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Nonuniform elastic properties of macromolecules and effect of prestrain on their continuum nature
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Many experimental and theoretical methods have been developed to calculate the coarse-grained continuum
elastic properties of macromolecules. However, all of those methods assume uniform elastic properties. Following

the continuum mechanics framework, we present a systematic way of calculating the nonuniform effective elastic
properties from atomic thermal fluctuations obtained from molecular dynamics simulation at any coarse-grained
scale using a potential of the mean-force approach. We present the results for a mutant of Sesbania mosaic
virus capsid, where we calculate the elastic moduli at different scales and observe an apparent problem with
the chosen reference configuration in some cases. We present a possible explanation using an elastic network
model, where inducing random prestrain results in a similar behavior. This phenomenon provides a novel insight
into the continuum nature of macromolecules and defines the limits on details that the elasticity theory can
capture. Further investigation into prestrains could elucidate important aspects of conformational dynamics of

macromolecules.
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I. INTRODUCTION

Biological macromolecules can be highly dynamic enti-
ties, capable of undergoing self-assembly, disassembly and
configurational changes, and binding to specific sites, either
spontaneously under specific conditions or driven by certain
agents. These configurational changes and binding interactions
also affect their mechanical behavior, which, in many cases,
are closely related to their function [1,2]. Various experimental
as well as theoretical and numerical methods have been used
to assess the mechanical properties of macromolecules [3,4].
In principle, atomic potentials can be used to simulate the
dynamics of proteins under any mechanical loading condition.
However, the time step in such calculations is usually limited
to femtoseconds and, as the system size grows, it becomes
prohibitively expensive to calculate molecular dynamics tra-
jectories on time scales beyond microseconds. Moreover, to
keep the computation time within reasonable range, in many
situations, the simulated loading rates have to be increased
to a nonphysical level. This is especially true in the case of
quasistatic problems, which have an infinitesimal loading rate.

To solve these problems, a number of coarse-graining
methods have been developed, e.g., elastic network [5],
Gaussian network [6], structure-based (G6-like) models [7-9],
and continuum mechanical models [10-13]. In addition to
being computationally faster, these techniques also provide
simplified and generalized organizational principles. For ex-
ample, the elasticity models have provided insight into the
shape [14] and buckling behavior [13] of icosahedral viral
capsids, which hold true irrespective of the molecular details
of the constitutive proteins. These methods all make use of
some simplified, approximate description of both the atomic
structure and the molecular interactions and have some free
fitting parameters—e.g., spring constants in elastic network
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models and shear and bulk moduli in continuum mechanics.
These parameters, although having some dependence on the
molecular details, are either scaled to the available experiments
or obtained by comparing with molecular dynamics (MD)
trajectory [4,15].

Despite the fact that interactions within macromolecular
structures are highly heterogeneous (e.g., including cova-
lent and noncovalent types), the common approximation of
uniform elastic properties employed by these methods has
been surprisingly successful in predicting and recapitulating
their large-scale, overall mechanical behavior [10,11,16]. Such
results are suggestive that the structural details of macro-
molecules are more important than the nature of the atomic
interactions in determining their mechanical properties [16].
Others have reported significant change in the stiffness of
viral capsid from a single point mutation [3], which, in
terms of continuum elasticity, is best interpreted as a change
in the constitutive relationship with the structure unaltered.
These experiments provide evidence that local constitutive
details, i.e., changes in energetics, are important and therefore
should be captured in a coarse-grained model. The existing
methods for computing continuum-scale elastic properties of
macromolecules assume uniform properties [4,15]. Hence,
there is a need for a systematic framework that can be used to
calculate nonuniform elastic properties and, thus, capture the
effect of local energetic variations. Using such a framework,
one would then be able to quantitatively address the related
overarching question: How nonuniform are the effective elastic
properties of macromolecules and their assemblies? Or, put
differently, what are the length scales that are characteristic
of heterogeneity in elastic properties? How do they compare
to the characteristic structural length scales, primary through
quaternary?

Moreover, the validity of continuum approximation to in-
herently discrete structures, like macromolecules, is arguable.
Continuum mechanics assumes that all points in the domain
are filled with material where the lowest energy reference
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configuration is well defined and known a priori. As we push
the limit of continuum mechanics to nanoscale structures [17],
it remains to be determined how valid these assumptions are,
how many details can be captured with this model, and what is
meant by “limit of continuum.” One key feature to observe is
the heterogeneity of the system. That is, if we need a different
stress-strain relation at every point of the continuum, then it
could be argued that a continuum description is not suitable.
However, there could be more fundamental deviations from the
continuum behavior which we seek to explore in this paper.

In particular, one fundamental assumption of continuum
mechanics which poses problems at near molecular scales is
that of a reference configuration. The strain and strain energy
of a system upon deformation are calculated with respect to the
reference state, which is also considered stress free. Thus, if
there is a change in the reference configuration, it intrinsically
modifies the governing equations of the continuum model.
In macromolecules, because of configurational changes, it
becomes a challenge to identify an appropriate reference
configuration. In addition, the assumption of a stress-free
reference configuration requires additional considerations
because in many cases the minimum energy state may not be
stress free: Prestress has been quantified in folded proteins and
expected to play a role in their unfolding dynamics [18]. In the
case of icosahedral viruses, the fivefold sites have been shown
to act as stress concentration points—even for the minimum
energy configuration [19]. The reference configuration in
that case is a flat sheet with edges cut at the fivefold sites
and similar theory has been proposed for other platonic
solids [20]. Previously, we have presented an elasticity theory
for conformational changes in macromolecules which takes
into account the change in reference configuration due to
active nature of biomolecules [12]. In those situations, the
reference configuration was not the infact minimum energy
configuration; instead it consisted of incompatible or broken
parts where the components had to be glued together to
restore compatibility—either at the fivefold sites or along the
hexamer edges. Any such incompatabilities in the constituents
of a structure lead to strains and stresses in the minimum
energy configuration of the system—we call these prestrain
and prestress respectively. In those situations, the knowledge
of a “true” reference configurations made it possible to analyze
the system using continuum mechanics principles. Could there
be situations where such a reference configuration does not
exist at all, defying the applicability of continuum mechanics
altogether?

In the present work, we seek answers to these questions
about nonuniformity of elastic properties and effect of refer-
ence configuration on continuum nature in macromolecules.
First, we present a method to systematically calculate the
nonuniform elastic properties of macromolecules at any
selected coarsening scale. We use a spherical virus capsid
as an example because of the hierarchical organization and
symmetry in the structure. Capsids possess the primary-
secondary-tertiary hierarchy of proteins followed by scales
of multiple proteins and then that of a spherical shell structure.
Also they have the symmetry of an icosahedron which can
be exploited in our analysis to improve the results. We
study a 7T = 1 mutant of wild-type Sesbania mosaic virus
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FIG. 1. (a) SeMV coordinates obtained from VIPERDB [21] and
visualized in CHIMERA [22] and (b) an icosahedron shape showing
two-, three-, and fivefold symmetry axes.

