As already
noted, the maximum number of monomers that can be placed
on a site is limited by the lattice coordination, being Kmax =
q/2 or Kmax = (q − 1)/2 for even and odd q’s, respectively.

To solve the model on the Bethe lattice we consider rooted
subtrees, defining partial partition functions (PPFs) for them.

FIG. 2. Contribution to the partition function of the model on
a Cayley tree with q = 4 and 3 generations. The weight of this
contribution will be ω9

1ω
2
2. The end points of the walks are placed

on the surface of the Cayley tree.

A lattice edge may be empty or occupied by a trail, thus we
define two PPFs g0 and g1 for empty and occupied root edges,
respectively. Considering the operation of attaching q − 1
subtrees with a certain number of generations to a new root
site and edge, we build a subtree with an additional generation.
The recursion relations for the two PPFs are

g′
0 = g

q−1
0 +

K∑
n=1

(
q − 1

2n

)
(2n − 1)!

2n−1(n − 1)!
ωng

q−2n−1
0 g2n

1 ,

(2a)

g′
1 =

K∑
n=1

(
q − 1

2n − 1

)
(2n − 1)!

2n−1(n − 1)!
ωng

q−2n

0 g2n−1
1 . (2b)

The first combinatorial factor in the expressions corresponds
to the number of ways to choose the incoming bonds among
the edges of the lattice, while the second term accounts for
the number of ways to connect the incoming and the root
bonds. These recursion relations, apart from the combinatorial
factors, are identical to the ones obtained for BPs on the Bethe
lattice [25], with the difference that the statistical weights
(defined as Kn there) are associated with sites with n branches.
As basically the thermodynamic properties of the model are
obtained from the recursion relations, both models have similar
behaviors, with some changes of variables (for even n’s).
However, while Banchio and Serra [25] restricted their analysis
of the BP model for cases with two nonvanishing weights Km

and Kn only, here we will concentrate our attention mostly on
the general case of the K = 3 ISAT model with nonvanishing
weights ω1, ω2, and ω3 for q = 6 to compare with simulational
results for ISATs on the cubic and triangular lattices.

Usually, the partial partition functions diverge when the
number M of iterations (generations of the subtree) increases
indefinitely. Thus, it is appropriate to define the ratio of
them R = g1/g0, which is expected to remain finite in the
thermodynamic limit (M → ∞) at least for some range of the
weight parameters ωi for which the density of empty sites on
the lattice does not vanish. The recursion relation for the ratio
is

R′ =
∑K

n=1

(
q−1
2n−1

) (2n−1)!
2n−1(n−1)!ωnR

2n−1

1 + ∑K
n=1

(
q−1
2n

) (2n−1)!
2n−1(n−1)!ωnR2n

. (3)

The properties of the model in the thermodynamic limit will
be defined by a stable fixed point of the recursion relation
R′ = R. The fixed point is linearly stable if

∂R′

∂R
< 1. (4)

The grand-canonical partition function of the model on the
Cayley tree may be obtained if we consider the operation of
attaching q subtrees to the central site of the lattice, in a way
similar to what we used to derive the recursion relations for
the PPFs. The result is

Y = g
q

0 y for y = 1 +
K∑

n=1

(
q

2n

)
(2n − 1)!

2n−1(n − 1)!
ωnR

2n. (5)

The fraction of configurations with n monomers on the central
site of the tree, which corresponds to the Bethe lattice result,
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is given by

ρn = ωn

Y

∂Y

∂ωn

= ωn

y

(
q

2n

)
(2n − 1)!

2n−1(n − 1)!
R2n, (6)

and the total density of monomers on the lattice is

ρ = 1

K

K∑
n=1

nρn. (7)

The free energy of the model on the Bethe lattice is different
from the one on the whole Cayley tree, since the contribution
of the surface sites is discarded. Applying an ansatz proposed
by Gujrati [38], which may also be obtained by considering
the bulk and surface contributions to the free energy [22], the
reduced free energy per site for the Bethe lattice is

φb = −1

2
ln

(
YM+1

Y
(q−1)
M

)
(8)

in the limit of M → ∞. Thus, from Eqs. (2a) and (5) we find

φb = −1

2
ln

⎛
⎝ [

1 + ∑K
n=1

(
q−1
2n

) (2n−1)!
2n−1(n−1)!ωnR

2n
]q

[
1 + ∑K

n=1

(
q

2n

) (2n−1)!
2n−1(n−1)!ωnR2n

](q−2)

⎞
⎠. (9)

It may be useful to recall that the grand-canonical potential
	 = −pV , so that

φb = 	

kBT N
= − pv0

kBT
, (10)

where N is the number of sites in the lattice and v0 is the
volume per site.

