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Analytical catch-slip bond model for arbitrary forces and loading rates
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Some biological bonds exhibit a so-called catch regime, where the bond strengthens with increasing load.
We build upon recent advances in slip-bond kinetics to develop an analytically tractable, microscopic catch-slip
bond model. To facilitate the analysis of force-spectroscopy data, we calculate the bond’s mean lifetime and
the rupture-force distribution for static loading and linear force ramps. Our results are applicable for arbitrary
forces and loading rates, covering the whole range of conditions found in experiments and all-atom simulations.
A generalization to account for force transducers of finite stiffness is also provided.
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I. INTRODUCTION

Noncovalent bonds play a crucial role in biomaterial sta-
bilization, e.g., by preserving the tertiary structure of proteins
[1] and guaranteeing the integrity of polymer networks [2].
They are also responsible for the formation of receptor-ligand
complexes, such as in focal adhesions [3], that allow cells
and bacteria to adhere to surfaces and extracellular scaffold
structures. In recent years, the binding kinetics of these bonds
has been studied on a single molecule level by repeatedly
exposing the bond to external forces and thus inducing a series
of unbinding events [4]. Experimentalists usually either probe
the bond’s lifetime under static loads [5,6] or measure the force
at which the bond yields when the force is gradually ramped
up [7,8]. However, due to various technical limitations, the
forces and loading rates typically realized in experiments are
many orders of magnitude smaller than what would be needed
to observe an unbinding event on the time scales accessible to
molecular-dynamics simulations [4]. It is therefore worthwhile
to consider simple, schematic models of bond breaking, which
can be analyzed analytically and thereby help to bridge the
gap between experiments and simulations.

Great effort has been put into the theoretical description of
simple two-state systems with a single pathway between them
[9–13], because they provide a minimal model for ligand-
receptor binding kinetics and folding-unfolding transitions of
single-domain proteins. Typically, the transition rates between
the two states are modeled in such a way that they represent
a slip bond [14,15], i.e., a bond that softens under external
loads. However, various intermolecular bonds display, next to
the expected slip events, a so-called catch regime [16–20],
where the lifetime of the bond initially grows with the applied
force up to a certain characteristic value, F = Fchar [15]. For
forces beyond Fchar, the bond eventually exhibits “normal”
slip behavior. To explain this nonmonotonic force dependence,
different models have been proposed [17,21,22]. One idea is
that the system can follow two competing reaction pathways
(a catch and a slip path, respectively) to transit between the
bound and the unbound state. The two rates specifying the tran-
sition probabilities along these pathways have different force
dependencies and thus dominate the reaction in different force
regimes. By using phenomenological expressions [10,14] for
said rates, this model has been very successful in analyzing
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a broad variety of experimental data that feature anomalous
force behavior [17,22]. Finally, the two-pathway model has
also been generalized to include multiple bound states [17,23]
to reproduce observed nonexponential reaction kinetics.

In this paper, we build upon recent advances in the
mathematical description of slip bonds [13] to improve
the two-pathway model and make it applicable at high
and low forces and loading rates. Instead of relying on
phenomenological rates, we compute the catch and slip rates
microscopically. The paper is structured as follows. In Sec. II,
we briefly review single- and two-pathway rate kinetics, where
the former is discussed for simplicity in terms of pure slip
bonds. Section III treats the cases of static and dynamic force
protocols separately, giving derivations of the associated force-
dependent mean lifetimes τ (F ) and loading-rate dependent
rupture-force distributions p(F,Ḟ ), which are compared to
Brownian dynamics simulations. Most force transducers used
in actual experiments can, to a good approximation, be
represented by a relatively stiff spring attached to the bond.
Nevertheless, for better clarity we have restricted our analysis
in the main text to the so-called “soft-spring limit” [24], where
the external forcing is solely taken into account by a linear
term −�xF in the Hamiltonian. The extension of our results
to include stiff actuators is somewhat tedious, since it requires
force fluctuations to be taken into account, and it has therefore
been deferred to the Appendix. We conclude in Sec. IV with a
summary of our results.