(SeMV) (Fig. 1), where we apply our framework at various
coarsening levels to determine the scale of inhomogeneity.
Then we demonstrate the role of reference configuration in
our analysis using an elastic network model, which presents
an explanation of the results we observe from MD. Finally,
we discuss the importance of the results presented here and
consider generalizations to other biomolecular structures and
the future directions in this area.

II. METHOD FOR CALCULATING NONUNIFORM
ELASTIC PROPERTIES

In principle, the continuum-scale elastic properties can
be derived directly from atomic potentials. However, direct
theoretical calculations starting from atomic potentials miss
the entropic component of free energy and the effect of solvent
on atomic interactions. In this section, we present a systematic
way to extract the spatial distribution of nonuniform elastic
properties from a molecular dynamics (MD) trajectory and
thus take into account the entropic component and solvent
effects. In addition, our approach allows a flexibility of
choosing different coarsening scales and combining different
regions of macromolecule based on a priori homogeneity
assumptions or symmetry considerations.

The prerequisite in this framework is an MD trajectory of
equilibrium fluctuations at constant temperature. The equi-
librium fluctuations at finite temperature include the entropic
part of the free energy, which cannot be obtained directly from
the potential energy of the system. Also the effect of solvent is
incorporated explicitly in MD simulations. It can be argued that
if an MD simulation is required to extract the mechanical prop-
erties, there is no gain in computational efficiency. However,
here we need only equilibrium fluctuations which mitigates
the problem of unrealistically large loading rates required for
performing deformation inducing trajectories (e.g., simulated
atomic force microscope (AFM) nanoindentation [23]).

A. Continuum model

We model the coarse-grained mechanics by continuum
elasticity, defining pointwise a strain energy-density function
dependent only on the local strain. A material point of the
system in its reference configuration is denoted by its position
coordinates X, which upon deformation moves to x(X,#) at
time ¢. The Green-Lagrange strain tensor C = F” - F gives
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a proper measure of the local deformation, where F(X,7) =
dx(X,t)/X is the deformation gradient.

We explore two continuum models: three-dimensional (3D)
bulk elasticity and two-dimensional (2D) shell elasticity. For
both of the models we assume isotropic elasticity, so the strain
energy is invariant under rigid-body rotations of the reference
state. This implies that the strain energy depends only on the
isotropic invariants of the strain tensor C.

For 3D bulk elasticity, we choose the three isotropic strain
invariants:

J =/det(©), I} =w(C)J >, and

- (1
L = 1t (C) — w(CH]T 4.

Here J represents the deformed volume ratio, and I; and I, are
insensitive to volume change and, therefore, measure shearing
of the material. By construction, I; > 3 and I, > 3 for all
deformation mappings, and for the reference configuration the
strain tensor is an identity C = F = 1. Thus, the reference
configuration with zero strain corresponds to I; = I, = 3 and
J = 1. Total elastic strain energy of the body is written as:

UC) = U, +/ W, L, J)dV. )
1%

Here A, is the arbitrary reference energy of the system and does
not affect its elastic properties. The exact form of the elastic
strain energy-density function W defines the constitutive
relation between stresses and strains and will be chosen
based on the results from the MD simulation. If the reference
configuration is stress free, the strain energy-density function
W should have a minimum at the reference configuration, that
is,atj =L =3and J = 1.

In 2D shell elasticity theory, the deformation is defined in
terms of a midsurface. Therefore, the deformation gradient
F and the strain C are rank-2 tensors, which define only the
in-plane deformation. The two isotropic strain invariants in
this case are

tr(C)

JP = \/%[trz(C) — tr(C)] and I7° =

Here J?P is the deformed surface area ratio, and 7?° measures
shearing of the surface and is insensitive to area change.
Analogous to the 3D bulk elasticity, /?° > 2 for all in-plane
deformations. In addition to the in-plane deformation, the
out-of-plane or bending deformation is defined by curvature
tensor B, which has two isotropic invariants—the mean
curvature H = 1/2tr(B) and Gaussian curvature K = det(B)
(for details on definition of the curvature tensor and related
shell kinematics, see, e.g., Ref. [24]). However, since the
dependence of bending energy on Gaussian curvature K is
not clear for nonplanar reference surfaces, we simplify it
by assuming that bending energy depends only on the mean
curvature H. Following the assumption that stretching and
bending energies are independent, the total elastic energy of
shell is

L{(C,B):Zjo—i—f [WP(H) + WH(I{P,7°)]dS.  (4)
S

Similar to the 3D bulk elasticity model, the exact forms of
the elastic strain energy-density functions W° and W* will
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be chosen based on the MD results. However, based on the
assumption of reference configuration being stress free, it
is required that the stretching energy-density function W* is
minimum at /?° = 2 and J?° = 1.

B. Discretized continuum model

Before connecting the atomic model to the continuum one,
we discretize the continuum model using displacement at finite
number of points termed as nodes. The position coordinates
of these nodes are denoted by x;, for I =1, ..., Npodes—
the total number of nodes in the system. Calculation of
the strain field from discrete nodal positions requires an
interpolation function. For the 3D bulk elasticity model, we
use a meshfree approximation [25] which we have previously
used to create a framework for connecting continuum and
atomic models [26,27]. In the case of 2D shell elasticity model,
we use different interpolations for the two parts of elastic
energy. For calculating in-plane strain tensor C we use C°-
continuous Lagrange linear polynomial interpolation, while
for calculating the curvature tensor B we use C'-continuous
Loop’s subdivision approximation [28]. We have previously
proposed an elasticity theory of macromolecules based on this
mixed formulation [12].

Using the discretized degrees of freedom, the integrals
in strain energy Eqs. (2) and (4) can be converted into
summations. There is a subtle difference in the numerical
implementation of discretized version of two continuum
models, because of which the summations are carried out over
different entities in two cases. For the 3D bulk elasticity model,
it is carried out over nodes:

Nnodes

UC) =Uo+ Y Wilh,h,))Vi, (5)
1=1

while for 2D shell elasticity model, it is carried out over
triangular faces (elements) of the surface mesh:

N!riang]es
UCB)=Uy+ Y WySu=Uo+ Y [Wh(H)
M M=1
+ Wi (I7°,77°)]|Su. (6)

Here V; is the volume corresponding to node / and Sy is
the surface area of triangle M. V; is taken as the volume of
the Voronoi cell corresponding to the node, which in turn
is calculated from its dual graph—the Delaunay tessella-
tion [27,29]. For the 2D case, Sy, is simply the area of triangle
M. All the evaluations in the above summations are done at
a single point—either the node or the centroid of the triangle.
The reason behind the difference in integration schemes is
purely numerical, and interested readers are referred to related
literature [30,31]. The main approximation here is that, in
the above equations, the strain energy-density functions (W;,
WP, and W3,) are constant over each node or triangle but are
allowed to vary from one node or triangle to the other. Thus, the
number of nodes and triangles sets the degree of heterogeneity
allowed in our models.
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C. Connecting atomic and discretized continuum models

Consider an MD trajectory over a set of time steps
to,ty, ... ty = t,—1 + At. Let the positions of the atoms at
time #; be denoted by r,(#;),a =1,...,Nyoms. For each
frame of the MD trajectory, we define a set of representative
nodes as the degrees of freedom of our continuum elasticity
model by coarse-grained mapping from the atomic positions.
Specifically, we consider linear combinations

Naoms

x1(t) =Y Arara(t), I =1,... ,Nuoges, (7)

a=1

where A is a connectivity matrix of dimension Npodes X Natoms
and Za Aj, =1 VI. Furthermore, exactly one element of
each column can be nonzero to make sure that the mapping is
single valued. Or in other words, each atom should contribute
to define the position of one and only one node.