III. THERMODYNAMIC PROPERTIES OF THE MODEL
ON THE BETHE LATTICE

It is easy to see in Eq. (3) that R = 0 is always a fixed
point of the recursion relation. From Eqs. (6) and (7), ρi = 0
and ρ = 0 is obtained for R = 0, so this corresponds to a
nonpolymerized (NP) phase. Applying the condition (4) to this
fixed point, one can see that it is stable for ω1 � 1/(q − 1).
Furthermore, from Eq. (9), φ

(NP)
b = 0 is found.

Another possibility is that a fixed point is found for which
R → ∞. Expanding the recursion relations (3) for large values
of the ratio R, one can notice that in general this fixed point
will not be reached, since R′ is of the order of R−1 in this limit.
However, for trees with even values of q and for K = Kmax =
q/2, the last term in the denominator of the recursion relation
vanishes and then

R′ = ωq/2

ωq/2−1
R + O(R−1), (11)

so this fixed point will be stable if ωq/2

ωq/2−1
� 1. Replacing the

ratio R → ∞ in Eq. (6), ρn = δn,q/2 is found, so all sites
of the lattice are occupied by q/2 monomers in this dense
polymerized (DP) phase and therefore all lattice edges are
occupied by one bond. Actually, it is easy to obtain the free
energy associated with this phase on any lattice, since every
site will be occupied by q/2 monomers and all qN/2 edges of
the lattice have bonds on them, so it is necessary to consider

only the number of ways to form pairs with the incoming bonds
on each site. The result is

φ
(DP)
b = − ln

(
(q − 1)!

2q/2−1(q/2 − 1)!
ωq/2

)
. (12)

On the Bethe lattice, this result may also be obtained writing
a recursion relation for S = 1/R and studying the trivial fixed
point S = 0. The free energy (9) may be written in terms
of S and the result above for the free energy of the DP phase
[Eq. (12)] is reobtained. Since φ

(NP)
b = 0, a NP-DP coexistence

surface (where φ
(DP)
b = φ

(NP)
b ) is expected to be located at

ωq/2 = 2q/2−1(q/2 − 1)!

(q − 1)!
, (13)

as indeed we will find below.
Finally, there may be other fixed points with nonvanishing

and finite values of the ratio R, which may be found by
solving the polynomial fixed point equation for positive roots.
This polymerized (P) phase in general corresponds to partial
occupation of the lattice by the trails.

A. Case of at most one monomer per site (K = 1)

For K = 1, the SAW problem is recovered. This case has
been studied before [39], but we will briefly describe it here
for completeness. Besides the NP fixed point, the recursion
relation (3) has the additional fixed point

RP =
√

(q − 1)ω1 − 1(
q−1

2

)
ω1

, (14)

which is associated with a polymerized phase. This phase
is stable for ω1 � 1/(q − 1), so a continuous polymerization
transition occurs at the critical point ω1 = 1/(q − 1). Since for
q = 3 only K = 1 is possible, this is the phase diagram of the
ISAT model for this coordination number. For q = 3, ISATs
are equivalent to SAWs, as expected. It is also noteworthy
that in the branched polymer (BP) model there exists the case
of three branches for q = 3, which cannot be mapped on the
ISAT model. We see that, even on a Bethe lattice, these two
models are not equivalent in general.

B. Case of at most two monomers per site (K = 2)

When at most two monomers may occupy the same site,
the fixed point equation for finite and nonvanishing values of
the ratio R is the biquadratic equation

3

(
q − 1

4

)
ω2R

4 + 3

(
q − 1

3

)(
ω1

q − 3
− ω2

)
R2

+ 1 − (q − 1)ω1 = 0. (15)

For q = 4, the first coefficient vanishes and the polymerized
fixed point is

RP =
√

3ω1 − 1

3(ω1 − ω2)
, (16)

which admits real (physical) values only in the regions (I)
ω1 � 1/3 and ω2 > ω1 and (II) ω1 � 1/3 and ω2 < ω1. The
line ω1 = ω2 is a stability limit of the polymerized phase, since
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ω1
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0.6

ω
2

P

DP

NP

BCP

FIG. 3. Phase diagram for q = 4 with K = 2. The solid vertical
(red) and slanted (blue) lines are the P-NP and P-DP critical lines,
respectively. The NP and DP phases coexist on the dashed (black)
line. The (black) circle is the bicritical point.

