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Hopf bifurcation analysis for a dissipative system with asymmetric interaction:
Analytical explanation of a specific property of highway traffic
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A dissipative system with asymmetric interaction, the optimal velocity model, shows a Hopf bifurcation
concerned with the transition from a homogeneous motion to the formation of a moving cluster, such as the
emergence of a traffic jam. We investigate the properties of Hopf bifurcation depending on the particle density,
using the dynamical system for the traveling cluster solution of the continuum system derived from the original
discrete system of particles. The Hopf bifurcation is revealed as a subcritical one, and the property explains well
the specific phenomena in highway traffic: the metastability of jamming transition and the hysteresis effect in the
relation of car density and flow rate.
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I. INTRODUCTION

Over the last few decades, physicists have shown growing
interest in complex systems as many-particle systems of simple
components. The society formed by people, the collective
biomotion formed by organisms, the granular media formed
by particles, and the traffic flow formed by vehicles all are
examples of complex systems. One of the most interesting
subjects is the pattern formation caused by effects of collective
motions in many-particle systems [1]. We focus on the
formation of a traffic jam of a vehicular flow as a typical
example and phenomena related to the cluster formation of a
particle flow [2].

As a mathematical model for describing such phenomena,
we investigate the optimal velocity model (the OV model),
which was first introduced as a model for traffic flow
in 1994 [3,4]. The model reproduces well actual data of
highway traffic [5]. From the physical point of view, the
model is a nonequilibrium dissipative system describing a
one-dimensional chain of interacting particles formulated
by nonlinear ordinary differential equations. The interaction
between particles in the OV model is asymmetric, meaning that
a particle interacts with the particle in front in the direction of
motion, not with the particle behind. This interaction breaks the
action-reaction principle, and the momentum conservation law
is not preserved. The several interesting dynamical properties
are originated in the asymmetry of interactions [6]. The model
has two kinds of solutions: a homogeneous flow solution and
a moving-cluster solution. If a control parameter exceeds a
certain critical value, a homogeneous flow solution becomes
unstable and a stable moving-cluster solution appears. As a
model for traffic flow, a jam cluster emerges beyond the critical
vehicle density.
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The change in the stability from a homogeneous flow to
a cluster flow is caused by the collective effect in many-
particle systems. The phenomenon is called a dynamical phase
transition. Another property of the transition is a bifurcation in
dynamical system. This property is an important characteristic
in nonequilibrium dissipative systems of OV-type models.
In many numerical simulations, we observe the profile of
a jam flow solution as a kind of limit cycle in the phase
space of headway and velocity [4]. The appearance of the
profile indicates that the transition in the OV model is a
Hopf bifurcation [7]. However, there have been few analytical
studies of this issue [8–11].

In our previous paper [12], we analytically show that the
transition between the solutions is a Hopf bifurcation and that
it originates from asymmetric interactions. For this purpose,
we derive the continuum system written in a partial differential
equation from the original OV model and investigate by a linear
stability analysis. We generalize the dissipative particle system
with asymmetric interaction and show that the transition of
forming a traveling cluster in the flow of such particles is a
Hopf bifurcation, as well as the OV model.

In this paper, we further investigate the property of the Hopf
bifurcation of the OV model using the continuum system,
introduced in the previous work. This paper is organized as
follows. We first review the OV model briefly in Sec. II.
Next, we derive the continuum system formulated as the partial
differential equation and construct the dynamical system for
a moving cluster corresponding to a jam flow solution in
Sec. III. In Sec. IV we provide the procedure for determine
the dynamical system of a cluster for analyzing the property
of Hopf bifurcation using the consistency of phase transition
and Hopf bifurcation. In Sec. V we determine the velocity of a
cluster and define the dynamical system for investigations by
systematic calculations. In Sec. VI we investigate the linear
term and derive the eigenvalue. In Sec. VII we calculate
the normal form of the dynamical system and investigate
the property of Hopf bifurcation. In Sec. VIII we provide
the explanation of the metastability in jamming transition in
highway traffic, using our result for Hopf bifurcation in an OV
model. Section IX is devoted to the summary and discussion.
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II. REVIEW OF CONTINUUM SYSTEM FOR A
MANY-PARTICLE SYSTEM IN THE OV MODEL