In this work, we define the mapping coefficients A, in two
ways: (a) by placing a node at the center-of-mass of amino
acids (also called residues) [32] bringing down the number of
total degrees of freedom by a factor of Nyoms/Nnodes ~ O(10)
and giving us a three-dimensional bulk elasticity model and
(b) by averaging through the thickness of the virus capsid,
thus giving us a two-dimensional shell elasticity model and
a reduction in the degrees of freedom of the order of
Naloms/Nnodes ~ 0(100)

While calculating the center of masses, each amino acid
can be assigned a single node or multiple amino acids can be
grouped together to create one node. When combining multiple
amino acids, those next to each other on the protein sequence
are considered neighbors and thus merged together. Here we
consider cases of two, three, and six amino acids grouped
together, in addition to one node per amino acid. To create a
2D shell model by averaging through thickness, the averaging
zones (of conical shape) are obtained from subdivision of
an icosahedral net. The number of subdivisions can be set
as desired. Thus, this step of defining coarse-grained nodes
provides us with the flexibility of choosing a desired level of
coarse-graining, which we will exploit later. The essential idea
in this step is to extract continuum-scale deformation metrics
at each time frame of the MD trajectory that can be used in the
elastic energy expressions (5) and (6). From the trajectory of
deformation metrics, the free energy of the system is derived
using a potential of mean force, which is described next.

D. Potential of the mean force

Originally proposed by Kirkwood to evaluate chemical
potentials of fluid mixtures [33], the potential of the mean force
is based on Boltzmann’s law. In thermodynamic equilibrium,
the system fluctuates around its reference configuration and
explores all of the available microstates. These microstates of
the system obey Boltzmann’s law, which gives the local prob-
ability distribution of states, defined in terms of deformation
measure D, at point X as

1 UD; X
p(D:X) = —exp[— (—)] )

Z kgT

where U(D;X) is internal energy, Z(X)= [dDexp
[-U(D; X)/kpT] is the partition function, and kp and T are
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Boltzmann’s constant and temperature respectively. The defor-
mation measure D represents the set of deformation metrics
chosen to represent the system. Specifically, it represents the
strain tensor D = {C} in the case of 3D bulk elasticity and a
combination of strain and curvature tensors D = {C,B} in the
case of 2D shell elasticity. Or, if isotropic assumption is made
beforehand, D = {J,I;, ]} in the case of 3D bulk elasticity and
D = {J?P, [P H} in the case of 2D shell elasticity. Therefore,
we introduce common symbols for the set of deformation
measures D = {D,,D,,Ds}.

Inverting Eq. (8), we obtain potential of mean force
representing the effective internal energy or, in the present
context, the elastic strain energy function,

UD; X) = Up(X) — kT log p(D; X). ©)

Here Uy(X) = —kpT log Z(X) is the reference energy. Since
the reference energy value does not affect the elastic moduli
of the system, we do not need to calculate the partition
function in this framework. Analogously, one does not need
to normalize the probability distribution and can directly
work with the number of frames in MD. Assuming that
the deformation measures are statistically independent at
each point X, we obtain p(D) = p(D)p(D,)p(Ds), which
decouples the energy in Eq. (9). Hence, in discrete form, the
total energy obtained from potential of mean force is simply a
sum over all nodes or triangles,

1 i=1

3
UD) =y |:U0(X1) — > ksT log p(D,-<X1>)]. (10)

Comparing with continuum models Egs. (5) and (6), we
observe that the continuum strain energy densities W for our
two models can be decoupled in strain invariants and written
as sum of three parts:

3D:UC) =Ug+ Y [W/(I) + Wi(h) + WiV
1
2D: U(C.B) = Uy + Y [Wh(H) + Wi (I?)
M

+ WD) Su.

In common notation, we write the continuum energy

3
UD)=Uy+ Y > WD)V (11)

I i=l

Comparing the potential of mean-force energy Eq. (10)
and continuum energy Eq. (11), we observe that the strain
energy-density function W}(Di)Vl ~ —kpT log p[D;(X1)]).
Furthermore, given that we are calculating fluctuations around
the equilibrium, we consider only the lowest-order functions
for the strain energies. Therefore, there is one elastic modulus
M; associated with each of the deformation measure D; and
collectively denoted as M = {M;, M, M3}. These elastic
constants are derived from the probability distribution of the
corresponding strain invariant by fitting the lowest-order poly-
nomial. That is, —log p(D;) ~ m;(D; — D?)a + b;, where
D? is the expected minimum value of D;, « is the lowest
polynomial order, and m; and b; are the fitting parameters.
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_ kpTm;

With these notations, the elastic constants are M ,1 = 7

for 3D and M,’ = —I%Im" for 2D.

E. Combining equivalent nodes

Under homogeneous assumption, one might consider a set
of nodes 7 = {11,12, ...,I"} being equivalent. In that case,
we combine the probabilities of those nodes and calculate the
potential of mean force. This improves the statistics as well
as ensures that the resulting moduli of equivalent nodes come
out to be identical. Therefore, the relation for elastic moduli

I _ __kgTm
becomes M; = ST

F. Exploiting icosahedral symmetry

If a macromolecule is symmetric, then its trajectory should
also follow the same symmetry as the observation time
increases. Hence, the icosahedral symmetry of the spherical
virus capsids can be exploited in various ways. One way
is to simulate the full capsid using MD and then generate
icosahedral rotations of the resulting trajectory, x‘f =RP . x;
for B € [1,60], to obtain 60 times larger statistics data set.
A different way could be to apply icosahedral symmetry
boundary conditions on a single asymmetric unit for the MD
run, thus reducing the computational cost of MD. However, it
is not entirely obvious that the latter technique would provide
the same results as MD simulation of full capsid. Therefore, we
employ the first technique for mutant SeMV capsid and leave
the latter for future work. Details of the SeMV MD simulation
can be found in Ref. [4]; the total MD simulation length was
28 ns with 1 fs of time step and a sampling frequency of 1 ps.
We assumed that the last 2 ns of the trajectory were equilibrium
fluctuations and hence used that for the results presented.
Therefore, a total of 2000 microstates were sampled, which
using the symmetry of capsid provided us with an effective
120-ns-long trajectory sampled with 1 20 000 microstates.