J ≡ (∂R′/∂R)RP = 1 along it. In region I, the polymerized
phase is unstable (J > 1) and thus the polymerized phase does
not coexist with the NP phase. This is different from what is
seen in the solution of the ISAW model on the Bethe lattice
[12], where a NP-P coexistence line exists in this region. In
region II the polymerized phase is stable (J < 1), with J = 1
at ω1 = 1/3. Therefore, the line ω1 = 1/3 with ω2 � ω1 is a
critical line separating the NP and polymerized phases.

Recalling that the DP phase (R → ∞) is stable for ω2 �
ω1, we notice that the stability limit of the polymerized phase
coincides with the one of the DP phase at ω2 = ω1, so there
is a continuous transition between these phases there (for
ω1 � 1/3). When ω1 � 1/3 and ω2 � ω1, both the NP and
DP phases are stable, therefore these two phases coexist in
this region. According to Eq. (13), for q = 4, the coexistence
line is given by ω2 = 1/3.

These results are summarized in the phase diagram shown
in Fig. 3, which is similar to the one for the BP model in the
case where the sites of the polymers are constrained to have
only two or four incoming bonds [25]. A bicritical point is
located at ω1 = ω2 = 1/3, where the two critical lines NP-P
and DP-P meet the NP-DP coexistence line. The fact that
the two critical lines meet at a finite angle indicates that the
crossover exponent ϕ associated with this bicritical point is
equal to one, which is the classical value for this exponent,
as expected. In contrast, in the ISAW model a tricritical θ

point is found in the phase diagram. Therefore, the fact that
the collapse transition is of bicritical nature found here is in
agreement with several works on a square lattice showing that
the universality classes of the collapse transition of the ISAT
and the ISAW models are different [29–33].

For q > 4, the first term in Eq. (15) does not vanish, leading
to a biquadratic equation, whose physical solutions are

R± =
[

1

6b4ω2
(A ±

√
B)

]1/2

, (17)

0.0 0.1 0.2
ω1

0.0

0.1

ω
2

P

TCP
NP

FIG. 4. Phase diagram for q = 6 with K = 2. The solid (vertical)
and dashed lines are the critical and coexistence lines, respectively.
The circle is the tricritical point.

where

A ≡ 3b3ω2 − b2ω1,

B ≡ A2 + 12b4ω2[(q − 1)ω1 − 1],

and the bi’s are binomial coefficients

bi ≡
(

q − 1

i

)
.

The first condition for these roots to be real is that B > 0,
which is satisfied for all ω2 if ω1 � 1/(q − 1). However, in this
region

√
B > A, so R− is complex. For ω1 � 1/(q − 1), both

R+ and R− admit physical solutions, but the last one is always
unstable (J � 1, for all ω2 in this region). On the other hand,
the solution R+ for large enough ω2 is stable in this region and
this polymerized phase coexists with the NP one. Although
we were not able to obtain a general expression for the limit
of stability of the polymerized phase in general, for a given
q it can be easily calculated. For instance, for q = 6, we find

J � 1 for ω2 � 1/30 + ω1/6 +
√

1 + 10ω1 − 75ω2
1/30 when

ω1 � 1/5, and J < 1 for all ω2 for ω1 � 1/5. At ω1 = 1/5,
for ω2 � 1/15, we have R+ = 0 and J = 1, so the NP and
polymerized limits coincide and there exists a critical line
ending at a tricritical point (TCP). This point can be obtained
in general (for q > 4). The result is

ωTCP
1 = 1

q − 1
, ωTCP

2 = 1

q2 − 4q + 3
. (18)

Above the TCP there exists a coexistence line. For
q = 6, the condition φP = φNP = 0 leads to ω2 = 1/15 +
(2/45)

√
3 − 15ω1. The resulting phase diagram for this

coordination number is depicted in Fig. 4 and similar ones
are found for any q > 4.

C. Case of at most three monomers per site (K = 3)

In this case, we will solve the fixed point equation only
for the case q = 6, which is an approximation for ISATs on
triangular and cubic lattices. The finite and nonvanishing fixed
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ω1
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ω
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ω3= 0.0

ω3= 0.06

FIG. 5. Phase diagrams for q = 6 with K = 3 and several values
of ω3 < 1/15. The solid (vertical) line represents the critical plane
separating the NP and polymerized phases. The circle indicates a
tricritical line (TCL). The dashed lines represent the NP-P coexistence
surface for (from top to bottom) ω3 = 0, 0.02, 0.04, and 0.06.

point values of the ratio R are the solutions of the biquadratic
equation

15(ω2 − ω3)R4 + 10(ω1 − 3ω2)R2 + 1 − 5ω1 = 0. (19)

We will initially present some details of the general phase
diagram by discussing slices at fixed values of ω3, ω2, or ω1.

