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Wavelength selection of rippling patterns in myxobacteria
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Rippling patterns of myxobacteria appear in starving colonies before they aggregate to form fruiting bodies.
These periodic traveling cell density waves arise from the coordination of individual cell reversals, resulting
from an internal clock regulating them and from contact signaling during bacterial collisions. Here we revisit
a mathematical model of rippling in myxobacteria due to Igoshin et al. [Proc. Natl. Acad. Sci. USA 98, 14913
(2001) and Phys. Rev. E 70, 041911 (2004)]. Bacteria in this model are phase oscillators with an extra internal
phase through which they are coupled to a mean field of oppositely moving bacteria. Previously, patterns for this
model were obtained only by numerical methods, and it was not possible to find their wave number analytically.
We derive an evolution equation for the reversal point density that selects the pattern wave number in the weak
signaling limit, shows the validity of the selection rule by solving numerically the model equations, and describes
other stable patterns in the strong signaling limit. The nonlocal mean-field coupling tends to decohere and confine
patterns. Under appropriate circumstances, it can annihilate the patterns leaving a constant density state via a
nonequilibrium phase transition reminiscent of destruction of synchronization in the Kuramoto model.
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I. INTRODUCTION

Self-organized patterns are ubiquitous in bacterial
colonies [1]. Cooperative behavior is often produced by motion
following chemical (chemotaxis) or adhesive (haptotaxis)
gradients and modeled using reaction-diffusion equations [2].
Instead of using diffusion of chemicals to communicate cells
and produce patterns, direct cell contacts yield density waves in
myxobacteria such as Myxoccocus xanthus [3–7]. Myxobac-
teria are rod-shaped gram-negative bacteria, components of
soil, that move by gliding in the direction of their long axis on
solid surfaces, either as individuals or in swarms [8]. This
type of motility of M. xanthus cells is controlled by two
different motors concentrated at the cell poles: the A-motility
system (adventurous) specific for individual cell motion and
the S-motility system (social), for group cell motion. The
A-engine is a “pusher” and works by secretion and hydration
of slime, a polyelectrolyte gel, whereas the S-engine is a
“puller” and operates through extension and retraction of type
IV pili [9].

When nutrients are abundant, myxobacteria aggregate into
multicellular swarms and spread outwards from the border of
the colony. However, they respond to starvation conditions by
reversing their directions, moving towards the colony center
and forming a multicellular fruiting body with nonmotile
spores. Spores can survive for long periods and, under
adequate conditions, germinate giving rise to motile vegetative
cells [10]. Fruiting body formation is a multistep process of
alignment, rippling, streaming, and aggregation [11]. Overall
models of the myxobacteria life cycle depending on food
availability can be found in Refs. [6,12,13]. Before aggre-
gation begins, bacterial collective behavior and intercellular
communication create fascinating collective concentric and
spiral traveling waves called ripples. During the rippling phase,
bacteria move in concert in such a way that colliding waves
appear to pass through one another. The resulting periodic
patterns consist of equally spaced ridges of high cell density
that appear to advance through the bacterial population as

rhythmically traveling waves moving in opposite directions. In
these counterpropagating waves, individual cells are parallel to
the direction of the ripples, move back and forth, and exchange
developmental signals (C signals) only when they collide
[14–16]. Most experimentally observed rippling patterns can
be characterized as counterpropagating traveling waves [3,17].
Unlike waves generated by reaction-diffusion instabilities,
which annihilate on collision, myxobacteria waves appear
to pass through one another unaffected and are therefore
analogous to solitons [4].

There are discrete [12,18–21] and continuum [3,4,22–24]
theoretical models of cell behavior and cell-to-cell interaction
based on C signaling. Intercellular communication is by direct
cell contact, without any diffusible morphogen signaling. Cells
migrating in opposite directions can come into contact with
each other (collide) and exchange C signals. Cell state changes
periodically so that isolated cells reverse periodically their
motion. These changes can be modeled by the concept of
an internal clock [3,4,7]. The internal clock or pacemaker
regulates swarming that is driven by growth [25]. In some
models rippling cannot occur unless there is a refractory period
after cell reversal during which a cell does not respond to C
signals from other cells and does not reverse [3,4,18]. Rippling
may occur even without a refractory phase in generalized
discrete models if the interaction strength and the degree of
cooperativity are large enough [23].

In this paper, we consider the continuum one-dimensional
(1D) model of Igoshin et al. for rippling [3,4], solve it
numerically, and interpret the results by a study of the small
nonlinearity limit. An extension of this model to two dimen-
sions can be found in Ref. [5] and related agent-based models
in Ref. [26]. Previous work has shown that numerical solutions
of the continuum model exhibit rippling [4]. Surprisingly, the
analysis of the small nonlinearity limit does not provide a
selection rule for the observed wavelength of ripples [4]. In
contrast with these results, we show that the small nonlinearity
limit does provide a description of the rippling instability, and
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it supplies the critical wave number of the periodic patterns in
terms of the refractory period. In fact, careful consideration
of flux continuity at the different stages of one cycle of
the internal clock of myxobacteria shows that the limiting
equation for the cell density is of Fokker-Planck type, but it
contains an additional source term. The extra source term is
the cell density times a nonlocal growth rate that vanishes
as the refractory period tends to zero. The source term is
key new element in our analysis, as it produces dissipation
even in the absence of diffusion. Thus the role of the source
term is similar to that of collision terms in the Boltzmann
transport equation. The balance between advection in space
and time and dissipation due to the “collision term” selects the
wavelength of the rippling patterns that issue forth from the
uniform stationary state. These patterns are periodic in time
and space. Numerical solutions of the full model equations
show that the pattern frequency decreases as the strength of
the nonlinearity increases.