Last, we need reference configuration X; for calculating
the strains in continuum models. To that end, the rigid
body motion—both translational and rotational—are removed
from the atomic trajectory rg (t;) = R? - r,(t;) and then time
averaged to obtain the average position (rf (71)),,p- These
average atomic coordinates are then mapped to the coarse-
grained nodes to define the reference configuration X; =

Y oAl (rg(ti))t,ﬂ'

G. Steps

The overall flow of the framework presented here can be
summarized in the following way:

(1) Coarse-grained nodes are defined from the atomic
coordinates using a map, resulting in either a 3D or 2D model.

(2) Icosahedral averaging is performed by generating 60
copies of the MD trajectory through icosahedral rotations.

(3) Deformation metrics are calculated for each frame of
the MD trajectory with respect to the reference (i.e., average)
configuration. The deformation metrics are defined using
either 3D or 2D shell kinematics under isotropic assumption.

(4) Probability distribution is calculated for the three
deformation invariants at each coarse-grained node.
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(5) Using these probability distributions of each strain
invariant and Boltzmann’s inversion (9), the potential of mean
force is calculated for each node.

(6) Lowest-order strain energy functions are fit to these
potentials giving us an estimate of the elastic constants which
vary spatially.

The results using this framework are presented next.

III. RESULTS

A. Assuming homogeneous elasticity

As afirst step, we assume homogeneous elasticity and thus
treat all nodes as equivalent. Therefore, we combine statistics
for all nodes to a single probability. This is calculated at
four different levels of coarsening—one node per residue, one
node per two residues, one node per three residues, and one
node per six residues—all using a 3D bulk elasticity model.
The resulting energy-density functions show a decrease in the
slope (for I; and 1) and curvature (against J) as we move
away from the zero strain (Fig. 2). As the local slope and
curvature are related to the instantaneous stiffness, the results
show that the stiffness decreases at higher strains amounting
to a “softening” behavior.

If our assumption of homogeneity was correct, the results
would have been independent of the level of coarsening.
However, we see a dramatic variation in the resulting energy
density as we coarsen our model (Fig. 2). This indicates that the
assumption of homogeneity is not justified (see Appendix A
for a simplified demonstration of this result). Henceforth, we
can reject the hypothesis of homogeneity and move on to
the heterogeneous treatment where all the nodes are treated
independently.

Furthermore, since we lumped together stiff and soft nodes,
the strain energy response at lower strains is dominated by
stiff nodes and that at the higher strains is dominated by
the soft nodes. Therefore, the apparent softening response
is only an artifact of the spurious homogeneous assumption.
Nevertheless, some interesting observations can be made from
these results: (a) mere thermal fluctuations produce rather large
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FIG. 2. We start by hypothesizing that all the nodes have same
elastic properties (i.e., homogeneous). This leads to probability distri-
butions (top) that have a maximum at zero strains. The corresponding
energy-density plots (bottom) show a softening response which also
varies dramatically as the model is coarsened successively.
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FIG. 3. Top row: Probability distribution of strain invariants
at a representative node. Bottom row: Energy of that node in
the continuum description. Points (circles) are obtained from the
probability distributions in top row by (9). Solid (blue) curves are fits
to the Mooney-Rivlin constitutive law (12).

strains at this scale and (b) the minimum energy coincides
with the zero strain (/; = I, = 3, J = 1). This suggests that,
globally, the choice of reference configuration is justified.

B. 3D bulk elasticity

Next, we assign one node to each amino acid and consider
all of the nodes as independent. It is observed that different
nodes exhibit widely varying strain probability distributions,
indicating a highly heterogeneous behavior. As an example,
Fig. 3 shows the probability distributions and effective energy
terms at one chosen node of a coarse-grained model of SeMV.
We observe that the energy matches quite well with the low-
order Mooney-Rivlin constitutive law developed for rubber
elasticity [34,35], which is of the form

Nhodes

UC) =Uo+ Y [rioh =3+ vy = 3)
=1

+8{(J — D*]V. (12)

After a least-squares fit, the slopes of —log p(/;) and
—log p(1») and the curvature of — log p(J) produce estimates
of moduli v/, ¥4, and 8{ at node I respectively.
Furthermore, we observe that several nodes have an energy
landscape such that the lowest energy is manifested at a
deformation C # I. The deviation of minimum energy strain
from zero strain is small in most of the cases (Fig. 3) but
large in others (Fig. 4). This is in contrast to our observation
during homogeneous treatment (i.e., when all the nodes were
considered equivalent); in that case, the system had energy
minimized at zero strain. This problem of minimum energy
at a nonzero strain violates the assumption that a reference
configuration is well defined and known a priori. This issue,
although indicative of some problem in the analysis presented,
is puzzling and will be discussed in detail in the next section.
Suppressing, for the moment, issues with the reference
configuration, we fit the material constants for all nodes
(amino acids) in SeMV, and the resulting elastic moduli
Y10, Vo1, and §; are shown in Fig. 5. The range of elastic
moduli are in agreement with previous experimental estimates
on similar-sized virus capsids [3,17,36]. These results also
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0

FIG. 4. Top row: Probability distributions at an example node,
where the most probable state is observed at large strains (I ~ 4,
I, ~ 4, and J ~ 0.8) severely violating the assumption of known
reference configuration. Bottom row: Corresponding energy plots of
the node.

provide other useful information: The ratio of shear and bulk
modulus is approximately 10, while the values of y;¢ and
yo1 are comparable. In addition, all the elastic moduli are
highly heterogeneous and their distributions have a large tail
with a few points showing a stiffness as high as 10 times the
mean value (Fig. 6). The underestimation of surface nodal
volumes V; [29] might lead to a slight overestimation of
the modulus at the surface nodes. However, if we use the
presented meshfree model with the calculated elastic moduli
for simulating, for example, indentation of capsid, then the
exact energy expression is recovered for all the nodes.

Returning to the issue of reference configuration, we
hypothesize that the problem is because continuum elasticity
is not able to capture the atomic motions at the scale of
individual amino acids. Although the reason of such a limit
on the applicability of continuum elasticity is not clear yet,
we test our hypothesis by further coarsening our continuum
model.

C. Effect of coarsening

We successively coarsen our model by choosing centers of
every two, three, and six residues as the continuum node. The
feature of minimum energies at nonzero strain still remains
prevalent. The resulting moduli are within the same range
as the previous section, do not provide us with any extra
information, and, thus, are not shown here for brevity. To
provide an intuitive idea about the difference in the analysis

e E
50 Yo (MPa)

VA - a% .. A

Yo1 (MPa) o1 (MPa) 509

350 50 350 500

FIG. 5. 3D bulk elasticity moduli distribution on SeMV capsid
calculated using the last 2 ns of the full capsid MD trajectory and
icosahedral symmetry imposed (with a net overlay showing the
symmetry of its constituent proteins).
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FIG. 6. Histograms of the distribution of all three elastic moduli
over SeMV using a 3D continuum model and full MD show a large
tail. Similar distributions are obtained for all the cases.

as we coarsen our model consider the following. A larger
averaging zone leads to higher smoothening of the thermal
fluctuations, thus making higher strains less probable. Using
Boltzmann’s law, this leads to higher energies at large strains
and, thus, the energy-strain curves become steeper [Eq. (9)].
At the same time, larger averaging zones have a higher volume
in the strain energy integration term [Eqgs. (12) and (13)].
Hence, the elastic moduli M! o '3—1 are expected to remain
same upon coarsening—only “homogenized” or averaged over
the amino acids that are lumped together to form the nodes.
However, in our SeMV example this trend is not observed.
That is, the resulting coarsened moduli here are not an average
of the moduli at the associated nodes calculated previously.

