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Identifying the direct risk source to contain epidemics more effectively

Zhijun Yan,* He Huang,† Yahong Chen, and Yaohui Pan
School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China

(Received 23 March 2015; revised manuscript received 17 September 2015; published 22 January 2016)

We investigate the impact of people’s perceptions regarding the risk of an epidemic by analyzing the differences
between local and global risk perceptions on affecting the epidemic threshold. Three issues are introduced to
explain such differences: the indirect risk source, the heterogeneous global risk, and heterogeneity in individuals’
intrinsic susceptibilities. When the direct risk source is completely undetected, the local risk perception tends to
have no effect on the epidemic threshold, and the effect of the local risk is nearly equivalent to that of the global
risk perception, thereby also suggesting a reason why global risk perception cannot affect the epidemic threshold.
However, there is a surprising effect of the global risk perception: When its heterogeneity is sufficiently high, an
increased epidemic threshold value sometimes may lead to a greater infected ratio.

DOI: 10.1103/PhysRevE.93.012308

I. INTRODUCTION

Individual risk perception is believed to be a key factor that
influences the spread of epidemics [1]. Empirical studies have
demonstrated that when people perceive risk from infectious
diseases, they will take positive actions to protect themselves
[2–7]. These behaviors can significantly help prevent a disease,
such as severe acute respiratory syndrome [8] and acquired
immunodeficiency syndrome [9], from resulting in a large-
scale epidemic [10].

People are embedded in social networks, and their self-
protective responses are highly influenced by others. Such
influence mainly comes from two sources: globally available
information and locally available information [11]. Global
information is broadcasted by health authorities and public
media and is available to everyone. In contrast, locally
available information is often obtained from a social or spatial
neighborhood. Examples include spreading information by
word of mouth [12] and assessing infection risk from a social
neighborhood [5], etc. Both local and global risk information
are of great importance for containing an epidemic.

However, the effects of the two types of information differ.
Wu et al. found that locally based awareness could influence
the epidemic threshold (an index that quantifies whether an
infection can survive long term [13]), whereas globally based
awareness could not [14]. Scholars may doubt the base of
such differences. We define an individual’s direct risk sources
as the people who have the potential to spread the virus to
him or her (e.g., the infected neighbors) and define indirect
risk sources as those who carry the virus but are unable to
spread the virus directly (e.g., the infected people outside his
or her personal network). As described above, the local risk
often comes from direct risk sources, whereas the global risk
is usually from indirect risk sources. If the direct risk sources
cannot be detected by the susceptible people, the local risk
perception may not affect the epidemic threshold. Moreover,
in contrast with local information, global information is often
more homogeneously distributed, and such homogeneity may
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lead to the result that the global risk perception does not affect
the epidemic threshold.

Therefore, we address the following issues to explore the
above problems. First, we assume that direct risk sources are
detected with a certain probability. Many infectious diseases,
such as influenza, have an incubation period during which
virus-exposed individuals are not easy to identify but can infect
others [15]. Moreover, some mildly infected people may not
display any disease symptoms until they become severely in-
fected. Second, heterogeneity can be introduced into the global
risk perception. Previous models have usually assumed that
all susceptible people have identical global risk perceptions
[14,16]. In fact, because of different personal habits, various
sorts of media, and governments’ biased policies, people’s
global risk perceptions may be heterogeneously distributed
[17]. Third, another heterogeneity that should not be ignored
is the intrinsic susceptibilities of the individuals. Reports have
demonstrated that some people, such as pregnant women, are
more vulnerable to diseases [2]. In addition, susceptibility
heterogeneity is often due to genetic factors [18,19] or previous
encounters with antigenically similar pathogens [19,20].

We propose a susceptible - mildly infected - severely
infected - susceptible (SIIS) model to investigate the impact
of people’s risk perceptions on the course of an epidemic.
When the direct risk source is completely undetected, both
the infected ratio and the epidemic threshold remain nearly
unchanged even when more confidence is assigned to the local
risk perception. Once the direct risk source could be identified,
the epidemic threshold value is immediately enhanced and
has a highly positive correlation with the local confidence.
However, a larger threshold cannot ensure a better controlling
effect when global risk perceptions are heterogeneously
distributed. Moreover, introduction of heterogeneous initial
susceptibilities significantly reduces the infected ratio and
makes the network less vulnerable to an epidemic.