It is interesting to contrast the behavior of the present
myxobacteria model with the well-known synchronization of
globally coupled phase oscillators described by the Kuramoto
model [27,28]. The Kuramoto oscillators move on a circle
with their own random natural frequency, and their mutual
interaction through a mean field tends to synchronize them.
Partial or complete synchronization is achieved for sufficiently
strong coupling through a nonequilibrium phase transition.
The model of Igoshin et al. describes phase oscillators with
an internal clock whose angular speed changes according to
their interaction with oppositely moving oscillators. Since the
Igoshin oscillators move with a constant positive or negative
velocity, patterns arising from appropriate initial conditions
persist in the absence of interaction. In this case, mean-field
interaction among oscillators may produce loss of rhythmicity
resulting in the destruction of patterns. This change appears as
a nonequilibrium phase transition at critical values of parame-
ters that has been explicitly shown in the weak coupling limit.

The rest of the paper is as follows. We describe the
Igoshin et al. continuum model [4] in Sec. II and write the
corresponding equations in nondimensional form. The weak
signaling limit is examined in Sec. III, where the limiting
Fokker-Planck-type equation with source term is derived. The
linear stability of its uniform stationary solution is analyzed
in Sec. IV. In the absence of diffusion and for disturbances
with frequency one (same as that of the signaling solution
without nonlinear terms), we find that rippling patterns appear
for disturbances with wave number less than one, whatever the
refractory period. Increasing the wave number k may result in
the cancellation of patterns, as the uniform stationary solution
becomes linearly stable. Since diffusion has a stabilizing
role for the uniform solution (producing a negative term
proportional to k2 in the real part of eigenvalues), unavoidable
numerical noise should tend to annihilate the periodic patterns
and be more effective as k increases. Section V contains the
results of numerical solutions of the full model equations. The
findings of the linear stability analysis and the wave number
selection criteria are confirmed. In addition, we observe a rich
variety of stable periodic patterns comprising standing and
traveling waves as numerical solutions of the model equations
for moderate and strong signaling between cells. Section VI
contrasts our findings with the behavior of the Kuramoto model

for the synchronization of phase oscillators. The last section
contains our conclusions.

II. MODEL

When starving, myxobacteria aggregate and form a fruiting
body and eventually a spore. Before aggregation begins, there
appear periodic patterns of equally spaced high-density bands
that move as traveling waves (ripples). The one-dimensional
(1D) model for ripples of Igoshin et al. [3,4] is based on the
following experimental observations:

(1) Internal biochemical clock: Cells are aligned parallel
and glide along their long axis in one direction during part of
their internal period and glide in the opposite direction during
the other part of their period.

(2) Contact signaling: A cell collides with an oppositely
moving cell and interchanges a signal (a C protein). As a
result, both cells reverse their motion. The collision frequency
depends on the local cell density.

(3) Refractory period: After one collision there is a
refractory period during which the cell does not reverse its
motion even if it collides again.

Let n(x,φ,t) be the number density of bacteria per unit
length x and per unit internal phase φ. Cells with 0 < φ < π

move to the right with velocity v and cells with −π < φ < 0
move to the left (velocity −v). Cell division and death are
negligible during the rippling phase. The governing equation
is as follows:

∂tn + v(φ)∂xn − Dx∂
2
xn + ∂φJ (x,φ,t) = 0, (1)

v(φ) = v signφ. (2)

Here Dx � 0 is a space diffusivity; the density n(x,φ,t) is a
2π -periodic function of φ, and it satisfies periodic boundary
conditions at x = ±L or it decays to zero if L = ∞. To
model the angular flux J (x,φ,t), we make precise the above
experimental observations [4]. The cell velocity is given
by (2), and reversals occur at φ = 0,±π . The internal clock
of a bacterium advances with constant angular velocity ω,
but when the cell collides with another one moving in the
opposite direction, both cells exchange a signal. The collision
frequency, and therefore the signaling intensity, is proportional
to the local cell density. The cells may respond positively
to this signal by accelerating their angular speed from
ω to ω + εω�(N±) (see below) depending on their internal
phase. The coefficient ε measures the relative change in
angular velocity from that during the refractory period, ω,
to the bacterium velocity during the signaling period, thereby
characterizing signaling strength. After each reversal (at φ =
0,±π ), the cell enters a refractory period during which it does
not respond to collision signaling and does not reverse. If α > 0
is the angular duration of the refractory period, the angular flux
is J = ω n(x,φ,t) for 0 < φ < α and for −π < φ < −π + α

(0 � α � π ). Overall the angular flux is [4]

J = ω n [1 + ε�(N−(x,t))χ[α,π](φ)

+ ε�(N+(x,t))χ[−π+α,0](φ)] − Dφ∂φn, (3)

χ[A,B](φ) =
{

1, A < φ < B,

0, otherwise,
(4)
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where

N+(x,t) =
∫ π

0
n(x,φ,t) dφ, N−(x,t) =

∫ 0

−π

n(x,φ,t) dφ,

(5)
Dφ is a positive number, and

�(N ) = Nr

Nr + Nr
cr

, (6)

with r > 0. We shall use r = 4 [4]. In Ref. [4] it is explained
that both Dx and Dφ are small. The total density of bacteria
at point x and time t is N+(x,t) + N−(x,t), and the density of
time-reversal points (reversal point density) is

nRPD(x,t) = n(x,φ = 0 + ,t) + n(x,φ = −π + ,t). (7)

Here n(x,φ = 0 + ,t) and n(x,φ = −π + ,t) are, respectively,
the density of left-to-right and of right-to-left reversal points
in spacetime. Thus their sum, as in (7), is the density of all
reversal points in spacetime.