1. Phase diagrams for fixed ω3

Obviously, for ω3 = 0, the case K = 2 above is recovered,
so the plane ω1-ω2 of the (three-dimensional) phase diagram
is the one shown in Fig. 4. For ω3 > 0, it is not possible to
obtain all critical and coexistence lines or surfaces analytically,
but it is easy to determine them numerically. Figure 5 shows
phase diagrams for several values of ω3 < 1/15, which are
qualitatively identical to the one obtained for ω3 = 0. Actually,
only the NP-P coexistence lines change, forming thus a curved
NP-P coexistence surface. Since the NP-P critical line stays at
the same position, there exists a NP-P critical plane located at
ω1 = 1/5, which meets the coexistence surface at a tricritical
line (TCL) at ω2 = 1/15. Notice that, although the DP phase is
stable for ω3 � ω2, for ω3 < 1/15 the NP phase has a smaller
free energy.

As will be shown below, exactly at ω3 = 1/15 there exists
a NP-DP coexistence plane limited by two critical end-point
lines, where the NP-P critical and coexistence surfaces end.
Moreover, there is also a multicritical point on this plane where
the TCL ends.

Phase diagrams (not shown) for (fixed) ω3 > 1/15 present
P-DP continuous and discontinuous transition lines meeting
at a tricritical point (different from the NP-P one already
discussed), so there are also critical and coexistence P-DP
surfaces as well as a second tricritical line in the three-
dimensional phase diagram. This will be demonstrated below.

2. Phase diagrams for fixed ω2

Considering ω2 = 0 in Eq. (19), besides the two fixed point
values R = 0 (NP) and R → ∞ (DP), we have two other
positive solutions of the fixed point equation

R± =
(

5ω1 ±
√

(5ω1)2 + 15ω3(1 − 5ω1)

15ω3

)1/2

, (20)

but R+ is unstable along the whole phase diagram. In the region
ω1 < 1/5, the solution R− is unphysical. At ω1 = 1/5, we have
R− = 0 and J (R−) = 1, leading to the expected NP-P critical
line. For ω1 > 1/5, the solution R− (the polymerized phase)
is physical and stable for ω3 � 5ω2

1/3(5ω1 − 1). Notice that
this stability limit diverges when ω1 → 1/5 and thus the NP-P
critical line, at ω1 = 1/5, exists for ω3 in the interval [0,∞).
As discussed above, the DP phase is stable for ω3 � ω2, which
in the present case means that this phase is stable in the whole
ω1-ω3 plane. The NP-DP coexistence line, given by Eq. (13),
is located at ω3 = 1/15 (for ω1 � 1/5). The coexistence line
between P-DP phases, obtained by equating their free energies,
is given by ω3 = [2 − 15ω1 + 2

√
15ω1(5ω1 − 1) + 1]/15 for

ω1 � 1/5. This line meets the NP-DP coexistence line tan-
gentially at ω1 = 1/5 and ω3 = 1/15, which is a critical end
point (CEP), where the NP-P critical line becomes metastable.
These results are summarized in the phase diagram shown in
Fig. 6. For ω2 > 0, the spinodals of the polymerized phase
(not shown in the figure) as well as the P-DP coexistence
line were obtained numerically. In the region ω2 < 1/15 the
same qualitative behavior seen for ω2 = 0 is found and only
the P-DP coexistence line changes (see Fig. 6). Therefore, the
curved P-DP and plane NP-DP coexistence surfaces meet at a
line of the CEP located at ω1 = 1/5 and ω3 = 1/15. This line
ends when it meets the tricritical one, at the multicritical point
at ω1 = 1/5 and ω2 = ω3 = 1/15.

0.0 0.1 0.2 0.3 0.4
ω1

0.00

0.05

0.10

ω
3

CEP

PNP

ω2= 0.0

ω2= 0.06DP

FIG. 6. Phase diagrams for q = 6 with K = 3 and several ω2 <

1/15. The solid vertical (red) line represents the critical P-NP plane.
The dashed horizontal (black) line indicates the coexistence surface
of NP and DP phases. The dashed (blue) lines are P-DP coexistence
lines for (from bottom to top) ω2 = 0.0, 0.02, 0.04, and 0.06. The
(violet) circle represents the NP-P critical end-point line.
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3. Phase diagrams for fixed ω1

For ω1 = 0 Eq. (19) has the positive roots

R± =
(

15ω2 ±
√

(15ω2)2 − 15(ω2 − ω3)

15(ω2 − ω3)

)1/2

, (21)

but the solution R− is unstable in the whole ω2-ω3 plane.
Notice that in region I (ω3 < −15ω2