II. BOND KINETICS

A. Single-pathway (slip) bonds

In Kramers’ reaction theory [9,25], the transition from a
bound to an unbound state is modeled by the stochastic motion
of a virtual particle, diffusing in a free-energy landscape,
projected along the reaction coordinate. Bond breaking
amounts to the particle overcoming a barrier that separates the
states. The inclusion of an external force tilts the landscape
and effectively reduces the height and width of the barrier,
thus decreasing the survival probability S(t) that the bond is
still intact at a time t . If we neglect rebinding, as is frequently
done when discussing forcible bond breaking [26], S(t) is a
solution to the reaction equation

Ṡ(t) = −k(t,F )S(t), S(0) = 1, (1)

with the force-dependent escape rate k(t,F ) or k(F )
(for quasistatic processes). Determining k(t,F ) can be a
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theoretically cumbersome task, but the fact that the
spontaneous escape rate k0 ≡ k(F = 0) follows Arrhenius’
law [25], i.e., k0 ∝ e−β�E for sufficiently high barriers �E ,
has encouraged the use of phenomenological expressions
k(F ), where the force dependence is solely taken into account
in the dominant Arrhenius factor [3,10,14]. The Bell rate [10]

kBell(F ) = k0e
β�xbF , (2)

where �xb denotes the width of the undisturbed bound state,
is a famous example of such simplified rate expressions.
Employing the Bell rate keeps the number of fit parameters
in the model to a minimum of two, namely k0 and �xb,
but it restricts the model to forces on the order of (β�xb)−1

or less. At higher forces, the Bell rate only offers a crude
approximation because it does not account for contractions of
the bound state under external loads.

A more accurate rate expression can be obtained by
generalizing Kramers’ original work [9] to include external
forces by adding a linear term −�xF (t) to the otherwise
static bond potential V (x). By restricting the shape of V (x) to
certain archetypal potentials, e.g., the truncated parabolic cusp
potential

Vcusp(x) =
{
�E(�x/�xb)2, �x < �xb,

−∞ otherwise
(3)

depicted in Fig. 1(d), the number of parameters entering
this improved rate will be limited to three; next to the two
parameters of the Bell rate, the barrier height �E now enters
explicitly. The microscopic rate expression

kcusp(F ) = k0

[
1 − �xbF

2�E

]
eβ�E[1−(1−�xbF/2�E)2], (4)

computed in this fashion [12], extends the theory’s range of
validity to intermediate forces and loading rates. However, it
still fails for forces beyond the critical force Fcrit = 2�E/�xb

that flattens out the energy barrier. Under such extreme forces,
the quasistatic assumption behind Kramers’ theory, which
states that the thermal energy must be small in comparison
to the height of the barrier, becomes invalid.

For F > Fcrit, the escape process is virtually deterministic,
since the particle is ballistically driven into the unbound state,
and it is amenable to an analytical description, as long as
one sticks with the cusp potential (3). This fact was first
exploited in Ref. [11] to compute the mean rupture force for a
dynamic force protocol and later in Ref. [13], where analytic
approximations for the escape rate and the rupture-force
distribution were derived. The theory presented in those papers
becomes asymptotically exact for high forces and loading rates
and reduces to the quasistatic Eq. (4) (and other results found
in Ref. [12]) at low loading rates.

Notice that the rates (2) and (4) are single-pathway slip
rates that increase with growing F . They can, however, be
turned into catch rates by setting �xb → −�xb < 0. This
will also reverse the sign of the critical force. We exploit this
in the following to compute microscopic expressions for the
catch-slip rate of the two-pathway model.

FIG. 1. A one-dimensional two-pathway free-energy landscape.
(a) A virtual particle, moving in the potential V (x), can either
escape over the catch barrier at x

(c)
t or over the slip barrier at x

(s)
t .

The rates k(c) and k(s) depend exponentially on the barrier heights
�E (c,s) and determine which pathway is more likely to be chosen.
(b) The double cusp potential (9) is a schematic two-pathway
landscape that does not introduce any nonlinearities into the particle’s
equation of motion (8). To compute the rates k(c) and k(s), the escape
over each barrier is considered separately by removing one of the two
absorbing boundaries, resulting in a potential with either a cusp on
the left (c) or on the right (d).

B. The two-pathway model

The two-pathway model is a simple generalization of the
slip bond models described above, in which the Brownian
virtual particle can escape out of the potential well via two
alternative pathways, as illustrated in Fig. 1(a). The survival
probability still obeys Eq. (1) if k(t,F ) is replaced by a
nonmonotonic catch-slip rate k(c-s)(t,F ). The rate’s explicit
form is in general unknown, but progress can be made with
the common superposition ansatz

k(c-s)(t,F ) ≈ k(c)(t,F ) + k(s)(t,F ) (5)

that approximates it by a sum of two independent single-
pathway rates [22]. The formula is exact as long as at least
one of the two rates is low enough to suppress events in which
a virtual particle explores both transition states before finally
escaping to the unbound state. The individual single-pathway
rates in Eq. (5) can then be determined via Kramers’ theory
[9] [see Figs. 1(c) and 1(d)]. To allow for a nonmonotonic
force dependence, such that a nontrivial solution Fchar > 0 of
k(c)(t,Fchar) ≡ k(s)(t,Fchar) exists, k(c)(t,0) must be larger than
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k(s)(t,0) ∀ t , which requires the catch barrier to be lower than
the slip barrier [see Figs. 1(a) and 1(b)].