The total number of myxobacterium cells should be
independent of time. This means that dN/dt = 0 in (1), where

N =
∫ L

−L

∫ π

−π

n(x,φ,t) dx dφ. (8)

In (1), n and ∂φn are continuous and 2π -periodic in φ, so that
N is independent of time if and only if

∫ L

−L

(
[J ]−π+α

φ=−π + [J ]0
φ=−π+α + [J ]αφ=0 + [J ]πφ=α

)
dx = 0. (9)

Here we have used the boundary conditions at x = ±L

(including the case L = ∞) and the notations [f (x,φ)]−π+α
φ=−π =

f (x, − π + α) − f (x, − π ) and so on. For the angular
flux (3), (9) becomes

∫ L

−L

{
�(N+) [n]0

φ=−π+α + �(N−) [n]πφ=α

}
dx = 0. (10)

If there is no refractory period so that α = 0, 2π -periodicity
of n and ∂φn yields

∫ L

−L

[�(N+) − �(N−)] [n]πφ=0 dx = 0, (11)

instead of (10).
It is convenient to render the equations of the model dimen-

sionless. To this purpose, we shall use the units [t] = 1/ω,
[x] = v/ω, etc., listed in Table I. Let us define dimensionless
variables as t̂ = t/[t], x̂ = x/[x], and so on. Inserting these
definitions in (1), (3), and (8) and dropping hats in the results,

TABLE I. Nondimensional units.

t x φ n,N±
1
ω

v

ω
1 Ncr

we obtain the following equations:

∂tn + sign(φ)∂xn + ∂φn

= ε

(Dx

2π
∂2
xn + Dφ

2π
∂2
φn − ∂φ{[�(N−)χ[α,π]

+�(N+)χ[−π+α,0]]n}
)

, (12)∫ L

−L

∫ π

−π

n(x,φ,t) dx dφ

=
∫ L

−L
[N+(x,t) + N−(x,t)] dx = N̂, (13)

where (the dimensionless parameters are assumed to be of
order unity):

Dx = 2πDxω

εv2
, Dφ = 2πDφ

εω
, L = ωL

v
,

(14)

N̂ ≡ Nω

Ncrv
, �(y) = yr

yr + 1
.

For Dx = Dφ = 0, (12) resembles a hyperbolic equation
(or a system of two hyperbolic equations for oppositely
moving bacteria). However, strictly speaking this system is
only hyperbolic in the spatial dimension. The phase fluxes
(resulting from the nonlinear interaction between oppositely
moving bacteria) are nonlocal in the clock angle: they are
defined as integrals over the whole angular domain implying
that the resulting 2D system (in x and φ) is integro-differential.
The role of the nonlocal advection as generator of dissipation
will be shown by the analysis of the weakly nonlinear limit
and by solving (12) using a high-order accurate weighted
essentially nonoscillatory (WENO) numerical method [29].

III. WEAK SIGNALING LIMIT

For ε = 0, (12) becomes

∂tn + sign(φ)∂xn + ∂φn = 0, (15)

whose solution is [4]

n =
{

f (x − φ,t − φ), 0 < φ < π,

f (x + φ,t − φ), −π < φ < 0.
(16)

Here f (x,t) is an arbitrary function, 2π -periodic in its second
argument. f (x,t) and f (x − π,t + π ) represent the densities
of left-to-right and of right-to-left reversals, respectively. Then,
according to (7), nRPD(x,t) = f (x,t) + f (x − π,t + π ) is the
reversal point density (RPD) in the weakly nonlinear and
weak diffusion limit as ε → 0+. This limit is also called the
weak signaling limit [4]. In (16), n(x,t,φ) is continuous and
2π -periodic in φ. The constant solution, f = N̂/(2π ), is a
particular solution of (12).

Igoshin et al. have derived a Fokker-Planck equation for
f in the weak signaling limit as ε → 0 by using physical
arguments and by singular perturbation methods (see the
Appendix in Ref. [4]). Their derivation missed the collision-
type source term that we find in this paper. Finding this term
requires delving more deeply into the perturbation method;
therefore we describe this method from scratch. In the limit as
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ε → 0, we seek a solution

n = n0(x,t,φ,τ ) + ε n1(x,t,φ,τ ) + O(ε2), τ = εt

2π
, (17)

n0(x,t,φ,τ ) =
{

f (x − φ,t − φ,τ ), 0 < φ < π,

f (x + φ,t − φ,τ ), −π < φ < 0,
(18)

so that n1 is 2π -periodic in φ. Note that the function f in (18) has the form (16) with an additional dependence upon the slow
time τ . The equation for n1 is

[∂t + sign(φ)∂x + ∂φ]n1 = (
Dx∂

2
x + Dφ∂2

φ − 2π�−χ[α,π]∂φ − 2π�+χ[−π+α,0]∂φ − ∂τ

) n0

2π
, (19)

with

N+(x,t,τ ) =
∫ π

0
f (x − ψ,t − ψ,τ ) dψ, N−(x,t,τ ) =

∫ 0

−π

f (x + ψ,t − ψ,τ ) dψ =
∫ π

0
f (x − ψ,t + ψ,τ ) dψ,

(20)

�±(x,t,τ ) = �(N±(x,t,τ )), N±(x,t,τ ) =
∫ π

0
f (x − ψ,t ∓ ψ,τ ) dψ.

Continuity of the flux (4), J = {1 + ε�−χ[α,π] + ε�+χ[−π+α,0]}n − Dφ∂φn/(2π ), across angle boundaries and (17) yield

[n1]φ=0 ≡ n1|φ=0+ − n1|φ=0− = �+n0|φ=0− + Dφ

2π
[∂φn0]|φ=0, (21)

[n1]φ=α ≡ n1|φ=α+ − n1|φ=α− = −�−n0|φ=α+ + Dφ

2π
[∂φn0]|φ=α, (22)

[n1]φ=−π+α ≡ n1|φ=−π+α+ − n1|φ=−π+α− = −�+n0|φ=−π+α+ + Dφ

2π
[∂φn0]|φ=−π+α, (23)

[n1]φ=π ≡ n1|φ=−π+ − n1|φ=π− = �−n0|φ=π− + Dφ

2π
[∂φn0]|φ=π . (24)

From (18) and (19), we obtain along the characteristics

x(φ) = x0 + sign(φ)φ, t(φ) = t0 + φ, f (φ) = f (x0,t0), (25)

the following equation for n1:

dn1

dφ
=

{{
L+ + χ[α,π]

(
∂x0 + ∂t0

)
�−(x0 + φ,t0 + φ)

}
f, 0 < φ < π,{

L− − χ[α−π,0]
(
∂x0 − ∂t0

)
�+(x0 − φ,t0 + φ)

}
f, −π < φ < 0.