2 + ω2) both solutions
are nonphysical. It is easy to see that R+ diverges when
ω2 → ω3 and indeed it is stable for ω3 � ω2 (except in region
I), corresponding to a polymerized phase. This stability limit
coincides with the one of the DP phase, so a DP-P critical line
exists at ω3 = ω2. For ω2 < 1/15, the NP-DP phases coexist
at ω3 = 1/15, while for ω2 > 1/15 the NP-P coexistence
line is given by ω3 = −45ω2

2/4 + 3ω2/2 + 1/60, which meets
(tangentially) the NP-DP coexistence line, at ω3 = ω2 = 1/15.
At this point the P-DP critical line becomes metastable, so
it is also a critical end point. The resulting phase diagram
is shown in Fig. 7(a). For any ω1 in the range [0,1/5),
the same behavior is found and only the NP-P coexistence
surface changes, as expected [see Fig. 7(a)]. Therefore, we
find the expected NP-DP coexistence plane, at ω3 = 1/15 (for
ω2 � 1/15). Moreover, the stability limits of the polymerized
and DP phases still meet at ω3 = ω2, giving rise to a critical
P-DP plane there, for ω2 � 1/15. This plane ends at a CEP
line, at ω3 = ω2 = 1/15, where also the NP-P and NP-DP
coexistence surfaces meet. This CEP line also ends at the
multicritical point.

At the plane ω1 = 1/5, which is the stability limit of the
NP phase, Eq. (19) has the polymerized solution

R =
√

10(3ω2 − 1/5)

15(ω2 − ω3)
, (22)

which is stable for ω3 � ω2 and ω2 � 1/15. The phase
diagram at this plane is shown in Fig. 7(b).

For ω1 > 1/5, the NP phase becomes unstable and only
P-DP transitions are found in the phase diagram. As expected
from the results above, for small ω2 this transition is discontin-
uous, but it becomes continuous at a tricritical point, as shown
in Fig. 7(c) (for ω1 = 1/4). Therefore, the P-DP critical and
coexistence surfaces meet at a (second) tricritical line.

4. Phase diagram for ω2 = ω3

Since the second tricritical line is located at the ω3 = ω2

plane, we will find the phase diagram related to it. In this case,
Eq. (19) reduces to a quadratic polynomial, whose polymerized
solution is

R =
√

5ω1 − 1

10(ω1 − 3ω)
, (23)

where ω ≡ ω2 = ω3. As expected, for ω1 > 3ω, R = 0 when
ω1 = 1/5 and J (R) = 1. More important, in the region ω1 >

1/5, R diverges and J (R) → 1 when ω = ω1/3, which is the
tricritical line. This phase diagram is depicted in Fig. 8.

5. Three-dimensional phase diagram

In summary, at the multicritical point the two tricritical lines
and two critical end-point lines meet. The first ones separate

0.00 0.05 0.10 0.15
ω2

0.00

0.05

0.10

0.15

ω
3

DP

P

NP
ω1= 0

ω1= 0.199

CEP

(a)

0.00 0.05 0.10 0.15
ω2

0.00

0.05

0.10

0.15

ω
3

DP

P

NP-P critical
plane TCL

MCP
CEPL

(b)

0.00 0.05 0.10 0.15
ω2

0.00

0.05

0.10

0.15

ω
3

DP

P

TCP

(c)

FIG. 7. Phase diagrams for q = 6 with K = 3 and (a) several
values of ω1 < 1/5, (b) ω1 = 1/5, and (c) ω1 = 0.25. In (a) the
solid (slanted, blue) and dashed (horizontal, black) lines represent
the critical P-DP and the coexistence NP-DP planes, respectively. The
dashed (red) lines constitute the P-NP coexistence surface for (from
right to left) ω1 = 0, 0.08, 0.16, and 0.199. In (b), at the multicritical
point (black square), the P-NP critical end-point line (horizontal,
violet), the tricritical P-NP line (vertical, red), and the critical P-DP
line (slanted, blue) meet. In (c), at the tricritical point (circle), the
critical (solid) and coexistence (dashed) P-DP lines meet.
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0.0 0.1 0.2 0.3 0.4
ω1

0.00

0.05

0.10

ω

NP
P

P-DP critical
plane

TCL

MCP
CEPL

FIG. 8. Phase diagram for q = 6 with K = 3 and ω = ω2 = ω3.
At the multicritical point (black square) the P-DP critical end-point
line (horizontal, green), the critical P-NP line (vertical, red), and the
P-DP tricritical line (slanted, blue) meet.

critical and coexistence surfaces between P-NP and P-DP
phases. These two critical surfaces are also limited by their
corresponding CEP lines. The resulting three-dimensional
phase diagram is depicted in Fig. 9.