II. MODELS

We divide our model into two processes, epidemic spread-
ing and risk perception, and assume the two processes
proceeding on the same network topology. Thus each node
simultaneously plays two roles: spreading disease and diffus-
ing risk information.
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The network model adopted is the Barabási-Albert (BA)
network [21], which exhibits a power-law degree distribution.
Because of the large number of neighbors, the hubs in the
BA network may perceive less risk than normal nodes when
a certain number of neighbors are infected and may not
pay sufficient attention to self-protection. Thus, local risk
perception may be unable to prompt self-protective actions,
which implies that global risk perception may be more
important to a hub than a normal node. Therefore, we propose
a form of degree-based global risk perception in a BA network
to let the hub nodes perceive increased global risk.

A. Epidemic spreading

The epidemiological SIIS model, which is an extension
of the susceptible-infected-susceptible (SIS) model [22,23],
is adopted in our epidemic spreading process. The original
infection state is divided into two parts based on the severity
scale: mild infection and severe infection. People at the mild
infection state may be asymptomatic, which makes them
difficult to detect by susceptible people, but they carry the
disease virus and may be highly infectious. The severely
infected people, however, are isolated from the rest of the
population because once they exhibit symptoms they are
immediately taken to receive medical treatment [15]. Thus,
the susceptible individuals catch the disease via direct contact
with their mildly infected neighbors.

We assume mildly infected nodes to grow to severe
infection at rate μ and the severely infected nodes recover
to the susceptible state at rate γ . A susceptible node catches
the disease from one infected neighbor at an infection rate λ.
We introduce a parameter ω to represent the probability that the
mildly infected nodes can be detected. Once being detected,
the mildly infected nodes are isolated from the rest of the
population and lose the ability to infect others. For simplicity,
we assume that the infection rate becomes (1 − ω)λ. A
susceptible node will catch the disease (or be mildly infected)
according to the following probabilistic equation:

PS→I = 1 − (1 − (1 − ω)λφ)n1 . (1)

Here φ denotes the node’s susceptibility, and n1 represents the
number of its mildly infected neighbors.

B. Risk perception

People’s responses are closely connected with their risk
perceptions and often shift as an epidemic progresses [24].
When people perceive higher risk, they take more effective
actions, consequently becoming less susceptible to infection.
Consistent with this view, Bagnoli et al. [1] proposed the form
φ = e−Jzθ

to describe the susceptibilities of self-protected
individuals, where z represents the value of perceived risk,
J is the precaution measure level, and θ denotes the special
prophylaxis. In this paper, we adopt the following simplified
version [14]:

φ = ν(1 − zt ), (2)

where ν is the intrinsic (or natural) susceptibility of an
individual and zt represents hisor her perceived risk at time
t , which consists of two parts: local risk perception and global

risk perception. Thus, zt can be interpreted in the following
form:

zt = αxt + βyt . (3)

Here xt and yt represent the local and global risk perception at
time t . α ∈ [0,1] and β ∈ [0,1] (α + β = 1) denote people’s
confidences in the two risk perceptions; we refer to the
variables as the local and global confidence, respectively.

People’s local risk perception is often denoted by the
fraction of infected individuals in his or her neighborhood
[1,14,25]. In our model, mildly infected neighbors are the
direct risk source, and severely infected neighbors are the
indirect risk source. People perceive local risk from both
sources. Here we denote the risk perception by

xt = (ωn1 + n2)/k, (4)

where k is the node degree and n2 denotes the numbers of
severely infected neighbors.

People with a larger number of friends may have more
chances to receive global information and perceive higher
global risk. Consequently, we take the heterogeneity of global
risk perception into consideration and measure it as

yt = max(1,(ωρ1 + ρ2)(k/〈k〉)ξ ), (5)

where ξ is a coefficient to determine the heterogeneity level of
global risk perception (for simplicity, we call it the global
heterogeneity coefficient) and 〈k〉 represents the average
degree of all nodes. When ξ > 0, yt has a positive correlation
with the node degree and vice versa. Considering that some
nodes have a large degree value, when yt > 1, we set yt = 1,
which is the upper limit of perceived global risk. When the
upper limit is reached, extra risk information may not increase
the global risk perception. Large-degree nodes are more likely
to obtain the maximum global risk perception. ρ1 and ρ2 are
the densities of the mildly and severely infected nodes across
the whole network, which have often been adopted in previous
studies to represent the global risk perception [14,26].