(26)

In (26) we have defined

L± = 1

2π

[
Dx∂

2
x0

+ Dφ(∂x0 ± ∂t0 )2 − ∂τ

]
. (27)

Ignoring the initial condition for n1, the solution of (26) along the characteristics (25) is

n
p

1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φL+f + (
1 − α

π

)
�−(x0 + α,t0 + α,τ ) f, 0 < φ < α

φL+f + (
∂x0 + ∂t0

)
f

∫ φ

α
�−dφ + Cα, α < φ < π,

φL−f + (
∂x0 − ∂t0

)
f

∫ 0
φ

�+dφ + C0, α − π < φ < 0,

φL−f + Cα−π , −π < φ < α − π,

(28)

where f = f (x0,t0,τ ), the constants of integration Cj are independent of φ, and{∫ φ

α
�−dφ = ∫ φ

α
�

[ ∫ π

0 f (x0 + φ′ − ψ,t0 + φ′ + ψ,τ ) dψ
]
dφ′,∫ 0

φ
�+dφ = ∫ 0

φ
�

[ ∫ π

0 f (x0 − φ′ − ψ,t0 + φ′ − ψ,τ ) dψ
]
dφ′.

(29)

To determine the constants Cj in (28), we impose the jump conditions (21)–(23). Using (18), [∂φn0]|φ=α = [∂φn0]|φ=−π+α = 0,
[∂φn0]|φ=π = 2∂xf (x0 − π,t0 + π,τ ), [∂φn0]|φ=0 = −2∂xf (x0,t0,τ ), and we find

Cα = −α

π
�−(x0 + α,t0 + α,τ ) f (x0,t0,τ ), (30)

C0 =
[(

1 − α

π

)
�−(x0 + α,t0 + α,τ ) − �+(x0,t0)

]
f (x0,t0,τ ) + Dφ

π
∂xf (x0,t0,τ ), (31)
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Cα−π =
[
�+(x0 − α + π,t0 + α − π,τ ) +

(
1 − α

π

)
�−(x0 + α,t0 + α,τ ) − �+(x0,t0)

]
f (x0,t0,τ )

+ (∂x0 − ∂t0 )

[
f (x0,t0,τ )

∫ 0

α−π

�+dφ

]
+ Dφ

π
∂xf (x0,t0,τ ). (32)

The integral on the right-hand side of (32) can be rewritten as∫ 0

α−π

�+dφ =
∫ 0

α−π

�

[ ∫ π

0
f (x0 − φ − ψ,t0 + φ − ψ,τ ) dψ

]
dφ

=
∫ π

α

�

[ ∫ π

0
f (x0 + π − φ − ψ,t0 − π + φ − ψ,τ ) dψ

]
dφ

=
∫ π

α

�

[ ∫ π

0
f (x0 + π − φ − ψ,t0 + π + φ − ψ,τ ) dψ

]
dφ

=
∫ π

α

�

[ ∫ π

0
f (x0 − φ + ψ,t0 + φ + ψ,τ ) dψ

]
dφ. (33)

We have used that f (x,t,τ ) is 2π -periodic in t and the change of variable π − ψ → ψ to simplify the integral in (33). The first
term in Cα−π can be similarly simplified, thereby producing

Cα−π =
{
�

[ ∫ π

0
f (x0 − α + ψ,t0 + α + ψ,τ ) dψ

]
− �

[ ∫ π

0
f (x0 − ψ,t0 − ψ,τ ) dψ

]

+
(

1 − α

π

)
�

[ ∫ π

0
f (x0 + α − ψ,t0 + α + ψ,τ ) dψ

]}
f

+ (
∂x0 − ∂t0

){
f

∫ π

α

�

[ ∫ π

0
f (x0 − φ + ψ,t0 + φ + ψ,τ ) dψ

]
dφ

}
+ Dφ

π
∂xf. (34)

The condition (24) ensuring 2π -periodicity in φ provides the sought equation for f :

∂τf + ∂x(Uf ) + ∂t (Vf ) − (Dx + Dφ)∂2
xf − Dφ∂2

t f = f Q[f ] − Dφ

π
∂x[f (x,t,τ ) − f (x − π,t + π,τ )], (35)

U =
∫ π

α

{
�

[ ∫ π

0
f (x − φ + ψ,t + φ + ψ,τ ) dψ

]
− �

[ ∫ π

0
f (x + φ − ψ,t + φ + ψ,τ ) dψ

]}
dφ, (36)

V = −
∫ π

α

{
�

[ ∫ π

0
f (x − φ + ψ,t + φ + ψ,τ ) dψ

]
+ �

[ ∫ π

0
f (x + φ − ψ,t + φ + ψ,τ ) dψ

]}
dφ, (37)

Q[f ] = �

[ ∫ π

0
f (x + ψ,t − ψ,τ ) dψ

]
+ �

[ ∫ π

0
f (x − ψ,t − ψ,τ ) dψ

]

−�

[ ∫ π

0
f (x + α − ψ,t + α + ψ,τ ) dψ

]
− �

[ ∫ π

0
f (x − α + ψ,t + α + ψ,τ ) dψ

]
. (38)

We have dropped the subscripts 0 in the variables x and t .
Unimportant changes in the notation aside (our τ corresponds
to the Igoshin et al. variable T , Dx = 2πD1, Dφ = 2πD2),
these equations are different from those derived by Igoshin
et al. [4]: U and V in (35) are the same, but the Igoshin et al.
Fokker-Planck equation lacks the source terms. The reason
is that Igoshin et al. do not impose consistently the jump
conditions (21)–(24) in their derivation; see their equations
(A10)–(A.14) in the Appendix of Ref. [4]. The terms in the
right hand side of (35) do not appear in these equations.