IV. SOLUTION OF THE ISAT ON A HUSIMI LATTICE
FOR K = 2 AND q = 4

There are no closed paths on a Cayley tree and therefore
this is true also for the Bethe lattice. Thus, on these lattices,
any random walk is a self-avoiding walk. This may lead to
results for the thermodynamic behavior that are qualitatively
different from the ones found on regular lattices. A particular
example, mentioned above, is the branched polymer model,
which presents a bicritical behavior similar to the one shown
in Fig. 3 when considered on the Bethe lattice with q = 4.
However, its solution on a Husimi lattice built with squares
(and q = 4) yields a phase diagram where the bicritical point
is replaced by a critical end point and a tricritical point [25]. It is
therefore very important to obtain the thermodynamic behavior

FIG. 9. Sketch of the three-dimensional phase diagram for q = 6
with K = 3. Colors and line type follow the same definitions as in
the previous figures.

FIG. 10. Contribution to the partition function of the model on a
Husimi tree with q = 4 and 3 generations of squares. The weight of
this contribution will be ω8

1ω
2
2. The end points of the walks are placed

on the surface of the tree.

of the K = 2 ISAT model on a q = 4 Husimi lattice to find out
if the phase diagram also presents a similar change. We remark
that, while the interchange of crossing and colliding trails in the
ISAT model on the Bethe lattice introduces only a coefficient
in the recursion relation, on the Husimi lattice the existence of
loops, even limited to squares, may forbid some configurations,
breaking such equivalence between crosses and collisions.

The four-coordinated Husimi tree, with three generations of
squares, is shown in Fig. 10, with two ISATs placed on it. The
solution of the model on the Husimi tree is done by obtaining
recursion relations for the partial partition functions on rooted
subtrees, defined by the configurations of the site at their root.
Four root configurations are needed, as shown in Fig. 11. We
notice that it is necessary to distinguish between the PPFs 2
and 3: In the first the two bonds reaching the root site belong
to different chains, starting at different sites of the surface of
the tree, while in the second they are part of the same chain.
This distinction is important to ensure that no configuration
with rings will be allowed in the model.

By considering the operation of attaching three subtrees to
a new root square, the following recursions relation for the
PPFs are found:

g′
0 = a3 + 2ab2 + b2c, (24a)

g′
1 = 2a2b + 2abc + 2bc2 + 2b3, (24b)

FIG. 11. Definition of the root sites on the Husimi lattice. The
thick (red) lines indicate incident bonds. The difference between g2

and g3 is that in the last (first) one the incident bonds are (not)
connected.
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g′
2 = ab2 + 2b2c + c3 − d3, (24c)

g′
3 = d3, (24d)

where

a = g0 + ω1g2, (24e)

b = ω1g1, (24f)

c = ω1g0 + ω2(3g2 + 2g3), (24g)

d = ω1g0 + ω2(g2 + 2g3). (24h)

Defining the ratios Ri = gi/g0, we obtain the following
recursion relations for them:

R′
1 = 2B(A2 + B2 + C2 + AC)

E
, (25a)

R′
2 = AB2 + 2B2C + C3 − D3

E
, (25b)

R′
3 = D3

E
, (25c)

where

E = A3 + 2AB2 + B2C (26)

and

A = 1 + ω1R2, (27a)

B = ω1R1, (27b)

C = ω1 + ω2(3R2 + 2R3), (27c)

D = ω1 + ω2(R2 + 2R3). (27d)

The partition function of the model on the Husimi tree
is obtained by considering the operation of attaching four
subtrees to the central square. The result is

Y = g4
0[A4 + 4B2(A2 + AC + C2) + 2B4 + C4 − D4].

(28)
The densities of sites occupied by one or two monomers are
given by

ρ1 = ω1

4Y

(
∂Y

∂ω1

)
, (29a)

ρ2 = ω2

4Y

(
∂Y

∂ω2

)
, (29b)

where the ratios should have their fixed point values for the
given statistical weights ω1 and ω2. The free energy per square
of the model on the Husimi lattice, which is the bulk of the
Husimi tree, is again obtained using Gujrati’s prescription
described above:

φb = − lim
M→∞

1

2
ln

(
YM+1

Y 3
M

)

= − ln

[
(A3 + 2AB2 + B2C)2

A4 + 4B2(A2 + AC + C2) + 2B4 + C4 − D4

]
.