C. Mean-field analysis

We use ϕ1(t) to denote the probability of a randomly chosen
link pointing to a mildly infected individual and ϕ2(t) to denote
the probability of pointing to a severely infected individual.
Let sk(t), i1k(t), and i2k(t) be the susceptible, mildly infected,
and severely infected densities among nodes with degree k

at time t . As described by Pastor-Satorras and Vespignani,
the probability that a link points to a node with k links is
proportional to kP (k), i.e., a randomly chosen link is more
likely to be connected to a node with high connectivity [22],
yielding

ϕδ(t) =
∑

k kP (k)iδk(t)∑
k kP (k)

=
∑

k kP (k)iδk(t)

〈k〉 , (6)

where δ = 1,2. The probability that a node of degree k has n1

mildly infected neighbors and n2 severely infected neighbors
can be given by a trinomial distribution:

T (k,n1,n2) = k!

n1!n2!(k − n1 − n2)!
ϕ

n1
1 ϕ

n2
2

×(1 − ϕ1 − ϕ2)k−n1−n2 , (7)
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where n1 + n2 � k. We use T as an abbreviation for
T (k,n1,n2). Thus, the node will catch the disease with an
average probability,

PS→I = 1 −
∑
n1,n2

[1 − (1 − ω)λν(1 − αxt − βyt )]
n1T . (8)

According to stochastic process theory, we can describe an
epidemic spreading in a discrete-time process as

i1k(t + 1) = i1k(t) − μi1k(t) + PS→I × sk(t). (9)

We then extend it to a continuous-time process to obtain
the dynamical equations of the SIIS model. Assuming that a
susceptible individual will be mildly infected with probability
(1 − ω)λhν[1 − αxt − βyt ] + o(h) in an infinitesimal interval
(t,t + h] [14,16,27], we have

i1k(t + h) = i1k(t) − μhi1k(t) + o(h) + sk(t)

×
{

1 −
∑
n1,n2

[1 − (1 − ω)λhν(1− αxt − βyt ]
n1T

}
.

(10)

To solve Eq. (10), we let

M = lim
h→0

1 − ∑
n1,n2

T [1 − (1 − ω)λhν(1 − αxt − βyt )]n1

h

=
∑
n1,n2

(1 − ω)λνn1(1 − αxt − βyt )T

= (1 − ω)λν[E(n1) − αω/kE(n2
1) − α/kE(n1n2)

−β(ωρ1 + ρ2)(k/〈k〉)ξE(n1)]. (11)

According to multinomial distribution theory, we
have E(n1) = kϕ1, E(n2

1) = k2ϕ2
1 + kϕ1(1 − ϕ1),

E(n1n2) = k2ϕ1ϕ2 − kϕ1ϕ2; thus, we obtain the value
of M:

M = (1 − ω)λνϕ1[k − αω − α(k − 1)(ωϕ1 + ϕ2)

−βk(k/〈k〉)ξ (ωρ1 + ρ2)]. (12)

Therefore, the dynamical equations are the following:

d

dt
sk(t) =γ i2k(t) − M × sk(t)

d

dt
i1k(t) = − μi1k(t) + M × sk(t)

d

dt
i2k(t) =μi1k(t) − γ i2k(t)

. (13)

sk(t), i1k(t), and i2k(t) must obey the normalization condi-
tion sk(t) + i1k(t) + i2k(t) ≡ 1. After imposing the stationary
condition, d

dt
sk(t) = d

dt
i1k(t) = d

dt
i2k(t) = 0, we obtain i2k =

μ

γ
i1k , sk = μ

M
i1k . Then, we obtain

i1k = 1

1 + μ/M + μ/γ
. (14)

Furthermore,

ϕ1 = 1

〈k〉
∑

k

kP (k)
1

1 + μ/M + μ/γ
. (15)

Let F (ϕ1) denote the right-hand side of Eq. (15). A nonzero
stationary prevalence (ϕ1 �= 0) can only be obtained when the

N
2,000 4,000 6,000 8,000 10,000

λ
c

0

0.1

0.2

0.3

0.4

0.5

0.6
predicted λ

c
simulated λ

c

N
0 2000 4000 6000 8000 10000

D
iff
er
en
ce

0.06

0.08

0.1

FIG. 1. Simulated epidemic threshold λc vs predicted λc under
different network sizes. We generate 500 independent networks for
each network size N and compute the value of 〈k2〉. Then we obtain
the average value for the predicted λc. The simulated epidemic
thresholds are greater than the predicted ones. However, the difference
between them decreases when the network size increases.

left-hand side and right-hand side of Eq. (15) meet in the
interval 0 < ϕ1 < 1, producing a nontrivial solution [28]. It
is straightforward to deduce that a nontrivial solution requires
that the inequality

dF (ϕ1)

dϕ1
|ϕ1=0 � 1 (16)

must be satisfied, namely

(1 − ω)λν(〈k2〉 − αω〈k〉)
μ〈k〉 � 1. (17)