Equation (35) is a Fokker-Planck-type equation with a
source term f Q[f ] − Dφ

π
∂x[f (x,t,τ ) − f (x − π,t + π,τ )].

Even in the absence of noise (Dx = Dφ = 0), f Q[f ]
acts as an effective collision term that produces dissi-
pation. As we shall see in the next section, the source
term provides a mechanism for wave number and speed

selection of the ripples. No such mechanism was found in
Ref. [4].

IV. CONSTANT SOLUTION IN THE WEAK SIGNALING
LIMIT AND ITS LINEAR STABILITY

The constant function f = N̂/(2π ) is an exact solution
of (35) that coincides with the following exact piecewise
constant solution of the full model (12):

ns(φ) = p [χ[0,α](φ) + χ[−π,−π+α](φ)]

+ q [χ[−π+α,0](φ) + χ[α,π](φ)], (39)

p = 1 + ε �
(

N̂
2

)
π + εα �

(
N̂
2

) N̂

2
, q =

N̂
2

π + εα �
(

N̂
2

) (40)
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when ε = 0. In (39), p and q given by (40) have been calculated from N± = αp + (π − α)q = N̂/2 and from the condition
that the flux J = n[1 + ε�(N−)χ[α,π] + ε�(N+)χ[−π+α,0])] should be continuous. Note that substitution of f = N̂/(2π ) in (28)
yields

n
p

1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 − α

π

)
�

(
N̂
2

)
N̂
2π

, 0 < φ < α

− α
π

�
(

N̂
2

)
N̂
2π

, α < φ < π,

− α
π

�
(

N̂
2

)
N̂
2π

, α − π < φ < 0,(
1 − α

π

)
�

(
N̂
2

)
N̂
2π

, −π < φ < α − π,

(41)

after using (30)–(32). Equation (41) agrees with (39)–(40) up to terms of order ε2.
Let us see what we find by a linear stability analysis of f = N̂/(2π ) as a solution of (35). Inserting f = N̂/(2π ) + ν(x,t,τ )

with ν � 1 in (35) and keeping only terms that are linear in ν, we find[
∂τ − 2(π − α) �

(
N̂

2

)
∂t − (Dx + Dφ)∂2

x − Dφ∂2
t

]
ν

= N̂

2π
�′

(
N̂

2

){
∂t

∫ π

α

∫ π

0
[ν(x − φ + ψ,t + φ + ψ,τ ) + ν(x + φ − ψ,t + φ + ψ,τ )] dψ dφ

− ∂x

∫ π

α

∫ π

0
[ν(x − φ + ψ,t + φ + ψ,τ ) − ν(x + φ − ψ,t + φ + ψ,τ )] dψ dφ

+
∫ π

0
[ν(x + ψ,t − ψ,τ ) + ν(x − ψ,t − ψ,τ ) − ν(x + α − ψ,t + α + ψ,τ )

− ν(x − α + ψ,t + α + ψ,τ )] dψ

}
− Dφ

π
∂x[ν(x,t,τ ) − ν(x − π,t + π,τ )]. (42)

Assuming ν = eikx+ilt+στ , we obtain the following eigenvalues:

σ = 2il(π − α) �

(
N̂

2

)
− (Dx + Dφ)k2 − Dφl2 + i2N̂ �′

(
N̂

2

)(
eiπl

{
eiαL sin[(π − α)L]

sin(πK)

2πK

+ eiαK sin[(π − α)K]
sin(πL)

2πL

}
− eiαL sin(αL+ πK)

sin(πK)

2πK
− eiαK sin(αK + πL)

sin(πL)

2πL

)
− ikDφ

π
(1 − ei2πL), (43)

where

K = l + k

2
, L = l − k

2
. (44)

For real k and l, the real and imaginary parts of (43) are

Re σ = −(Dx + Dφ)k2 − Dφl2 − N̂ �′
(

N̂

2

){
sin(αL + πl) sin[(π − α)L]

sin(πK)

πK

+ sin(αK + πl) sin[(π − α)K]
sin(πL)

πL
− sin(αL) sin(αL + πK)

sin(πK)

πK

− sin(αK) sin(αK + πL)
sin(πL)

πL

}
− kDφ

π
sin(2πL), (45)

Im σ = 2l(π − α) �

(
N̂

2

)
+ N̂ �′

(
N̂

2

){
cos(αL + πl) sin[(π − α)L]

sin(πK)

πK

+ cos(αK + πl) sin[(π − α)K]
sin(πL)

πL
− cos(αL) sin(αL + πK)

sin(πK)

πK

− cos(αK) sin(αK + πL)
sin(πL)

πL

}
− 2kDφ

π
sin2(πL), (46)

respectively. Except for the last three terms in (45), this is the
same as (57) in Ref. [4] (with N̂ replaced by N̂/2) provided
l is an integer. We have σ = 0 for k = l = 0 indicating that
we can shift the constant solution f = N̂/(2π ) by an arbitrary

quantity. The integral condition (13) fixes the value of N̂ and
therefore we have to ignore the zero eigenvalue.

Note that as r → ∞, �′(N̂/2) → 0 and the constant
solution becomes stable according to (45). At bifurcation
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FIG. 1. Contour plot of the neutral stability curve Re σ (α,k,1) =
0 for 0 � α � π , −6 � k � 6 and no diffusion, Dx = Dφ = 0.
Patterns are expected in regions where the constant solution is
unstable (marked with “u”), and they may disappear leaving the
constant solution in regions where the latter is linearly stable (marked
with “s”).

points, Re σ = 0, Im σ �= 0. This suggests that a Hopf
bifurcation occurs, which our numerical simulations support.
Pattern solutions that are periodic in the slow time issue forth
from the constant solution as supercritical Hopf bifurcations
according to our numerical evidence. We have not found
examples of subcritical Hopf bifurcations and hysteresis.