III. CATCH-SLIP BOND KINETICS

In single-molecule experiments, forced transitions are
usually realized in two ways: either by a constant external
load or by a linear force ramp. The former approach is suitable
for measuring the mean lifetime τ (F ) [16,18–20], which can
be computed from the first-passage-time distribution p(t,F ) ≡
−Ṡ(t) [27],

τ (F ) =
∫ ∞

0
dt t p(t,F ) =

∫ ∞

0
dt S(t). (6)

A repeated application of the linear force ramp F (t) = Ḟ t , as
used in Ref. [23], reveals a whole distribution of rupture forces
at which the bond yields. Since the loading rate can be varied,
this protocol allows us to extract even richer information about
the underlying energy landscape than the static method in the
form of the rupture-force distribution p(F,Ḟ ), which is related
to the survival function S(t) via [28]

p(F,Ḟ )dF = −Ṡ(t)dt. (7)

The escape rates k(c,s)(t,F ) ≡ k(c,s)(F (t),Ḟ ) are now depen-
dent on the loading rate Ḟ = dF/dt , which is kept constant
during each set of loading cycles. In the following, we discuss
these two standard protocols separately.

A. Constant force

The virtual particle’s overdamped equation of motion is

1

Dβ
ẋ(t) = −U ′(x,F ) + ξ (t), (8)

where D is the diffusion coefficient and ξ (t) is Gaussian white
noise with zero mean, i.e., 〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 = 2δ(t −
t ′)/Dβ2. The effective free-energy landscape U (x,F ) =
V (x) − (x − xb)F is composed of the bond potential V (x)
and the mechanical work performed by the force F . Here, we
model V (x) by a double-cusp potential,

V2cusp(x) =
{
κmol(x − xb)2/2, x

(c)
t < x < x

(s)
t ,

−∞ otherwise
(9)

to facilitate the derivation of analytic expressions for common
experimental observables, which are valid for arbitrary forces
F and (in the case of force-ramp protocols) loading rates Ḟ .
The coordinates x

(c)
t and x

(s)
t stand for the transition states of

the catch and slip pathway, respectively, and xb is the location
of the bound state’s minimum. By design, we have x

(c)
t − xb =

−�x
(c)
b < 0 for the catch pathway, which results in a barrier

height that increases with F . Therefore, we can safely adopt
the known quasistatic result (4),

k(c)(F ) = k
(c)
0

[
1 + F

F
(c)
crit

]
eβ�E (c)[1−(1+F/F

(c)
crit)

2], (10)

where k
(c)
0 = DβF

(c)
crit

√
β�E (c)/πe−β�E (c)

/�x
(c)
b denotes the

spontaneous dissociation rate, �E (c) = κmol(�x
(c)
b )2/2 is the

initial height of the catch-pathway barrier, and F
(c)
crit =

2�E (c)/�x
(c)
b ≡ κmol�x

(c)
b gives the absolute value of the

(negatively valued) critical force that would be needed to tear
it down.

The slip rate’s force dependence is opposite to that of the
catch rate. The corresponding barrier therefore decreases as a
function of F , until the quasistatic approximation eventually
breaks down. Only for small forces does the quasistatic limit
hold, where the survival function is given by the expression
S(t) ∼ e−[k(c)(F )+k(s)(F )]t that can be used to evaluate Eq. (6),

τ
(
F � F

(s)
crit

) ∼ 1

k(c)(F ) + k(s)(F )
. (11)

Here, k(s)(F ) is the quasistatic slip escape rate,

k(s)(F ) = k
(s)
0

[
1 − F

F
(s)
crit

]
eβ�E (s)[1−(1−F/F

(s)
crit)

2], (12)

with k
(s)
0 , �E (s), and F

(s)
crit being defined in analogy to their

catch counterparts using �x
(s)
b = x

(s)
t − xb > 0. At very high

forces, F  F
(s)
crit, two simplifications occur. First, transitions

through the slip pathway dominate the mean lifetime of the
bond, which can be identified with the time it takes the particle
to reach the slip transition state, i.e., τ (F  F