Thus the epidemic threshold λc can be obtained as

λc = μ〈k〉
(1 − ω)ν(〈k2〉 − αω〈k〉) . (18)

From Eq. (18), we observe that the epidemic threshold λc is
highly positively correlated with the discovery probability for
the mildly infected nodes, ω. When ω = 0, the value of λc is
reduced to μ〈k〉/ν〈k2〉, and the epidemic threshold is unrelated
to people’s risk perceptions. This situation differs from those
of previous studies [14,16], which stated that people’s risk
perceptions can enhance the threshold value. To explain the
difference, we observe that people’s risk information in our
model does not come from the mildly infected nodes. When
ω > 0, λc can rebuild its relation to the risk perception and is
increased with an enhanced local confidence α. Thus, we draw
the conclusion that the influence of people’s risk perceptions
on the epidemic threshold depends on the detection of the
direct risk source. If we cannot discover the direct sources,
then whether the risk information diffuses may not change the
threshold.

D. Simulation design

To verify our analysis, we use a multiagent intelligent
software, REPAST [29,30], to perform the simulations. A scale-
free BA network with network size N = 1000 and average
degree 〈k〉 = 6 is adopted. Without loss of generality, we set
the recovery rate to γ = 1.0 and the average rate from mild
infection to severe infection to μ = 1.0. Because people may
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FIG. 2. The value of the infected ratio ρ in the parameter space
λ-α. From (a) to (c), the values of ω are 0, 0.2, and 0.5. The selected
ranges of λ are around the simulated epidemic thresholds, which are
significantly enhanced with increasing ω. In (b) and (c), ρ1 has a
tendency to decrease with α and the tendency becomes clearer when
ω is larger.

have a preference between local and global risk perception, we
set α + β = 1, as performed by Chen when considering the
belief distribution between two types of incentives [26]. Under
these conditions, we find that when people have more local
confidence, they may have less global confidence and vice
versa. To reduce the randomness of the simulation, we obtain
the data by averaging over 500 independent runs. To start the
simulation, we randomly choose 10 nodes to be initially mildly
infected.

III. NUMERICAL RESULTS

We first check whether the simulated epidemic threshold
is dependent on the value of the discovery probability of the
mildly infected nodes ω and the local confidence α, which
we predicted in the above analysis. As observed from Fig. 1,
the simulated epidemic thresholds are larger than the predicted
ones obtained from Eq. (18), which may be due to a distribution
cutoff effect on a finite network [14,31], and the difference
between them decreases as the network size increases. In
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FIG. 3. Results when incorporating global risk perception het-
erogeneity. (a) Evolution of infected ratio ρ as a function of the
global heterogeneity coefficient ξ . We set the parameters as follows:
ω = 0.5, α = 0.5, and λ = 1. (b) Distribution of 〈kξ 〉/〈k〉ξ versus
ξ . The value of 〈kξ 〉/〈k〉ξ first decreases and then increases when ξ

changes from 0 to 1.0.
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FIG. 4. (a) The value of ρ in the parameter space λ − α with
ω = 0.5 and ξ = 0.5. [(b) and (c)] Evolution of ρ versus the change
of local confidence α with ξ = 0.3 and ξ = 0.7, respectively. The
other parameters are set as follows: ω = 0.5, λ = 1.

addition, as can be observed from Fig. 2, the simulated λc

is apparently dependent on α when ω > 0, as we predicted in
the above analysis. Remarkably, this dependence decays as ω

decreases and even vanishes when ω = 0. Thus, the impact of
the local risk perception on the epidemic threshold depends on
whether the direct risk source can be detected.

We record the total infected ratio ρ = ρ1 + ρ2 as the
prevalence size. When ω = 0, as shown in Fig. 2(a), the value
of α has little influence on the infected ratio ρ, thus suggesting
that when the direct risk source is completely invisible, the
local and global risk perceptions have nearly the same effect
on people’s self-protective responses, partly because they are
both from the indirect risk sources. Detection of the direct
risk source immediately increases the effect of local risk
perception.