As ε → 0, f (x,t,τ ) approaches (18), which is a 2π -
periodic function of t . The corresponding frequency is l = 1.
Figure 1 shows the contour plot of the neutral stability curve
Re σ (α,k,1) = 0 in (45) for frequency l = 1 in the absence of
diffusion, Dx = Dφ = 0. The real part of the eigenvalue (45),
Re σ (α,k,1), is positive at the middle region enclosing k = 0
in Fig. 1, and its sign changes each time a line of the neutral
stability curve is crossed. Thus, for unit frequency and |k| � 1,
we expect to see patterns in x and t provided there is no

FIG. 2. Contour plot of the neutral stability curve Re σ (α, − l,

l) = 0 (waves traveling to the right) for 0 � α � π , −6 � l � 6, and
Dx = Dφ = 0. Meaning of “s” and “u” as in Fig. 1.

diffusion. For any value of the refractory period α, the constant
solution is unstable for waves traveling to the left (k = −1) and
for waves traveling to the right (k = 1). Let us assume that the
initial condition is a periodic pattern of wave number k > 0.
Increasing the wave number k or adding diffusion (which may
be the result of unavoidable numerical errors) stabilize the
constant solution and cause the patterns to disappear. For a
fixed value of the refractory period α, the neutral stability
curve of Fig. 1 yields the critical wave number below which
patterns with that wave number appear. Similarly, increasing
the refractory period from α = 0 at a fixed wave number
1 < k < 3 should produce patterns with wave number k once
α surpasses the critical value given by the neutral stability
curve.

For other values of the frequency, the neutral stability curve
qualitatively changes. For instance, let us consider wave trains
traveling to the right, so that k = −l, L = l, K = 0, as in
Ref. [4]. Expression (45) becomes

Re σ = −(Dx + 2Dφ)l2 − N̂ �′
(

N̂

2

)
{sin[(α + π )l] sin[(π − α)l] − sin2(αl)} + lDφ

π
sin(2πl)

= −Dxl
2 − lDφ

π
[2πl − sin(2πl)] + N̂ �′

(
N̂

2

)
[2 sin2(αl) − sin2(πl)], (47)

Im σ = 2l(π − α)�

(
N̂

2

)
+ N̂�′

(
N̂

2

){
cos[(π + α)l] sin[(π − α)l] − 1

2
sin(2αl) − sin2(πl)

πl

}
+ 2lDφ

π
sin2(πl)

= 2l(π − α) �

(
N̂

2

)
+ N̂

2
�′

(
N̂

2

)[
sin(2πl) − 2 sin2(πl)

πl
− 2 sin(2αl)

]
+ 2lDφ

π
sin2(πl). (48)
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FIG. 3. Contour plots of the total density N+(x,t) + N−(x,t) for α = π/2, ε = 0.1 and wave number: (a) k = 1, (b) k = 4, (c) k = 6.

In the absence of diffusion, Dx = Dφ = 0, (47) shows that
Re σ = 0 for l = lc(α) such that 2 sin2(αl) = sin2(πl). This
lc(α) provides the wavelength of the observed patterns. The
contour plot of Re σ = 0 in Fig. 2 shows that the function lc(α)
is multivalued and that its leftmost branch (corresponding to
the lowest values of l > 0) decreases from α = π/

√
2 at l = 0

to 0 at l = 1. For this parameter range, the constant solution
is linearly stable if l < lc(α) and unstable for l > lc(α) [but
smaller than values at the next branch of lc(α)]. For sufficiently
small l, α smaller (larger) than a critical value corresponds to
stable (unstable) constant solution. As the exponent r increases
and �′(N̂/2) correspondingly decreases, the contribution of
the second term in (47) becomes smaller and can be obliterated
by diffusion or numerical noise even if the said term is positive.

V. NUMERICAL SOLUTIONS

In this section, we present numerical solutions of the full
kinetic model equations (1)–(6) and compare them with the
linear stability results for the Fokker-Planck-type equation (35)
derived in the weak signaling limit. To visualize the results,
we obtain the total density, N+(x,t) + N−(x,t), and the RPD,
nRPD(x,t), from the numerical solution.

We construct the numerical solution using uniform grids for
both the spatial variable x and the phase variable φ extended
over their whole domains and assigning an approximate value
of the solution on every point of the two-dimensional grid at

every time step. In all our calculations in this paper we use N =
100 subintervals in both space and phase and setL = π , r = 4.
Then we solve the noiseless nondimensional equations, (12)
(with Dx = Dφ = 0), using as basic scheme an upwind finite
difference scheme in conservation form for the spatial terms
(space and phase) and the Euler explicit algorithm to evolve
in time. The computation of the integral form of the fluxes for
the internal clock variable is performed through the trapezoidal
rule of numerical integration extended over the whole domain
of the phase variable, using the approximated values of the
solution at the grid points. Explicit upwind schemes require a
Courant-Friedrichs-Lewy restriction on the time step, �t , in
terms of the maximum wave speed and the spatial stepsizes
�x and �φ, of the form:

�t

(�x2 + �φ2)1/2
� C

1 + (1 + ε)
. (49)

Here C is positive constant such that C < 1 to ensure stability
of the scheme. We use C = 0.4 in all our computations.

Since the first-order scheme introduces more dissipation
than needed, we have formulated a high-order accurate version
in space and time based on the fifth-order weighted essentially
nonoscillatory reconstruction procedure (WENO5) for the spa-
tial variables and a third-order Runge-Kutta method to evolve
in time. WENO5 procedure was designed to get fifth order
accuracy in space using a nonlinear convex combination of
essentially nonoscillatory parabolas (see Ref. [29] for details).
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FIG. 4. Plots of the RPD, nRPD(x = 0,t), vs. time for α = π/2, ε = 0.1 and wave number: (a) k = 1 (stable periodic pattern), (b) k = 4
(transient to constant density), (c) k = 6 (faster transient to constant density).