(s)
crit) satisfies the

relation x(τ ) ∼ x
(s)
t [11]. Secondly, the motion of the virtual

particle becomes almost deterministic so that we can safely
replace x(t) by its mean, 〈x(t)〉. Solving the resulting equation
for τ (F ) leads to

τ
(
F  F

(s)
crit

) ∼ − �x
(s)
b

DβF
(s)
crit

ln

(
1 − F

(s)
crit

F

)

F→∞∼ �x
(s)
b

DβF
. (13)

The computation of the exact mean lifetime of the bond,
valid for all forces F , is a well-known first-passage problem
and requires the solution of the differential equation

DeβU (x ′,F ) ∂

∂x ′ e
−βU (x ′,F ) ∂

∂x ′ τ (x ′,F ) = −1, (14)

with the initial conditions τ (x(c)
t ,F ) = τ (x(s)

t ,F ) = 0 [27].
Since our escape process is only one-dimensional, Eq. (14)
can be solved directly by integration. Assuming that the initial
position x ′ of the virtual particle is Boltzmann-distributed, the
mean lifetime is then given by

τ (F ) = 2

�x
(s)
b

√
β�E (s)

π

∫ �x
(s)
b

−�x
(c)
b

d�x ′ τ (x ′,F )

× e−β�E (s)(�x ′/�x
(s)
b )2

erf(
√

β�E (c)) + erf(
√

β�E (s))
, (15a)

where �x ′ = x ′ − xb. For β�E (c,s)  1, we can drop the
integral over the initial condition in the above equation
and just set x ′ ≡ xb. This approximation holds for arbitrary
forces, since at small forces the bond has enough time to
equilibrate before it ruptures, while in the high-force limit the
virtual particle is pulled deterministically out of the bound
state and only its initial mean position 〈x ′〉 = xb is then of
importance. We therefore get for the double-cusp potential
(9) an asymptotically exact explicit expression for the mean
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lifetime,

τ (F )
β�E (c,s)1∼ τ (xb,F )

= π
(
�x

(s)
b

)2

4Dβ�E (s)

(
erfi(A2) − erfi(A1)

erfi(A3) − erfi(A1)
[ψ(A3) − ψ(A2)]

−erfi(A3) − erfi(A2)

erfi(A3) − erfi(A1)
[ψ(A2) − ψ(A1)]

)∣∣∣∣
x ′=xb

. (15b)

For better clarity, we have employed the following abbrevia-
tions:

A1 = −
√

β�E (c)

[
1 + F

F
(c)
crit

]
, (15c)

A2 =
√

β�E (s)

[
�x ′

�x
(s)
b

− F

F
(s)
crit

]
, (15d)

A3 =
√

β�E (s)

[
1 − F

F
(s)
crit

]
, (15e)

and, following Ref. [29],

ψ(z) = erf(−A1)︸ ︷︷ ︸
β�E (c)1∼ 1

erfi(z) + 2√
π

∫ z

0
dy ey2

erf(y), (15f)

based on the imaginary error function erfi(z) = erf(iz)/i.
Equations (15) for the mean bond lifetime under a static load
F , as well as the asymptotic expressions (11) and (13), are
among the main results of this paper. Similar expressions
can also be obtained for harmonic force transducers, where
the instrument’s spring constant effectively alters the barrier
heights of both pathways. We refer the interested reader to the
Appendix for the results; see specifically Eqs. (A5) and (A6a).

In Fig. 2, we compare Eq. (15b) and its asymptotes to the
prediction based on the phenomenological Bell rate (2),

τBell(F ) = 1

k
(c)
0 e−β�x

(c)
b F + k

(s)
0 eβ�x

(s)
b F

. (16)

It decays exponentially, whereas our practically exact result
(15b) vanishes algebraically as F → ∞; see Eq. (13). The
slight discrepancy between the quasistatic asymptote (11) and
our exact solution (15b) at low forces is a finite-barrier-size
effect, due to computing the analytic expressions (10) and (12)
in the high-barrier limit. It vanishes as β�E (c,s) → ∞.