We briefly review the basic features of the OV model [3,4].
The model describes a one-dimensional particle-following
system, where N particles move on a circuit with the length
L. We express the equation of motion for the nth particle
(n = 1,2, . . . ,N ) as

ẍn = a{V (�xn) − ẋn}, (1)

where xn denotes the position of the nth particle and �xn is
the headway distance defined by �xn = xn+1 − xn. The dot
represents the time derivative. The parameter a is called the
sensitivity constant (a > 0), whose dimension is the inverse
of time and controls the response of motion of a vehicle in
the interaction. The function V (�xn) is the so-called optimal
velocity function, which monotonically increases and has an
upper bound for �xn → ∞.

Equation (1) has a homogeneous flow solution expressed
as

xn(t) = b n + V (b) t + const, (2)

where b is an average distance expressed as b = L/N . In the
solution, all particles move uniformly at the same velocity
V (b) with the same headway b. By linear stability analysis,
the solution is unstable under the condition that there exists a
mode θ = nπ/N satisfying the following inequality [3]:

cos2 θ

2
� a

2V ′(b)
, (3)

where V ′(b) is the derivative of V at b.
The equality of Eq. (3) with θ → 0, which gives the

limit of existence of unstable mode, provides the critical
condition a = 2V ′(b) for the stability of the homogeneous flow
solution. The condition predicts the critical vehicle density for
given a. The change in the stability is a phase transition in
many-particle systems. In the case a < 2V ′(b), there exists
the long-wavelength-mode, which make the solution of the
homogeneous flow unstable and decaying. Instead, the moving
cluster solution emerges and becomes stable as in Fig. 1.

The profile of cluster flow solution is shown as the trajectory
of particles in the phase space of headway and velocity
(�xn,ẋn) in Fig. 2. We recognize the closed curve as a limit
cycle [4,6]. The position of the point labeled “Fast” is denoted
by (�xF ,V (�xF )), which presents the smooth movement of
particles, and the position of the point labeled “Jam” is denoted
by (�xJ ,V (�xJ )), which presents the particles in a jam cluster.

We can observe various limit cycles like Fig. 2 corre-
sponding to each value of the parameter a. This indicates
the trajectories for jam flow solutions can be understood as
limit cycles concerned with Hopf bifurcation with respect to
the parameter a. Actually, we have verified that the transition
is a Hopf bifurcation in our previous work [12].

III. MODEL OF TRAVELING CLUSTERS

In this paper, we investigate the property of the Hopf
bifurcation in the OV model. For the analysis of this model,
we derive the ordinary differential equation of the traveling
cluster associated with the jam flow solution in the OV model.
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FIG. 1. Space-time plot of cluster formation of the OV model
with OV function as V (�x) = tanh(�x − 2) + tanh 2 in N = 100
on the periodic boundary condition on a circuit. The vertical axis is
location on the circuit. The horizontal axis is time evolution.

First, we transform Eq. (1) to the equation for the headway
�xn by subtracting xn+1 from xn, and rewrite the equation
using a deviation from the average headway distance b as a
dynamical variable, rn = �xn − b:

r̈n = a{V (rn+1 + b) − V (rn + b) − ṙn}. (4)

In this formula, the homogeneous flow solution (2) is translated
to (rn,ṙn) = (0,0). We use the shift operator (exp ∂

∂n
)f (n) =

f (n + 1) by treating the index of a particle number n as
the continuous variable. We replace rn(t) by r(x,t), where
x is the continuous variable defined by x = bn by taking the
continuum limit as N → ∞, L → ∞, at fixed b = L/N .

ve
lo

ci
ty

 x.

headway Δx

Fast

Jam

FIG. 2. The profile of a cluster flow solution. “Fast” and “Jam”
denote smoothly moving regions and jam clusters, respectively. All
vehicles move along the closed loop in the direction of counter
clockwise. A dotted curve represents OV function.
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Then Eq. (4) is rewritten as

∂2r(x,t)

∂t2
= a

{(
exp b

∂

∂x
− 1

)
V [r(x,t) + b] − ∂r(x,t)

∂t

}
.