If we coarsen more than one node per six residues with
our 3D bulk elasticity model, then the numerical calculations
become erroneous. This is for two reasons: (1) the nodes
become sparse, especially through the thickness, making the
field approximation poor, and (2) the points become very
unevenly spaced since residues on a protein chain are not
necessarily spatially close. Therefore, to analyze another level
of coarsening, we turn to the 2D shell approximation. The
idea is to average through the thickness and get a surface
description of the capsid motion, thus eliminating those errors
as we coarsen further.

D. Coarsen to 2D shell elasticity

As explained above, the relation between coarsening zone
and volume used to derive elastic moduli is critical for
obtaining consistent results. This should be kept in mind
while designing the averaging procedure, because coarsening
using an arbitrary smoothing parameter will make the results
inconsistent. The averaging procedure used here is shown in
Fig. 7: To calculate the connectivity matrix Aj,, the center of
each amino acid is radially projected onto a subdivision of an
icosahedron. The projection points a that lie within the red
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FIG. 7. (a) Subdivision of an icosahedron used for calculating the
mean surface, (b) the average mean surface, and (c) its limit surface
used to calculate the curvature tensor.
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FIG. 8. Averaging through the surface provides a coarsening
of ~ 18 residues per node, and the problem of wrong reference
configuration disappears completely.

(light gray) polygon around each vertex (black) are averaged
to obtain the position of node /. This gives us a mapping
that satisfies the condition that one, and only one, element of
each column of the connectivity matrix can be nonzero. The
average mean surface or shell representation of SeMYV is thus
calculated [Fig. 7(b)], and its limit surface is calculated using
recursive Loop’s subdivision [Fig. 7(c)]. The limit surface is
used to calculate the curvature tensor for shell kinematics [28].
This model provides a coarsening of approximately 18 amino
acids per node on an average.

An example of probabilities of 2D strain invariants are
shown in Fig. 8. We note that the strain energy-density matches
quite well with the form as reported in Evans and Skalak [37]:

Nlriangles
UCB) =Uy+5 Y [k (H — HP + &' (T 1)
M=1
+ M (17 = 2)[Su. (13)

The mean curvature Hj is defined as that having the highest
probability. Importantly, in this case, the minimum energy
corresponds to zero strains and the apparent problem of wrong
reference configuration disappears at this scale for all the nodes
and elements. The resulting elastic moduli distributions are
shown in Fig. 9. The area modulus «g is small compared
to shearing modulus p. Moreover, the ratio of bending to
shearing modulus j/k¢ A~ 1/3 nm~2, which is consistent with
the previous experimental estimate for spherical capsids [14].

Ks (kg T/nm?)
400
T

10

FIG. 9. The 2D shell elasticity moduli distribution on SeMV
capsid calculated using the last 2 ns of full capsid MD trajectory
and icosahedral symmetry imposed (with a net overlay showing the
symmetry of its constituent proteins).
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FIG. 10. Force response of SeMV capsid to AFM indentation
along three different axes. The results are calculated using nonuniform
elastic properties without any scaling parameter with both 3D
elasticity (solid lines) and 2D shell models (dashed lines).

E. Validation using AFM indentation

The most commonly used experimental method of deter-
mining the elastic properties of virus shells is indentation
with an AFM. We simulate the AFM experiment using
the calculated elastic moduli via both 3D and 2D models.
Resulting force-height relationships for indenting along three
different symmetry axes, which do not involve any scaling
parameter, are plotted in Fig. 10. The 2D shell-model results
are consistently softer compared to the 3D bulk elasticity
model. Since there are no experimental results available for
SeMV, we compare the effective stiffness with that of cowpea
chlorotic mottle virus (CCMV). The effective stiffness is the
force divided by change in height and varies between 300
and 800 pN/nm for our SeMV calculations. For CCMYV, the
experimental results reported in Ref. [3] show an effective
stiffness of 200 pN/nm, so the SeMV capsid is approximately
1.5—4 times stiffer. According to thin-shell theory the effective

spring constant of shell kgpep h—Rz if the elastic modulus is
kept constant. For SeMV R ~ 9.1 nm, while for CCMV R ~
14 nm, and both have similar thicknesses of approximately
4 nm. Thus, thin-shell theory predicts the ratio of effective
stiffness of SeMV to that of CCMV to be 1.5. As stiffness
of smaller SeMV capsid using 2D model is found to be
higher than that of the larger CCMV capsid by a similar
factor, the present results are consistent with the experimental
observations.

IV. EFFECT OF REFERENCE CONFIGURATION

Strains and the elastic moduli calculated using the presented
framework depend intrinsically on the choice of reference
configuration. For the results presented in the last section,
an average was performed over the equilibrium part of the
trajectory to obtain the most common configuration during
the MD run, and this was used as the reference state. As
pointed out in the previous section, several points using the
3D model gave us an energy landscape which had a minima at
nonzero strains—suggesting a wrong choice for the reference
configuration. The deviation of the minima from zero strains
was small at some points (Fig. 3) while large at others. One
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example of the latter is shown in Fig. 4 where the minimum
energy is observed at rather high strains (I} ~ 4, I, ~ 4, and
J =~ 0.8).

This is not only a source of error in the fitting process but
a fundamental problem—suggesting that the chosen reference
configuration does not depict the lowest energy state—thus
violating our assumption of a well-defined reference configu-
ration with minimum energy. If the most probable or average
configuration is not the correct reference state, it is not clear
what a suitable reference configuration should be or how to
calculate it.

As an alternative explanation, one could speculate that the
duration of the MD run was not long enough to equilibrate
and/or the sampling time was insufficient to obtain proper
averaging of the lowest frequency modes of motion. If
equilibrium is not attained, then Boltzmann’s law does not
hold. And if the lower frequency modes of protein vibration are
missing from the trajectory, then the average of the trajectory
yields a biased configuration resulting in incorrect reference
configuration.

On the other hand, we noted that this problem did not arise
in the case when all the nodes were considered equivalent
(Fig. 2). In that case, the reference configuration did appear to
be a global energy minimum. Additionally, this problem did
not show up in the analysis when the motions were averaged
enough, at a scale of &~ 18 amino acids or O(100) atoms per
node, resulting in a 2D shell elasticity model (Fig. 8). In that
case, the energy landscapes for all the nodes had minima at zero
strains (within numerical accuracy), and, thus, the reference
configuration seemed to be properly chosen. Furthermore, this
same MD trajectory was used by May and Brooks [4], where
they successfully calculated the homogeneous properties by
comparing equilibrium fluctuations to the global spherical
harmonic modes, thus indicating that the equilibrium was,
indeed, achieved. All of these observations indicate that the
reason of minimum energy at nonzero strains is something
other than insufficient duration of MD or erroneous reference
configuration. We propose an explanation for these observa-
tions using the idea of prestrain as described next.