B. Force ramp

The equation of motion under dynamic loads has the same
form as Eq. (8), with a time-dependent protocol F (t) in place
of the constant F , and it results in a nonstationary process
x(t). Specifically, we consider the force ramp F (t) = Ḟ t . The
quantity of interest is the rupture-force distribution [28]

p(F,Ḟ ) = 1

Ḟ
[k(c)(F,Ḟ ) + k(s)(F,Ḟ )]

× exp

(
−

∫ F

0
df

k(c)(f,Ḟ ) + k(s)(f,Ḟ )

Ḟ

)
. (17)

Here, the catch rate k(c)(F,Ḟ ) can be replaced by the quasistatic
rate k(c)(F ) for the same reasons as given in the previous

FIG. 2. The mean lifetime of a catch-slip bond under constant
load using the parameters D = 1000 nm2 s−1, �x

(c)
b ≈ 0.707 nm,

�x
(s)
b = 1 nm, βκmol = 20 nm−2 (which is equivalent to setting

β�E (c) = 5 and β�E (s) = 10), and β−1 = 4 pN nm. The asymptotic
expressions (red single dot-dashed line and orange double dot-dashed
line) match our (virtually) exact solution τ (F ) ∼ τ (xb,F ) (solid blue
line) remarkably well for high and low external forces, respectively.
They only deviate significantly for F ≈ F

(s)
crit = 80 pN. The phe-

nomenological expression τBell(F ) (green dashed line) already breaks
down around the characteristic force Fchar = 11.72 pN, and it fails at
strong forces. The inset shows the maximum of the mean lifetime in
a linear plot.

subsection. Since the rates for static and dynamic loading are
indistinguishable in the quasistatic limit [30], we can directly
employ the catch rate from Eq. (10) also for the force-ramp
scenario. For the slip rate, however, a more general expression
is required that accounts for the nonstationary rate-dependent
character of the escape process. Following Ref. [13], we obtain

k(s)(F,Ḟ ) ≈ k
(s)
0

[
1 + F

F
(s)
crit

− 2〈�x(F,Ḟ )〉
�x

(s)
b

]

×
[

1

2
+ 1

2
erf

(√
β�E (s)

[
1 − 〈�x(F,Ḟ )〉

�x
(s)
b

])]−1

× eβ�E (s){1−[1−〈�x(F,Ḟ )〉/�x
(s)
b ]2}, (18)

where 〈�x(F,Ḟ )〉 = 〈x(F )〉 − xb is given by

〈�x(F,Ḟ )〉 = �x
(s)
b

[
F

F
(s)
crit

− �x
(s)
b Ḟ [1 − C(F )]

Dβ(F (s)
crit)2

]
, (19)

and C(F ) = e−DβF
(s)
critF/�x

(s)
b Ḟ is the normalized autocorrelation

function of the process x(t).
To improve the readability of our results, we now introduce

the single-pathway rupture-force distributions p(c)(F,Ḟ ) =
p(F,Ḟ )|k(s)(F,Ḟ )=0 and p(s)(F,Ḟ ) = p(F,Ḟ )|k(c)(F )=0 to recast
Eq. (17) into the following form:

p(F,Ḟ ) = Ḟp(c)(F,Ḟ )p(s)(F,Ḟ )

× [k(s)(F,Ḟ )−1 + k(c)(F )−1]. (20)

The single-pathway rupture-force distributions were originally
derived in Refs. [12] and [13], but for completeness we shall
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FIG. 3. The catch-slip rupture-force distribution (20) (solid lines)
as a function of the loading rate (increasing from left to right),
plotted on top of numerical data from Brownian dynamics simulations
(shaded areas); parameters as in Fig. 2. (a) At low loading rates,
the shape of the predicted distribution evolves from shoulderlike
to peaked, as observed in experiments [23]. (b) For higher pulling
speeds, the catch pathway becomes negligible and the rupture-force
distribution becomes essentially Gaussian [7,13]. Only for loading
rates in the vicinity of Ḟcrit = 80 000 pN s−1 does our approximate
expression (20) exhibit sizable errors.

also present them here: the catch distribution is given by [12]

p(c)(F,Ḟ ) = k(c)(F )

Ḟ
e[k(c)(F )/(1+F/F

(c)
crit)−k

(c)
0 ]/β�x

(c)
b Ḟ (21)

and the distribution of slip events by [13]

p(s)(F,Ḟ ) ≈ k
(s)
0

Ḟ

[
1 + F

F
(s)
crit

− 2〈�x(F,Ḟ )〉
�x

(s)
b

]

× exp

(
− k

(s)
0 (eβ�E (s)[1−(1−F/F

(s)
crit)

2] − 1)

β�x
(s)
b Ḟ

)

× eβ�E (s){1−[1−〈�x(F,Ḟ )〉/�x
(s)
b ]2}. (22)