The third-order Runge-Kutta method for the integration in time
is the one proposed by Shu and Osher in Ref. [30] and allows
the maximum time stepsize dictated by the first-order upwind
scheme.

If ε = 0 the hyperbolic system (1)–(6) becomes a system
of linear wave equations, and the numerical solution can be
approximated using standard upwind schemes of any order
of accuracy in space and time. When nonlinearity is present,
ε > 0, the solution might present wave steepening, but the
nonlocality of the flux in Eq. (3) introduces an analytic
dissipation mechanism. Then even for zero diffusion, the
solution is well defined, and plain upwind schemes converge
stably to it. The jump conditions (21)–(24) may enforce
continuity at the boundaries φ = ±π , 0, α, α − π , but wave
steepening can be generated in the spatial direction of the
solution for short periods of time. On the other hand, we
do not have numerical evidence of shock wave formation.
The dissipation mechanism introduced by the nonlocal fluxes
might prevent the formation of shock waves. This issue will
be examined in the near future.

Igoshin et al. [3] use a heuristic argument to suggest that
kc = 1 and estimate ε = 3, α = π/5 from their measurements.
The value of ε determines whether the solution is close to
the weak signaling limit: ε = 0.1 corresponds to the weak
signaling limit and larger values, such as ε = 3 [3], or ε = 10,

go beyond the Fokker-Planck-type description of Sec. IV.
To check the stability results of that section, we first solve
the nondimensional equation (12) with the following initial
condition that is periodic in x and φ: n(x,φ,t = 0) = 1 +
0.1 sin(kx) sin(φ) on the interval [−π,π ] × [−π,π ]. For a first
numerical simulation, we consider the case of ε = 0.1 and
a fixed α = π/2. In Fig. 3 we show the time-space surface
plots of the total density with k = 1, k = 4, and k = 6 from
left to right. As expected from the neutral stability curve of
Fig. 1, the simulations of Fig. 3 show that periodic patterns
with angular frequency l = 1 are found for k = 1, whereas
the uniform stationary solution is linearly stable if k = 4.
Figure 3(b) shows a transient stage towards this solution. At
k = 6, the uniform stationary solution is unstable to periodic
patterns. However, simulations show an even faster transient
to the uniform stationary solution. According to (45), noise
has a strongly stabilizing effect of this solution at high wave
number so that numerical noise might have obliterated the
pattern solution at k = 6.

The RPD exhibits the same behavior as the total density and
its contour plot (not shown) is quite similar to it. In Fig. 4 we
depict the RPD at x = 0 for the same values of the parameters.
For unit wave number, periodic patterns are stable. The slight
decrease of the maxima of the RPD observed in Fig. 4(a)
is due to unavoidable dissipation due to numerical errors.
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FIG. 5. Contour plots of the RPD, nRPD(x,t), for α = π/5, initial condition n(x,φ,0) = 1.5 + [H (x − π + a) − H (x − π )] + [H (x +
π ) − H (x + π − a)], a = π/10; (a) ε = 0, (b) ε = 0.1, (c) ε = 3, (d) ε = 12. As ε (nonlinearity) increases, the reversals occur closer to ±π .

For k = 4, the uniform stationary solution is stable according
to the neutral stability curve of Fig. 1. Figure 4(b) shows
a pronounced evolution towards a constant. However, as we
are not far from the bifurcation point (critical wave numbers
bounding the stability region for the uniform stationary
solution are 3 and 5), the evolution of the RPD towards a
constant value is slow. For k = 6, neutral stability predicts
periodic patterns. However, at such large wave number, the
dissipation due to numerical noise is so large that the pattern
disappears and the uniform stationary solution becomes stable,
as shown in Fig. 4(c).

Other patterns appear for different initial condi-
tions. For example, for an initial condition with con-
stant density for all x except for two bumps near
x = ±π , n(x,φ,0) = 1.5 + [H (x − π + a) − H (x − π )] +
[H (x + π ) − H (x + π − a)], a = π/10 [H (x) = 1 for x >

0, and H (x) = 0 otherwise], we obtain the standing wave
patterns shown in Fig. 5. Reversals get confined to regions
near x = ±π as the nonlinearity strength ε increases. For
larger values of ε, the weak signaling theory of Secs. III and IV
does not apply.

If the two bumps are closer, then the standing waves
generate local maxima as in Fig. 6(a) and 6(b), for ε =
0 and 1.2, respectively. As ε (nonlinearity) increases, the
reversals occur in smaller regions about x = ±π/2, as shown
in Figs. 6(c) and 6(d). Clearly, for bumps that are close

enough, the waves they issue reinforce the density at the
points where they cross. In these points, fruiting bodies
may form [3]. It is interesting to observe that breaking
the symmetry in the initial condition may weaken the re-
sulting patterns. For example replacing the initial condition
in Fig. 6 by n(x,φ,0) = 1.5 + [H (x − π/2 + a) − H (x −
π/2)] + [H (x + π/2) − H (x + π/2 − a)] (closer and nar-
rower bumps, with centers at π/2 − a/2 and −π/2 + a/2)
results in patterns with two close maxima appearing near
t = nπ (n = 1,2, . . .) that undergo noticeable dissipation.

For an initial condition n(x,φ,0) = 1.5 + 0.1 sin[k(x −
φ)], α = π/5, the standing wave patterns shown in Fig. 7(a)
become the traveling-wave time periodic patterns of Figs. 7(b)
and 7(c).

Turning to consideration of the relation to patterns observed
in experiments, the Igoshin et al. model we have solved
numerically is 1D, whereas observed patterns are 2D. This
said, the complete patterns in panels (a) and (b) of Figs. 5
and 6 are similar to those in Fig. 3 of Welch and Kaiser’s
experiments [17], whereas loss of coherence (panels (c) and
(d) of our Figs. 5 and 6) is observed in Figs. 3(a) and 4 of the
same work. Experiments also show more complex 2D patterns
as in Fig. 4 of Ref. [31] that are reminiscent of our patterns
in Fig. 7 although the 2D agent-based models the authors
of Ref. [31] introduce to explain the experiments are more
sophisticated than the 1D model we study in this paper.