A. 1D springs example

As the most simplified case, consider two springs in parallel
[Fig. 11(a)] with equilibrium lengths /; and /; and stiffnesses
ki =k, = k. Under a force f the springs are stretched to
a length of x, so the elastic energy of system is E =
1/2k(x — 1;)* + 1/2k(x — I,)*> and the governing equation is

-~
@ O
k1,1 >
1,01 . f )
L 8
' 3}
-t g
S|E_
< ll2 > SOk | 2
<7 —> g eb\ R
. K-
Z I %0009 | \A\A- o™
—2€9 —€g 0 2€g

€
Strain € = (z — l12)/l12

I

FIG. 11. Two-springs model; €y = I.IZ is the prestrain.
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FIG. 12. (a) 1D spring network model for prestrain and (b) its
energy-strain relationship. Combining several springs is equivalent to
sufficient coarse-graining that nullifies the effect of random prestrain.

2kx — k(ly + 1) = f. Therefore, in the absence of external
force, the equilibrium length of two springs combined together
is ljp = (#). When [}, is used as the reference length
to define strain, the energy-strain curve of the two springs
combined is a quadratic around zero strain [Fig. 11(b)].
Furthermore, if we can only observe the combined system,
and not isolated springs, we also choose the reference length
of a single spring from the global equilibrium (i.e., /}). In
that case, the energy-strain curve of each spring is a quadratic
around a nonzero strain ¢, [Fig. 11(b)], as long as [} # I,.

Extending this example, now consider a one-dimensional
network of several springs arranged into n columns and m
rows (Fig. 12). Springs in each column are constrained to have
the same length. Also, each spring is “prestrained” randomly
around a mean length /, i.e., the zero-energy or reference length
of isolated spring (i,j) is l;; = I(1 4+ rand[—0.2,0.2]); here
the first index i is the column and j is the row. Each spring
has the same stiffness k;; = k and the energy is quadratic in
displacement

Eij = 1/2kAx]; = 1/2k(x; — xi—y — 1)’ (14)

Therefore, the governing equations of the system are
Zj kij(xi — xi-1) — Zj kijl;j = f Vi. We solve this system
of equations at various values of force f and use the
displacements thus obtained to calculate the spring energies
[Eq. (14)]. We define strain based on the spring lengths at
global equilibrium to obtain energy-strain relation for each
spring. Summing up all the spring energies, we also obtain
a “global” energy-strain relation. In the absence of prestrain,
or, in other words, if the zero-energy lengths of all isolated
springs are the same (/;; = /), the normalized energy-strain
relation of all the springs as well as combined global system
overlap—it is a quadratic relation around zero strain (Fig. 12).
With the introduction of a random prestrain, the minimum of
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the total energy of the network remains at zero strain, but the
minimum energy is nonzero positive. This is caused by the
incompatibility among springs of each column due to their
different lengths. In order to obtain the energy-strain relation
of individual springs, we note that, for a single spring, its
“apparent” reference length from the global equilibrium is
different from its “actual” natural length. Using the length
from global equilibrium as the reference, the “local” energy
landscape of a single spring is shifted such that its energy is
minimized at a finite nonzero strain. Furthermore, if we sum
together a sufficiently large number of springs, by virtue of the
random nature of the prestrain, the energy minimum returns
to zero strain (the term “sufficiently large” is used because of
the random function making these calculations stochastic). We
draw an analogy to the results for SeMV in the last section,
where sufficient averaging via the 2D shell model resulted in
energy landscapes with energy minima at zero strains.

In this one-dimensional example, the prestrain results in
merely a shift in the energy landscape and the apparent stiffness
of springs remain unaffected. Also, this “shift” can be rectified
in the following way: Once we plot the energy-strain curve
of any spring, or collection of springs, we note the strain
€ at which energy is minimized. If we then use the length
corresponding to € as the reference and redefine our strain
using that, we will obtain strain-energy curves centered around
zero strain, thus correcting the shift. However, the effect of
such a prestrain becomes much more complicated in the three-
dimensional case, which we investigate next.

B. SeMYV spring network

As a three-dimensional extension of the one-dimensional
spring network, an elastic network model is constructed from
SeMV atomic coordinates by connecting atoms i and j with
a linear spring (i, ). A cut-off distance of 5 A is used, i.e.,
kij =kif lx; —x;ll <5 A and = 0 otherwise. The reference
configuration of this system is calculated by equilibrating
in the absence of any applied forces or displacements—
the true global minimum energy state. Thus, the reference
configuration in this model is known a priori without any
ambiguity.

In order to obtain strain-energy relationship, a numerical
experiment akin to an extension or inflation test is performed.
Although, instead of applying forces, deformation modes are
excited by applying displacement boundary conditions (BCs)
on the atoms on the outermost surface. Spherical harmonics
with gradually increasing amplitude are used to define these
displacements on the outer surface. The choice of spherical
harmonics is not unique and any other boundary conditions
could be used as long as they induce global displacements
resulting in deformations in all the springs.

The total elastic energy of the spring network is minimized
at every deformation step. In order to connect the SeMV
spring network model to the 3D bulk elasticity model,
for each equilibrated configuration, a mapping from atomic
positions to coarse-grained nodes is performed as previously
defined [Eq. (7)]. The nodal positions are used to define
deformation metrics with respect to the well-defined reference
configuration. The energies in the continuum model are defined
as a sum of spring energies; each spring’s energy is divided
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FIG. 13. Energy landscapes of SeMV elastic network (a) without
prestrain, (b) with prestrain in the 3D bulk elasticity model, and (c)
with prestrain in the 2D shell elasticity model (after averaging through
shell thickness).

equally into the connecting atoms, which are then summed
according to the connectivity matrix A, to obtain energy
of the continuum nodes. Thereby, energy for each node as
a function of the deformation metric is obtained. Without
any prestrain, the original coordinates of SeMV represent the
global reference configuration and all three energy landscapes
have minima have at a zero strain [Fig. 13(a)].

Next, a random prestrain is introduced: [;; = [x; —
X ;|[(1 4+ rand[—0.2,0.2]). Then the above procedure of cal-
culating strain-energy response at each coarse-grained node
of the 3D bulk elasticity model is repeated. The resulting
energy landscapes show similar behavior as those from the
SeMV MD trajectory, where many of the nodes have an energy
minimum at nonzero strain [example in Fig. 13(b)]. Although
this result suggests a wrong choice of reference state, we note
that an unambiguous reference state (i.e., the state obtained
after equilibrating without any boundary displacements or
forces, so the total energy of the system is minimized) was
used. Instead, this discrepancy is a result of the incompatibility
between springs caused by the prestrain, so even in the
reference state the springs have internal forces (or stresses in
continuum sense). The prestrain at the atomic level (i.e., linear
springs) manifests in the continuum model in a complicated
way which cannot be fixed by the method proposed in the
1D case. Moreover, a simple split of the total deformation
into elastic contribution and prestrain contribution, as used
in Ref. [12], would also not solve this problem because the
induced prestrain is not at the continuum scale. The only
conceivable way to fix this issue would be to consider all
the springs separately and thus not make the continuum
assumption in the first place. This is a novel observation
which not only demonstrates a fundamental challenge for
coarse-graining with a continuum model but also might have
implications related to stress state of proteins.