Equations (10), (18), (21), and (22), in combination with
Eq. (20), constitute the second main result of this paper.
They are compared to distributions obtained from Brownian
dynamics simulations in Fig. 3. Similar to our asymptotic
expressions (11) and (13) for the mean lifetime, which exhibit
a spurious divergence at the critical force F

(s)
crit, the two-pathway

distribution (20) displays sizable errors near a critical loading
rate, above which the catch pathway can be neglected and
p(F,Ḟ  Ḟcrit) ∼ p(s)(F,Ḟ ). This critical rate is the same as
that found in Ref. [13], Ḟcrit = DF

(s)
crit/(�x

(s)
b )2. The problems

are due to the approximations underlying Eqs. (18) and (22).
Nevertheless, above and below the critical loading rate our
results become asymptotically exact, in particular also in
the high-loading-rate limit Ḟ → ∞ that is inaccessible to
quasistatic theories. In this limit, a fourth fit parameter can be
introduced to improve fits to the data, for which the underlying
energy landscape deviates strongly from the cusp potential
considered here, as discussed in Ref. [13]. A generalization of
the above results to account for stiff actuators is given in the
Appendix.

IV. CONCLUSION

In this paper, we have analyzed an analytically tractable
model for catch-slip bonds, which permits arbitrarily large
forces and loading rates. We represented the bond-breaking
process by a one-dimensional two-pathway escape problem
under external forcing using a double-cusp potential. The
specific choice of the potential allowed us to compute
microscopically exact escape rates, from which we then
derived other experimental observables of interest. For static
loads, we provided a practically exact expression for the
mean lifetime that can easily be evaluated numerically [see
Eq. (15b)]. Its asymptotic behavior, above and below the
critical force F

(s)
crit, is captured by simple analytical results.

For the case of a dynamic force protocol, we expressed
the two-pathway rupture-force distribution p(F,Ḟ ) in terms
of the single-pathway distributions p(c)(F,Ḟ ) and p(s)(F,Ḟ ),
which could be adapted from the recent literature [12,13].
The resulting expression, Eq. (20), holds for both high and
low loading rates. It only breaks down in a narrow region
close to the critical loading rate Ḟcrit. The newly derived
asymptotic results for bond breaking under high static forces
or high loading rates are already (at least partially) accessible
in experiments [31]. Their knowledge becomes crucial when
data from molecular-dynamics simulations are compared to
experimental data.
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APPENDIX: SPRINGLIKE FORCE TRANSDUCERS

This appendix extends the results of the main text such that
they can be directly applied to experiments and simulations that
impose the external load F via intermediate force transducers
of finite elasticity, e.g., AFM cantilevers, optical tweezers, or
biomembranes. All these devices can accurately be modeled
as harmonic springs. Sometimes, however, polymer tethers are
utilized in experiments to anchor the macromolecule of interest
to a substrate or to facilitate its binding to the actuator [32].
These linker molecules usually have highly nonlinear force-
extension relations [30,33] that affect the effective free-energy
landscape of the bond [34]. In such cases, the following results
can therefore only be considered as a first approximation.
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FIG. 4. Schematic figure of bond loading with a springlike force
transducer. The combined system of bond (depicted as a cup and
a sphere) and actuator (with a tip attached to the sphere and its
base positioned at x = y) can be regarded as a set of harmonic
springs, connected in series. For small displacements �y = y − xb,
the reaction coordinate x(t) fluctuates around the minimum of the
effective potential V (x) + Vtr(x,y) at x = 〈x〉. As �y → ∞, the
mean bond extension 〈�x〉 becomes negligible and the bond is driven
deterministically toward the unbound state.

For a harmonic force transducer with an equilibrium
position y that is directly imposed by external means, the
mechanical work sector in the effective potential U (x,F ) takes
the form κtr[x(t) − xb − �y]2/2, altering the Langevin Eq. (8)
for x

(c)
t < x < x

(s)
t as follows:

1

Dβ
ẋ(t) = −χκmol[x(t) − xb] + κtr�y + ξ (t). (A1)

Here, χ = 1 + κtr/κmol, κtr is the spring constant of the
transducer, and y, defined by �y = y − xb, is the minimum
position of the transducer potential (see Fig. 4). In the case of
an interposed harmonic linker with stiffness κlink, κtr can be
replaced by κeff = (κ−1

tr + κ−1
link)−1. A prescribed extension pro-

tocol y = y(t) results in a force F (t) = κtr{�y(t) − [x(t) −
xb]} acting on the bond that fluctuates around the average
value

〈F (t)〉 = κtr[�y(t) − 〈�x(t,y)〉]

= κtr

[
�y(t) − χ − 1

χ

∫ t

0
dτ Ċ(t − τ )�y(τ )

]

∼
{
κtr�y(t), t � 1/χDβκmol,

κtr�y(t)/χ otherwise,
(A2)

where 〈�x(t,y)〉 = 〈[x(t) − xb]〉 and C(t) = e−χDβκmolt . In the
last step, we assumed that y(t) is of order O(t) or less, e.g., y =
const or ẏ = const, which conforms to the two most common
experimental scenarios, namely constant and linearly growing
displacements.