012412-10



WAVELENGTH SELECTION OF RIPPLING PATTERNS IN . . . PHYSICAL REVIEW E 93, 012412 (2016)

t

x

 

 

1 2 3 4 5 6

−3

−2

−1

0

1

2

3 20

20.05

20.1

20.15

20.2
(a)

t

x

 

 

1 2 3 4 5 6

−3

−2

−1

0

1

2

3 20

20.05

20.1

20.15

20.2
(b)

t

x

 

 

1 2 3 4 5 6

−3

−2

−1

0

1

2

3 20

20.05

20.1

20.15

20.2
(c)

t

x

 

 

1 2 3 4 5 6

−3

−2

−1

0

1

2

3 20

20.05

20.1

20.15

20.2
(d)

FIG. 6. Contour plots of the RPD, nRPD(x,t), for α = π/5, initial condition n(x,φ,0) = 10 + 0.1 [H (a − |x − π/2|) + H (a − |x + π/2|)],
a = π/10; (a) ε = 0, (b) ε = 1.2, (c) ε = 3, (d) ε = 12. As ε (nonlinearity) increases, the reversals occur in smaller regions about x = ±π/2.

VI. PATTERN DECOHERENCE AND RELATION
TO THE KURAMOTO MODEL

The noiseless version of the model (1)–(6) of Igoshin et al.
describes the density of myxobacteria with an internal clock
in the limit as the number of bacteria N → ∞. The bacteria
themselves satisfy the following equations:

ẋj = v signφj , (50)

φ̇j = ω + εω �
(
Nsign(−φj)(xj ,t)

)
[χ[α,π](φj ) + χ[−π+α,0](φj )],

j = 1, . . . ,N , (51)

N+(x,t) = νs

N

N∑
m=1

δ[x − xm(t)] H [φm(t)],

(52)

N− = νs

N

N∑
m=1

δ[x − xm(t)] H (−φm).

Here xj (t) and φj (t) move on circles and can be considered to
take values on the intervals [−L,L] and [−π,π ], respectively,
νs is a scaling parameter, and the delta functions are regularized
in an appropriate way. In the limit as we take away this
regularization and N → ∞, the densities (52) approach
their continuum limits (5). A typical bacterium xj (t) moves
counterclockwise on a circle of length 2L if its internal
phase φj (t) ∈ [−π,π ] is positive, and clockwise otherwise.

Its internal phase can be accelerated due to a mean-field
interaction with opposite moving bacteria that collide with
it. Appropriate initial conditions produce periodic (rhythmic)
spatiotemporal patterns in the absence of interaction (ε = 0).
Interaction tends to confine rhythmicity to parts of the circle
(−L,L), as shown in Figs. 5 and 7 or to destroy it. Loss of
rhythmicity may appear as a decoherence phase transition at
critical values of the refractory period α or the wave number of
the initial condition, as shown in Figs. 3 and 4. The maxima of
the time derivative of the reversal point density act as the order
parameter for this phase transition: it is zero for the constant
density solution and nonzero for the time-periodic patterns;
see Fig. 4(c).

The behavior of this model can be compared with the
well-known Kuramoto model of globally coupled phase
oscillators [27,28]. In the Kuramoto model, the phases of
free oscillators increase following their natural frequencies
that are random (unsynchronized or incoherent state). Mean-
field coupling between the oscillators succeed synchronizing
them above a certain coupling strength and, typically, some
oscillators are synchronized while others continue rotating
about the unit circle (partial synchronization). In the Igoshin
et al. model, a pattern induced by an appropriate initial
condition persists in the absence of coupling. Turning on the
coupling may confine the patterns to a part of the space interval
[−L,L] (partial decoherence) or destroy them completely
(complete decoherence). Adding white noise sources, the
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FIG. 7. Contour plots of the RPD, nRPD(x,t), for α = π/5, initial condition n(x,φ,0) = 1.5 + 0.1 sin[k(x − φ)], ε = 1.2; (a) k = 1,
(b) k = 2, (c) k = 3. As k (wave number) increases, standing-wave time-periodic patterns become traveling-wave time-periodic patterns.

Kuramoto model is described by a nonlinear Fokker-Planck
equation whereas the model of Igoshin et al. contains extra
mechanisms of dissipation, as is apparent from the nonlinear
Fokker-Planck equation with an additional (collision) source
term (35) obtained in the weak signaling limit.

VII. CONCLUSIONS

We have revisited the continuum model of rippling in
myxobacteria proposed by Igoshin et al. [3,4]. In the absence of
noise, the model consists of two coupled hyperbolic equations
(describing the densities of left and right moving bacteria)
coupled nonlinearly through a flux in an angular variable that
represents the bacteria internal clock. This flux is a nonlinear
function of the overall density of left or right moving bacteria.
Depending on the values of the parameters, the model displays
a variety of space and time periodic patterns that have been
scarcely analyzed.

In the limit of weak nonlinearity (weak signaling), we have
found a Fokker-Planck-type equation for the reversal-point
density that contains a source term, absent in the Igoshin
et al. analysis [4]. The reversal-point density can be used to

reconstruct the densities of left and right moving bacteria. We
analyze the linear stability of a constant-density solution and
find that its neutral stability curves provide selection rules
giving the wave number of the patterns issuing from the
constant-density solution. These selection rules issue directly
from the source term in the Fokker-Planck equation. We
have checked these results by direct numerical solution of
the original hyperbolic equations of the model. For small
nonlinearities, we have checked the wave number selection
rule. Strengthening the nonlinearity tends to confine and
destroy the patterns through a nonequilibrium phase transition.
For large nonlinearity, we have found a variety of patterns
including time-periodic standing and traveling waves that
attest the richness of the Igoshin et al. model.
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