(30)

Notice that these recursion relations [Eqs. (25)] cannot be
mapped on the ones for branched polymers [25], due to the

0.0 0.1 0.2 0.3 0.4 0.5 0.6
ω1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ω
2

P1

P2

NP

BCP

FIG. 12. Phase diagram for the ISAT model on a Husimi lattice
built with squares and coordination q = 4. The solid vertical (red)
and slanted (blue) lines are the P1-NP and P1-P2 critical lines,
respectively. The NP and P2 phases coexist on the dashed (black)
line. The (black) circle is the bicritical point.

existence of closed paths in the Husimi lattice. Despite this
distinction, they have similar fixed points and thermodynamic
phases.

(i) R1 = R2 = 0 and R3 > 0. This leads to ρ1 = ρ2 = 0
and φb = 0 and thus is a nonpolymerized phase.

(ii) R1 > 0, R2 > 0, and R3 > 0. In this polymerized phase
all densities are nonvanishing. It will be called P1 here.

(iii) R1 = 0, R2 > 0, and R3 > 0. This is also a polymerized
phase, but more asymmetric than P1, typically with ρ1 � 1
and ρ2 ≈ 1. This phase is similar to the dense one of the
Bethe lattice solution, however, it is not strictly dense since,
in general, ρ1 
= 0 and ρ2 
= 1. Therefore, we will refer to it as
the P2 phase.

In contrast to the Bethe solution, here all stability limits
and coexistence lines have to be determined numerically.
Continuous P1-NP and P1-P2 transition lines are found, while
a coexistence line exists between the NP and P2 phases. All
these lines meet at a bicritical point located at ω1 = ω2 �
0.333 333, which is probably ω1 = ω2 = 1/3, exactly as in
the Bethe lattice. These results are summarized in Fig. 12,
where the only difference observed when compared to the
Bethe lattice diagram (Fig. 3) is that the transition lines are no
longer linear.

V. CONCLUSION

The solution of the ISAT model on the Bethe lattice pre-
sented here confirms that the nature of the collapse transition
in this model can indeed be different from the one found for
ISAWs (the θ class), depending on the interplay between the
number of monomers allowed on a site K and the coordination
q of the lattice. For instance, for K = Kmax = q/2, which
is the case always considered on regular lattices, beyond a
nonpolymerized phase and a regular polymerized phase, a
stable dense polymerized phase may also exist. On the Bethe
lattice, in this phase all sites of the lattice are occupied by Kmax

monomers.
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For q = 4 and K = 2, the P-NP critical line ends at a
bicritical point, instead of the tricritical θ point observed
in the ISAW and MMS models. This bicritical behavior is
different from all previous conjectures about the ISAT collapse
transition on the square lattice, as discussed in the Introduction.
It is important to recall that the same result has been found for
the branched polymer model on the Bethe lattice, but on a
Husimi lattice built with squares, which is a more realistic
approximation to the square lattice, a different phase diagram
was found, with the bicritical point replaced by a critical end
point and a tricritical point [25]. In contrast, for the ISAT model
on the Husimi lattice built with squares we found a phase
diagram very similar to the one for the Bethe lattice (Fig. 3):
The bicritical point is still present and the only difference is
the dense phase, which becomes a polymerized phase, but with
asymmetric densities ρ1 � ρ2. This suggests that the collapse
transition in the ISAT model on the square lattice may in fact
be of bicritical nature.

It is also important to note that these results for ISATs
are very different from the ones for the MMS model (with
K = 2), where a tricritical point was found [21]. This shows
that the restriction in the bonds is more important to determine
the thermodynamic behavior of ISAT than the multiple visit of
sites. Interestingly, for K = 2 and q > 4, the critical P-NP line
ends at a tricritical point for the ISAT model, similarly to ISAW
and MMS models. This may be compared with what happens
for ISAWs with interactions between bonds: On the q = 4
Husimi lattice the collapse transition is a critical end point;
it becomes the usual tricritical point on a q > 4 Husimi tree;
however, we have not studied the present model on Husimi
trees with q > 4.

Considering q = 6 and K = 3, a very rich phase diagram
was found in the Bethe lattice solution, with two tricritical
lines separating the critical and coexistence P-NP and P-DP
surfaces. Moreover, two critical end-point lines are also present
in the phase diagram, where the critical surfaces end. All these
lines meet at a multicritical point (MCP) located at ω1 = 1/5
and ω2 = ω3 = 1/15. We recall that in the MMS model (with
K = 3) on the Bethe lattice there is also a critical NP-P surface
limited by a TCL and a CEP line, both meeting at a MCP [22].
In the version of the model where immediate reversal of the
walk is forbidden, the MCP is located at ωi = 1/(q − 1)i [22],
differing from the location in the ISAT model. More important,
in the MMS model there is not a DP phase and the NP phase is
limited by surfaces of continuous and discontinuous transitions
to regular polymerized phases.