It is now straightforward to generalize the central results
from the main text as functions of �y via Eq. (A1). However,
in experiments and simulations, these quantities are conven-
tionally expressed as functions of the measured force, which
is in most cases equivalent to some averaged force 〈F (t)〉. The
reason is that measurements “smooth out” force fluctuations,
either due to a finite time resolution or by the use of low-pass
filters, and therefore we shall make no distinction between

F (t) and its average 〈F (t)〉 in what follows. Then we can
use Eqs. (A2) to transform our results from Eqs. (6) and (7) to
obtain the desired generalized expressions. Some caution must
be exercised, though, because the value of the force defined
in Eqs. (A2) depends on the time scale on which the bond
ruptures. At lifetimes t that are much longer than the relaxation
time (χDβκmol)−1 of the bond, the escape process is quasistatic
and the system resembles two springs connected in series
(hence the appearance of the effective spring constant κtr/χ )
[13,24]; see Fig. 4. For increasing or more rapidly ramped-up
displacements �y(t), the bond can at some point no longer
thermalize before it fails, so that the bond’s elasticity becomes
negligible relative to the viscous friction. This results in a force
F (t) ∼ κtr�y(t), which for stiff actuators differs significantly
from the quasistatic case.

1. Constant displacement

The quasistatic approximation is applicable as long as F �
F

(s)
crit. Therefore, the expressions for the asymptotic force at

short and long lifetimes in Eq. (A2) translate to

F ∼
{
κtr�y/χ, 0 � F � F

(s)
crit,

κtr�y, F  F
(s)
crit.

(A3)

The quasistatic catch and slip rates then take the form [13]

k(c,s)(F ) = χ3/2k
(c,s)
0

[
1 ± F

F
(c,s)
crit

]

× eβ�E (c,s)[1−χ(1±F/F
(c,s)
crit )2], (A4)

which we can use to evaluate Eq. (11). Using the asymptote
(A3) for extreme forces, we get by solving 〈�x(t,y)〉 = �x

(s)
b

the expression

τ
(
F  F

(s)
crit

) ∼ − �x
(s)
b

χDβF
(s)
crit

ln

(
1 − χF

(s)
crit

F

)

F→∞∼ �x
(s)
b

DβF
. (A5)

The constant-force scenario of Sec. III can either be retrieved
in the soft-spring limit, χ → 1, or by enforcing stepwise
force-clamp conditions with the appropriate hardware [35].
However, such measures are only necessary in the quasistatic
regime, because at sufficiently high forces the device stiffness
no longer plays a role for the mean lifetime, as a comparison
between Eqs. (13) and (A5) reveals.

The exact mean lifetime has the form

τ (�y) = �x
(s)
b

2D

√
π

χβ�E (s)

∫ �x
(s)
b

−�x
(c)
b

d�x ′

× e−χβ�E (s)(�x ′/�x
(s)
b )2

erf(
√

χβ�E (c)) + erf(
√

χβ�E (s))

×
(

erfi(B2) − erfi(B1)

erfi(B3) − erfi(B1)
[ψ(B3) − ψ(B2)]

−erfi(B3) − erfi(B2)

erfi(B3) − erfi(B1)
[ψ(B2) − ψ(B1)]

)
, (A6a)
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with ψ(z) defined almost identically to Eq. (15f) [except for
the prefactor, which reads erf(−B1)] and

B1 = −
√

χβ�E (c)

[
1 + κtr�y

χF
(c)
crit

]
, (A6b)

B2 =
√

χβ�E (s)

[
�x ′

�x
(s)
b

− κtr�y

χF
(s)
crit

]
, (A6c)

B3 =
√

χβ�E (s)

[
1 − κtr�y

χF
(s)
crit

]
. (A6d)

The result can only be transformed into a force-dependent
function in the two limits of Eq. (A3), where the force is
constant and τ (F ) is a solution of Eq. (14). For intermediate
forces, τ (F ) obeys a more complex differential equation.