(5)

We have derived the continuum system expressed by the partial
differential equation [8] for the original OV model formulated
by the set of ordinary differential equations for many particles
[Eq. (1)]. Using this formula, we have proved that the transition
to a jam flow solution is a Hopf bifurcation in the previous
paper [12].

In the next step, we derive the ordinary differential equation
of the traveling cluster, as follows. We suppose the hypothesis
of the traveling wave solution in Eq. (5) to be r(x,t) = u(ξ )
with ξ = x − ct , where c is the velocity of a cluster. Then we
expand the differential operator exp b ∂

∂x
up to the third order

as

c2 d2r

dξ 2
−ca

dr

dξ
− a

{
b

d

dξ
+ b2

2!

d2

dξ 2
+ b3

3!

d3

dξ 3

}
V (r+b) = 0.

(6)
We can integrate out with respect to ξ once and choose the
constant of integration satisfying r = 0 as the trivial solution
of the following equation at an arbitrary value of b:

c2 dr

dξ
− ca r − a

{
b + b2

2!

d

dξ
+ b3

3!

d2

dξ 2

}
V (r + b) = 0, (7)

where V (b) = 0 in Appendix A.
We rewrite Eq. (7) as the formula in autonomous dynamical

system (u,v) defining by u = r,v = du/dξ as

du

dξ
= v

dv

dξ
= 6

a b3V ′(u + b)
[c2v − c a u − abV (u + b)]

− 3v

b
− V ′′(u + b)

V ′(u + b)
v2. (8)

Hereafter, we analyze the two-dimensional dynamical
system Eq. (8) to investigate the property of Hopf bifurcation
associated with the transition from the trivial solution (u,v) =
(0,0) as a homogeneous flow [Eq. (2)] to the limit cycle
solution as a jam flow.

Equation (8) can be well defined after the parameter c is
verified. We provide the procedure to determine it in the next
section.

IV. PROCEDURE OF DETERMINING THE VELOCITY OF
A TRAVELING CLUSTER AND DYNAMICAL SYSTEM

FOR THE OV MODEL

A. Critical point and Hopf bifurcation point

We have proved that the critical point, which is denoted by
ac for a given b = bc, as

ac = 2V ′(bc), (9)

is a Hopf bifurcation point in the meaning that there exists
a mode in which eigenvalues are pure imaginary conjugates
at each a (�ac), but not in the region a > ac, for the OV

FIG. 3. The phase diagram of OV model. (b∗
c ,a

∗
c ) is the inflection

point of the OV function. In phase (i), a homogeneous flow is stable,
while a jam flow is unstable. In phase (ii), both a homogeneous flow
and a jam flow are stable. In phase (iii), a jam flow is stable, while
a homogeneous flow is unstable. The figure is drawn for an OV
function as V (�x) = tanh(�x − 2) + tanh 2 and the inflection point
is (b∗

c ,a
∗
c ) = (2,2), for example.

model as a many-particle system [Eq. (1) or (5)] [12]. The
critical curve for Eq. (9), which is drawn by the solid curve
in Fig. 3, shows the Hopf bifurcation point ac for a given
b = bc.

In the dynamical system for traveling clusters [Eq. (8)]
ac is regarded as a usual Hopf bifurcation point in a
two-dimensional dynamical system. The condition of Hopf
bifurcation should be satisfied at ac. We should notice that
a Hopf bifurcation in the OV model appears in the phase
boundary between the bistable phase of a homogeneous flow
solution and a jam flow solution (ii) and the stable phase of a
jam flow only (iii), as shown in Fig. 3.