We next consider the impact of heterogeneity on the global
risk perception by setting ξ > 0. This causes the hubs to
perceive higher global risk. Figure 3(a) shows that this change
increases the inhibitory impact on the disease. However, this
better inhibitory impact does not result in higher global risk
perception, and the risk perception sometimes decreases. The
global risk that all individuals perceive at infection densities ρ1

and ρ2 can be calculated as N
∑

k (ωρ1 + ρ2)(k/〈k〉)ξP (k) =
N (ωρ1 + ρ2)〈kξ 〉/〈k〉ξ . With the infected densities remaining
constant, a larger ξ may reduce the global risk perception
amount, as inferred from Fig. 3(b). Thus, even if the whole
population perceives less global risk, the epidemic might be
better contained if the hub individuals perceive higher risk,
which implies that better-organized global risk policies across
the whole population may result in a better controlling effect
and consume fewer publicity resources.
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ρ

0.18

0.2

0.22

FIG. 5. Infected ratio versus heterogeneity in people’s intrinsic
susceptibilities. We set the parameters θ = 0.5, α = 0.5, and λ = 1.0.
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FIG. 6. Evolution of the infected ratio when considering hetero-
geneous intrinsic susceptibilities. The values of ξ and θ are set to 0
and 0.5, respectively. From (a) to (c), the values of d are 0, 0.25, and
0.5. The increasing dependence of ρ1 on α remains.

Increasing the local risk confidence can enhance the
epidemic threshold, and increasing the heterogeneity level of
global risk perception can result in a greater inhibitory impact.
When considering these factors together, some unexpected re-
sults arise. In Fig. 4(a), the epidemic threshold λc has a positive
dependence on the local confidence α with the heterogeneous
global risk perception. Thus, greater local confidence makes it
easier for the network to eradicate an epidemic. Nevertheless, if
the epidemic is ineradicable, increasing local confidence may
result in different outcomes, as shown in Fig. 4(b) and Fig. 4(c).
When global risk heterogeneity is relatively low (ξ = 0.3),
increasing the local confidence can reduce the infected ratio.
However, when the global risk heterogeneity is relatively
high (ξ = 0.7), the infected ratio does not decreases with the
increasing value of the local confidence, which may result in a
paradox. Larger local confidence can enhance the epidemic
threshold, which means increasing resistance to epidemic
invasion. However, sometimes this effect may lead to greater
epidemic outbreak. Thus, the global risk heterogeneity may
weaken the importance of increasing the epidemic threshold,
and the protection effect that an increased threshold provides
may be somewhat “limited.”

In Fig. 5, we explore the scenario of individual differences
in susceptibility. We adopt a radius d to propose a uniform
distribution of intrinsic susceptibilities. Accordingly, the nat-
ural susceptibility of an individual m is set to a random value
νm ∈ [ν − d,ν + d] instead of a constant value ν. A larger d

can yield a higher heterogeneity, which results in a smaller
infected ratio. In addition, this individual heterogeneity can
influence the epidemic threshold. Figure 6 shows that higher
values of d result in larger λc and that the observed dependence
of λc on α remains positive.

IV. CONCLUSIONS AND DISCUSSION

This paper has examined the impact of risk perceptions on
epidemic spreading. People’s risk perceptions in each disease
season, or even each day in a single season, are not fixed
but rather fluctuate with changes in the epidemic information,
resulting in corresponding levels of self-protection. This self-
protection can help to contain the epidemic in two ways:
by enhancing the epidemic threshold and by decreasing
the infected ratio. However, why only local risk perception
enhances the threshold but global risk perception does not
remains to be explored. It will be interesting to compare our
results with those of previous studies. We considered three
issues that are influential, namely the indirect risk source,
heterogeneous global risk perceptions, and heterogeneous
natural susceptibilities.

Our results demonstrate that the discovery probability of
the direct risk source significantly enhances the epidemic
threshold. When this probability is greater than 0, the threshold
is further enhanced if people have more local confidence.
However, if the probability is reduced to 0, then the local
risk perception may not influence the epidemic threshold and
may have nearly an equal effect as the global risk perception.
A larger value for the epidemic threshold may not ensure
a better controlling effect when considering the global risk
heterogeneity and may lead to more people being infected
because of insufficient global confidence. Thus, future studies
should identify which factor is more important for containing
diseases: enhancing the epidemic threshold or increasing
the network heterogeneity. For the intrinsic susceptibility
heterogeneity, increasing the heterogeneity increases the epi-
demic threshold and makes the network less vulnerable to an
epidemic.

The major threat is often not from the easily detected targets
but rather from invisible targets. The government should use
new technology to accurately detect all risk sources. Moreover,
proper strategies to let the hub individuals perceive more global
risk and get more global protection should be developed; such
strategies may cut off the main contagious paths of the disease.
Individuals should be aware of the latest epidemic information
and take positive actions to protect themselves. A remaining
limitation of our research is that we only propose a “fraction”
definition of the risk perception. Future work can explore
the situations when defining the infected number as the risk
perception.
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