Last, the continuum model is coarsened further by aver-
aging through the capsid thickness and creating a 2D shell
elasticity model. In this case, the spring energies are summed
within each triangular mesh element and we observe that the
strain-energy functions are minimized at zero strain again
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[Fig. 13(c)]. We note an analogy to the 1D spring network
case where summing up the energy and displacement of several
springs nullified the prestrain effect. Exactly the same effect
was observed in our analysis of the SeMV MD trajectory in
the last section, where energy minima at zero strains were
observed for all the shell elements. This strongly suggests that
the prestrain model presented here is a possible explanation
for our observations during analysis of MD trajectories. The
significance of these findings are discussed next.

V. DISCUSSION

In this paper, we presented a general framework for
calculating nonuniform elastic properties at the continuum
level from the atomic equilibrium dynamics for biomolecules
with the flexibility of choosing any desired scale. The
prerequisite for this framework is to have an MD trajectory
where equilibrium has been attained, and we utilized the
potential of the mean-force technique for deriving strain
energy as a function of deformation metrics based on their
probability. We applied this framework to the SeMV virus
capsid. The mutant of SeMV used here is a small virus which
allowed us to run an MD simulation of the complete capsid
in an explicit solvent. Although the utility of the presented
framework is limited by our ability to run MD simulations
that reach equilibrium, in the future this method will be
extended such that it can be applied to MD trajectories of a
single asymmetric unit using symmetric boundary conditions.
Another possibility would be to use coarse-grained MD,
which has much lower computational cost and can simulate
larger molecular systems. As long as one can obtain thermal
fluctuations of a system, the presented framework would be
able to extract nonhomogeneous continuum elastic properties.

The framework produced highly nonuniform elastic moduli
for SeMV—both in the 3D bulk elasticity model where each
residue has a different elastic modulus (Fig. 5) and in the
2D shell elasticity model where the elastic properties vary
on a shell surface (Fig. 9). It also allows us to simulate
AFM indentation without any scaling parameter (Fig. 10).
The range of elastic moduli obtained here are in agreement
with previous works on various virus capsids of similar or
slightly larger sizes which estimate their Young’s modulus in
the 100—1000 MPa range [3,17,36]. Although the calculations
by May and Brooks [4] resulted in a much softer elastic
modulus, that discrepancy can be resolved if we consider all the
displacements instead of only radial ones (see Appendix B).
The presented framework is an important technique with po-
tential application to various biomolecular systems. Building
such continuum models will provide us with insights into the
elastic properties of macromolecules at various scales.

While analyzing the results, we observed another important
aspect of the biomolecular systems. Continuum models de-
rived from MD demonstrated an interesting behavior where the
strain-energy curves obtained from the potential of mean-force
calculations suggested a wrong choice reference configuration
in some cases but not in others. In particular, when all the
coarse-grained nodes were considered equivalent, the energy
was minimum at zero strain (Fig. 2). When the nodes were
considered to have independent elastic properties in the 3D
model, several nodes had energy minima at a nonzero finite
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strain (Fig. 4). However, when we further averaged through the
capsid thickness to build a 2D shell model, the strain-energy
curves were back to normal, i.e., the energy was minimum at
zero strain for all the elements (Fig. 8).

We presented a possible explanation of this behavior
using spring network model. An elastic network from SeMV
atomic coordinates was constructed, and it was deformed
using displacement boundary conditions on the outer surface.
Strain-energy curves were calculated directly using the spring
energies corresponding to each deformed state. This was done
with and without a prestrain induced into springs. In this
system, the global minimum-energy reference configuration
was known a priori and therefore carried no ambiguity. When
strain-energy curves were calculated in the presence of a
randomly induced prestrain, it produced exactly the same
behavior as our analysis of SeMV MD trajectory (Fig. 13).

This resemblance in the behavior supports our argument
that a prestrain is the cause for energy minima at nonzero
strains observed in our calculations. A pre-strain-like effect
in molecular systems can be expected; each atomic bond has
different characteristics, e.g., bond lengths and angles, in the
presence of other atomic interactions compared to when it
is isolated. Or, in other words, in the global equilibrium of
biomolecule, each of its atomic bonds is not in a state that
would resemble the bond’s isolated minimum-energy state
and, thus, carry some “internal forces.” The situation for
nonbonded interactions would be similar. At small-enough
scales, this may lead to problems in applicability of continuum
mechanics to macromolecules as we noticed in the results
presented here. This is an important observation which
warrants further discussion.

At a coarse scale, continuum mechanics is an important
tool for analyzing systems. However, as we push the limit
of continuum mechanics to smaller scales, new challenges
emerge. One such challenge is the knowledge about reference
configuration. The results presented here indicate that in the
presence of an atomic-scale prestrain it may not be possible
to identify a reference configuration in the continuum sense.
The true reference configuration exists only if we isolate all
the atomic bonds or springs and treat them as discrete—
something we see as a breakdown in the continuum nature
of macromolecules. May and Brooks [4] previously proposed
that macromolecules behave in a way that does not fit the
elasticity theory, particularly for spherical harmonic modes
(I,m)with! = 0,1 and/ > 6.] > 6 modes are low wavelength
and equivalent to applying continuum models at the scale of
amino acids, and the difficulty in applying continuum elasticity
at that scale is consistent with our observation here. However,
the discrepancy of modes / = 0 and 1 observed by May and
Brooks can be resolved by using all the displacements rather
than using only radial ones used in their calculations (see
Appendix B). In addition, here we also propose the idea of
atomic-scale prestrain to describe the reason behind deviation
from continuum elasticity.

The results presented here also elucidate the success of
isotropic elasticity in describing strongly directional interac-
tions in protein assemblies. Most of the continuum models
in literature that successfully elucidated the mechanics of
viral capsids were formulated at the scale of surface motions
of the shell—-which, as we saw, can be correctly captured
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by continuum mechanics. At that scale, averaging through
the thickness smears out all the anisotropic interactions, thus
making isotropic treatment valid. However, this also points
out the limitations of continuum models when applied to
viral capsids, in specific, and macromolecules, in general. It
would be unreasonable to expect correct predictions of finer
scale motions, e.g., those of amino acids and atoms, using
continuum models unless appropriate adjustments are made in
the formulation.

It is worth pointing out that the prestrain in this case varies
randomly at the scale of atomic interactions. In the case where
prestrains lead to coordinated large-scale motions, e.g., those
in the conformational changes, it becomes possible to define a
continuum scale prestrain and formulate an elasticity theory.
We have previously presented an elasticity theory for such
a case where the prestrains (or more appropriately termed
as conformation strains in that case) were constant for each
hexamer of the capsid and only varied from hexamer to
hexamer [12]. However, for the present case, it is not clear how
something similar could be achieved. Specifically, there are
two problems: (1) the prestrain values are unknown. Although
the strain invariants at minimum energy can be identified, the
deformation gradient corresponding to those invariants is not
unique. (2) As the prestrain varies for every atomic interaction,
it is not clear how to derive continuum scale prestrain from
them.