We note that the velocity of a cluster c introduced in Eq. (7)
is an unknown value at this stage. We have to provide c for
defining the system well to perform further calculations. Then
we use the following procedure to determine c.

First, we obtain the condition of Hopf bifurcation at ac in
Eq. (8). This condition leads to the formula for c in terms of the
parameters defined in the OV model. Next, we should check
whether c is correctly expressed as the velocity of a cluster
(jam cluster) in the original many-particle system of the OV
model. Then the procedure provides the faithful interpretation
between the model of the original many -particle system and
the dynamical system in the OV model. Details are given in
the following subsections and Sec. V.

B. Condition of Hopf bifurcation

Now we investigate the condition of Hopf bifurcation
in Eq. (8). The trivial fixed point for Eq. (8) is (u,v) =
(0,0), which corresponds to a homogeneous flow solution.
A Jacobian matrix of the linearized equation in the vicinity of
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the trivial fixed point is written as(
0 1

− 6c
b3V ′(b) − 6

b2 − 3
b

+ 6c2

ab3V ′(b)

)
. (10)

The eigenvalue λ of the matrix (10) is given by the solution
for the following equation:

λ2 −
[
−3

b
+ 6c2

ab3V ′(b)

]
λ +

[
6c

b3V ′(b)
+ 6

b2

]
= 0. (11)

If ac is a Hopf bifurcation point, the real part of λ is 0. So
the following equation should be satisfied at a = ac, as

λ + λ̄ = −3

b
+ 6c2

acb3V ′(b)
= 3[−2c2 + acb

2V ′(b)]

acb3V ′(b)
= 0.

(12)
Equation (12) leads the condition for c and ac for a given
b = bc as

c2 = 1
2acb

2
cV

′(bc). (13)

Here we consider the velocity of a cluster at ac, which is
the critical point as well as the Hopf bifurcation point defined
here. Together with the condition of a critical point Eq. (9),
then the velocity of a cluster c should be

c = −bcV
′(bc). (14)

Here we choose the negative value for the velocity of a cluster,
because a cluster moves in the opposite direction of the motion
of particles.

C. Consistency of the condition of Hopf bifurcation
and the velocity of a cluster

For the purpose to check that the condition Eq. (14) obtained
in the previous subsection is justified as the velocity of a jam
cluster in the OV model, we review the property of the velocity
in the original system for many particles.

In the case that the system consists of a large number of
particles, the velocity of a jam cluster is written by using the
values of a limit cycle denoted in Fig. 2 as

Vjam(a) = −�xJ V (�xF ) − �xF V (�xJ )

�xF − �xJ

. (15)

The velocity is completely determined by a limit cycle. That is
given by the value of the intercept on the axis of velocity with
the line drawn between (�xF ,V (�xF )) and (�xJ ,V (�xJ )) in
the phase space [5].

We should remark that a limit cycle depends only on a
sensitivity parameter a but not on an average distance (a
particle density) b. This property is justified for a large number
of particles N by numerical simulations. Moreover, if we
choose the OV function as the Heaviside step function, as
the limiting case of tanh(x), the exact solution of a cluster flow
for arbitrary N proves the above fact [13].

The changing of the parameter a deforms the size of limit
cycle. As the value of a becomes larger, the limit cycle becomes
smaller to shrink to the inflection point of V (�x), which is
denoted by (b∗

c ,a
∗
c ), as a → a∗

c , as shown in Fig. 4. The two
points (�xF ,V (�xF )) and (�xJ ,V (�xJ )) of a limit cycle are
always on the curve of OV function V (�x), and the limit cycle
is symmetric with respect to the inflection point.

FIG. 4. Profile of the jam flow solution for various values of the
sensitivity a = 1.0, 1.5, 1.9 with b = b∗

c = 2 in the headway-velocity
space in the OV model. The OV function is chosen as V (�x) =
tanh(�x − 2) + tanh 2. In this case, the Hopf bifurcation point is
a∗

c = 2.

We derive the velocity of a jam cluster at the inflection point
denoted by V ∗

jam, as the limit of the formula (15) as a → a∗
c .