In order to compare our results with simulations of the
ISAT on regular lattices, our grand-canonical phase diagrams
can be mapped onto canonical ones. As discussed in Ref. [22],
in the canonical situation, the polymer chain is placed on an
(effectively) infinite lattice, so the polymer (a polymerized
phase) exists together with the empty lattice (a nonpolymerized
phase). Therefore, this corresponds to the surfaces limiting the
NP phase in our diagrams. Moreover, identifying ω1 as the
fugacity of the monomers, we must have ω2 = ω2

1e
β1 and ω3 =

ω3
1e

β2 so that β1 = ln [ω2/ω
2
1] and β2 = ln [ω3/ω

3
1] are the

canonical variables. Figure 13(a) shows the canonical diagram
for q = 4 and K = 2 and, as expected, by increasing β1 a
collapse transition takes place at the bicritical point. However,
for β1 > β∗

1 , instead of a globule (liquidlike) phase (due to a

-4 0 4
β1

(a) NP-DP coex.NP-P critical
BCP(coil) (crystal)

-4 0 4
β1
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10

β 2

NP-P coex.

NP-DP coex.

NP-P critical

MCP

(coil)

(globule)

(crystal)

(b)

FIG. 13. Canonical phase diagrams for (a) q = 4 with K = 2 and
(b) q = 6 with K = 3. In (b), the vertical (red), horizontal (violet),
and slanted (green) lines are the P-NP TCL, P-NP CEP line, and P-DP
CEP line, respectively, which meet at the multicritical point (black
square).

NP-P coexistence), we have found a dense (crystal-like) phase
(due to a NP-DP coexistence). A dense phase has also been
found in recent studies on generalized ISAT models on regular
lattices [40–42] and is usually called a crystal phase. Thus,
our results suggest that the origin of the difference in ISAW
and ISAT models in the square lattice is the nature of their
collapsed phases, which is liquidlike (globule) in the former
and solidlike (crystal) in the latter. It is noteworthy that the
bicritical point is located at β∗

1 = ln 3, in striking agreement
with the expected value for the collapse transition of the ISAT
model on the square lattice [33].

The canonical diagram for q = 6 and K = 3 is depicted
in Fig. 13(b), where three phases are observed: coil, globule,
and crystal, all of them separated by continuous transition lines
that meet at the multicritical point [located at β1 = ln(5/3) and
β2 = ln(25/3)]. Usually, equal energies are associated with
sites visited twice and thrice, corresponding to the line β1 = β2

in our phase diagram. This line is placed inside the coil and
globule phases only and obviously cuts the tricritical line at
β1 = β2 = ln(5/3), suggesting that a transition similar to the
ISAW model should be found in this case.

In a very interesting work, Doukas et al. [40] considered an
extended ISAT model on the triangular lattice, where weights
ω2 and ω3 were associated with double and triple visited sites.
The canonical phase diagram they found, through Monte Carlo
simulations (see Fig. 22 in Ref. [40]), is qualitatively equal to
the ours [Fig. 13(b)], with the coil, globule, and crystal phases
and their respective transition lines meeting at a multicritical
point. The coil-globule transition was found to be continuous
and belonging to the θ class; a continuous globule-crystal
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line is also found, in accordance with our findings. However,
the coil-crystal transition is claimed to be first order, while
we have found a CEP line. Interestingly, a similar difference
has been observed in the phase diagram of the MMS model,
where a CEP line was found in the Bethe lattice solution
[22] and a first-order transition was suggested by Monte Carlo
simulations [20]. Anyway, it is very interesting that comparing
our results with the simulational findings by Doukas et al. [40],
we find that the locations for the multicritical point coincide.
This quantitative agreement between solutions on hierarchical
lattices and simulations is very rare and has been observed
only in lattice gas systems [43,44]. Indeed, recent simulations
of this generalized ISAT model on the cubic lattice showed
that a dense phase does not exist in this case and thus a very
different phase diagram is found [45]. This suggests that while
our solution yields results reliable for the triangular lattice,
it is not the case for the cubic one. Therefore, improved

approximations, for example, solving the model on Husimi
lattices built with cubes or triangles, are desirable to further
study if this difference is found also on hierarchical lattices.
Approximate calculations such as the ones presented here are
in a sense complementary to simulations, since they allow the
determination of the nature of the phase transition quite easily,
while this may be not the case in computational studies, mainly
if the parameter space of the model has several variables.
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