This calls for further analysis which is beyond the scope of
the present manuscript. In future, we will analyze the effect of
prestrain in greater detail and compare it to the MD trajectory
in a statistical sense. Following the approach of Ref. [18],
we will also calculate the atomic scale prestrains from MD
simulations. That will provide us with more information for
formulating a theory of heterogeneous elasticity at the scale of
amino acids as well as elucidating the relation of prestrain with
conformational changes in macromolecules. In the meantime,
in the light of current results, the applicability of continuum
theory to macromolecules is limited to elucidating their coarse-
scale motions and deformations.
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APPENDIX A: ARTIFICIAL SOFTENING RESPONSE DUE
TO SPURIOUS HOMOGENEOUS ASSUMPTION

In order to demonstrate the effect of the assumption of
homogeneity while calculating the potential of mean force
for a system which, in actuality, is heterogeneous, we start by
considering a system with n linear springs of stiffnesses k;,i =
1,...,n. The values of these k; are unknown, while one can
observe the strain energy states of all the springs. We assume
that all energies and spring constants have been normalized
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with respect to the thermal energy kg7, thus simplifying
the governing equations. Following the Boltzmann’s law,
under thermal energy, each spring experiences strain € with
a probability

p(e) oc ekie’/2, (A1)

Therefore, if we observe a finite (but large) number of states,

the number of states with strain € in spring i is

p(e) = Pe hiE/, (A2)

where @ is the proportionality constant. If we a priori assume
that springs have the same stiffness (which may or may not be
correct), we sum the number of states of strain € from all of
the springs

ple) =D Y e ke (A3)
i=1

and equate it to the “effective” energy under the homogeneous
treatment (which should be the same for each spring)

PO =D e M= e = pne Er. (A4

i=I i=1
Therefore, the effective energy in this case is given by

|:Z:’1=1 eXP(—ki€2/2)]

n

E.i(e) = —log (A5)
Next, we add the strain energies of every two consecutive
springs before applying potential of mean force (which is
similar to coarsening the continuum model) while keeping
the homogeneous assumption. For two springs with stiffness
ki and k; in series, their energy is

kik
T2

kky
Epr=—"Q2€)/2=2
2= e T,

(A6)

Therefore, in this case the effective energy of a single spring
under homogeneous assumption is given by (assuming #n is
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FIG. 14. The effective energy plot of a series of springs under
spurious homogeneous assumption at two levels: When all springs
are considered separately and when every two consecutive springs
are combined. We observe the same softening behavior as we saw in
the homogenization of SeMV.
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even):

n/2 ko 1ka;
L[S (ke o)
Eqi(e) = ) log )

(AT)

If the homogeneous assumption is valid (i.e., k; = k Vi),
then we obtain Eeq = Eeq = ke? /2. However, the behavior is
more complicated when the a priori homogeneity assumption
is incorrect. We demonstrate this using an example of 10
springs (n = 10) with stiffnesses k; = i* (Fig. 14). It is clear
that the wrong homogeneous assumption leads to a softening
behavior and change of effective energy when we combine
springs (i.e., coarsen).

APPENDIX B: SPHERICAL HARMONIC
DECOMPOSITION OF ELASTIC SHELL

May and Brooks [4] decomposed the fluctuations of SeMV
virus capsids obtained from molecular dynamics simulation
into spherical harmonics. When compared to the analytical
solution for a spherical shell with radial-only displacements, it
was found that the first two modes / = 0,1 cannot be matched.
Here we show that this can be resolved by allowing all
displacements for the spherical shell. Since in the case where
nonradial displacements are allowed, and analytical solution
for spherical harmonics is not possible, we turn to a numerical
solution using the finite-element method.

Energy of a thin elastic shell can be written as the sum of
bending and stretching energies,

1
U= 3 / dS|:KC(H — Ho)* + ks(J?P —1)?
S

trC

(5 -2)]
Here the symbols have the same meaning as in the main
text. Using a finite-element approximation, the energy form
can be discretized and linearized to the quadratic form U =
%uT -K - u, where K is the Hessian of the energy functional
U, termed as the stiffness matrix, and u = x — X is the
displacement vector. First n eigenvectors V; and eigenvalues
A; of the stiffness matrix K are calculated by solving the
eigenvalue problem KV ; = A;V;. The eigenvectors satisfy the
relation V; - V; =0 Vi # j and thus form an orthonormal
set. Therefore, the average displacement can be written in
terms of the eigenvectors (u) = Y, n; V;. Thus, the ensemble

average of the energy expression can be written as

(B1)

1 1
Wy = SV K- GuVi) =3 Snihi(Vi- V).
(B2)

Using the theorem of equipartition, i.e., each mode carries an
energy of kz T /2, we obtain the expression for mode amplitude

kT

L(Vi- V) ©3)

n =

012417-12
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These average displacements are then projected onto the
spherical harmonic basis:

(W)=Y nVi=Y_ amYim, (B4)
i I,m

where Y, are also an orthonormal set. Therefore, the
amplitudes of spherical harmonics are obtained,

n
aim = E
i=1

For a perfect sphere of radius R = 9 nm, Poisson’sratiov =
1/3, shear modulus p = 330k T /nm?, and bending modulus
ke = 990kp T discretized with 4131 nodes and 8258 triangular
finite elements (C° Lagrange interpolation for the stretching
part and C! Loop’s subdivision for the bending part), the
amplitude of spherical harmonics |a|> = Y, a?, are plotted
in Fig. 15.

For the case where we consider only radial displacements,
an analytical expression for the amplitude of the spherical
harmonics was derived by May and Brooks [4],

kgT

1 I(I=D(I+D(I+2) *
811122 + oo EDLEDTED)

kBT |Vl : Ylm|
LM(Vi- V) Yy Y

(BS)

(larl?) =

(B6)

This case is plotted with the values obtained by May and
Brooks when they fitted the modes [ =2,...,6 to the
MD trajectory (i = 13.275 kT /nm?, v = 1/3, and k¢ =
39.7 kgT). From these results it is clear that when we
include the nonradial displacements, the spherical harmonics
for! = 0,1 can also be matched to the MD trajectory. It should
be noted that the elastic parameters for all displacements case
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FIG. 15. Average amplitude of spherical harmonic decomposi-
tion for a spherical shell with all the displacements allowed [solid
line; Eq. (B5)] and with only radial displacements allowed [dashed
line; Eq. (B6)].

were chosen roughly and were not fit systematically to the MD
data. Thus, the material parameters here do not represent exact
fitted values. The results here are presented only to demonstrate
that it is possible to capture the large-scale spherical harmonic
modes using continuum elasticity. Furthermore, even though
the exact values of elastic constants k¢ and p obtained using
the two approaches differ, their ratio is conserved whether only
radial or all displacements are considered. May and Brooks
have used the calculated ratio of these elastic properties based
on radial displacements to predict the shapes of virus capsids
and these results would not be effected [38].
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