2. Constant speed

We now consider a force transducer pulled with constant
speed v at its end. The time-dependent extension of the
effective spring, consisting of the bond and the transducer, is
�y(t) = vt . If the time resolution is high enough to determine
the exact instance during which x(t) crosses the transition
state x

(c,s)
t (as is in principle the case in simulations), the rup-

ture force is defined by F (t) = κtr[�y(t) − �x
(c,s)
b ] [11,13].

However, in practice, both in experiments and simulations, the
averaged force prior to yielding is recorded. We can compute
it by evaluating Eq. (A2) explicitly for �y(t) = vt ,

〈F (t)〉 ≡ κtrv

[
t − χ − 1

χ

(
t − [1 − C(t)]

χDβκmol

)]
. (A7)

Here, the autocorrelation function C(t) is the same as that for
constant displacements.

Equation (A7) can be inverted analytically to obtain a
function t(F ), which is then used to compute the catch and slip
rupture-force distributions p(c,s)(F,v) from the associated first-
passage-time distributions p(c,s)(t,v) ≡ −Ṡ(t). In the limits
κtrv  χḞcrit and κtrv � χḞcrit, the force is simply a linear
function of t [13] making the inversion t(F ) ∝ F trivial,
whereas for intermediate times (and speeds) the full inverse
function

t(F ) = W [(χ − 1)eχ−1C(χF/κtrv)]

χDβκmol
+ χF

κtrv

−(χ − 1)(χDβκmol)
−1 (A8)

must be taken into consideration. The Lambert W function
W (z) can be approximated by [36]

W (z) ≈ ln(1 + z)

[
1 − ln

[
1 + ln(1 + z)

]
2 + ln(1 + z)

]
(A9)

to speed up the numerics, if necessary.
Following the arguments given above, the time-dependent

catch rate can be read off Eqs. (A3) and (A4) with the

substitution �y → �y(t) = vt ,

k(c)(t,v) = χ3/2k
(c)
0

[
1 + κtrvt

χF
(c)
crit

]

× eβ�E (c)[1−χ(1+κtrvt/χF
(c)
crit)

2]. (A10)
The slip rate is approximately given by [13]

k(s)(t,v) ≈ χ3/2k
(s)
0

[
1 + κtrvt

χF
(s)
crit

− 2〈�x(t,v)〉
�x

(s)
b

]

×
[

1

2
+ 1

2
erf

(√
χβ�E (s)

[
1 − 〈�x(t,v)〉

�x
(s)
b

])]−1

× eβ�E (s){1−χ[1−〈�x(t,v)〉/�x
(s)
b ]2}, (A11)

where 〈�x(t,v)〉 is the same as in Eq. (A7),

〈�x(t,v)〉 = �x
(s)
b

[
κtrvt

χF
(s)
crit

− κtrv�x
(s)
b [1 − C(t)]

χ2Dβ
(
F

(s)
crit

)2

]
. (A12)

These expressions can be used to determine the corresponding
single-pathway first-passage-time distributions with the for-
malism presented in Ref. [13]. For a pure catch escape, we get
the distribution

p(c)(t,v) = k(c)(t,v)ek(c)(t,v)/β�x
(c)
b κtrv(1+κtrvt/χF

(c)
crit)

× e−k(c)(0,v)/β�x
(c)
b κtrv (A13)

and, along the slip pathway,

p(s)(t,v) ≈ χ3/2k
(s)
0

[
1 + κtrvt

χF
(s)
crit

− 2〈�x(t,v)〉
�x

(s)
b

]

× exp

(
− χ3/2k

(s)
0 eβ�E (s)[1−χ(1−κtrvt/χF

(s)
crit)

2]

β�x
(s)
b κtrv

)

× exp

(
χ3/2k

(s)
0 eβ�E (s)(1−χ)

β�x
(s)
b κtrv

)

× eβ�E (s){1−χ[1−〈�x(t,v)〉/�x
(s)
b ]2}. (A14)

Finally, in analogy with Eq. (20), we arrive at the two-
pathway rupture-force distribution p(F,v) in terms of the
single-pathway distributions,

p(F,v) =
[

d

dt
F (t)

]−1

p(t(F ),v)

= χ

κtrv

p(c)(t(F ),v)p(s)(t(F ),v)
1 + (χ − 1)C(t(F ))

× [
k(s)(t(F ),v)−1 + k(c)(t(F ),v)−1

]
, (A15)

where t(F ) is given by Eq. (A8). Notice that p(F,v) depends
on v only via the nominal loading rate κtrv of the force
transducer, which replaces the loading rate Ḟ as an external
control parameter.
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