We define �xJ (ε) = b∗
c − ε, and �xF (ε) = b∗

c + ε, and
then calculate the limit as ε → +0:

V ∗
jam = lim

a→a∗
c

Vjam(a) = lim
ε→+0

Vjam(ε)

= lim
ε→+0

−�xJ (ε) V [�xF (ε)] − �xF (ε) V [�xJ (ε)]

�xF (ε) − �xJ (ε)

= −b∗
cV

′(b∗
c ) + V (b∗

c ). (16)

We note that the result is obtained by the expansion with
respect to ε up to the second order.

The derived velocity of a jam cluster is the value in the
real configuration space in the circuit. On the contrary, the
velocity c is defined in the continuous space denoted by x

corresponding to the index n for rn = �xn − b. The velocity
of the cluster at a∗

c denoted by c∗ = c(a∗
c ), is obtained from

V ∗
jam by Euler-Lagrange transformation, as

c∗ = V ∗
jam − V (b∗

c ) = −b∗
cV

′(b∗
c ). (17)

This result (17) is consistent with the velocity of a
traveling cluster [Eq. (14)] derived from the condition of Hopf
bifurcation in the previous subsection. The consistency of the
determination of the velocity c by using the condition of Hopf
bifurcation has been checked, at least, at the special point
(b∗

c ,a
∗
c ). So we are convinced that the velocity of a traveling

cluster at Hopf bifurcation point (bc,ac) is provided as Eqs. (14)
and (9).

Next, we determine the velocity of a cluster c(a) in the
vicinity of a∗

c . At the Hopf bifurcation point (b∗
c ,a

∗
c ) the limit

cycle shrinks to the point. In the vicinity a ∼ a∗
c , the size
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of the limit cycle, denoted by O(ε), is estimated as large as
O(a∗

c − a) shown in Fig. 4. We determine the velocity c(a)
by calculating the relation between O(ε) and O(a∗

c − a). For
this purpose, we use the formulas Vjam(ε) in Eq. (16), as the
expansion in terms of ε. The concrete calculations are indi-
vidually given for the cases bc = b∗

c and bc �= b∗
c , in the next

section.

V. DETERMINATION OF THE VELOCITY
OF A CLUSTER, c(a)

In general properties for the velocity of a cluster, the
inequality 0 > c(a) > c∗ = c(a∗

c ) holds as a < a∗
c . This means

that a cluster moves backward against the movement of
particles with the larger speed as the larger value of the
parameter a. We assume V (�x) as a sigmoidal function. This
fact is easily seen in Fig. 4.

We remark again that the velocity of a cluster c is
determined only by a not by b. We use this important property
in the procedure of calculation hereafter.

A. The case a < a∗
c ,bc = b∗

c

In our previous paper [12], we have proved that the critical
point ac with bc in Eq. (9) is a Hopf bifurcation point. Of
course, a∗

c with b∗
c is also. The phase diagram in Fig. 3 shows

that no cluster flow solution exists in the region a > a∗
c . On

the other hand, a limit cycle should appear in the region a <

a∗
c . In order to investigate the dynamical system [Eq. (8)] in

this region, we determine the velocity of the cluster c(a) as
follows.

We set �xJ = b∗
c − ε and �xF = b∗

c + ε, where ε > 0, at
a(<a∗

c ),b = b∗
c . Here we consider ε as the size of a limit cycle.

Then,O(ε) and O(a∗
c − a) are related by the dependency of the

size of a limit cycle on a.
From Eq. (15), expanding with respect to ε, we can calculate

c(a) as

c = −b∗
c

[
V ′(b∗

c ) + V ′′′(b∗
c )

3!
ε2

]
. (18)

The first order term with respect to O(ε) does not exist for
an arbitrary b. Here we use V ′′(b∗

c ) = 0 as the inflection point
at b∗

c , and we note V ′′′(b∗
c ) < 0, as V (�x) is assumed as a

sigmoidal function.
We should calculate the relation between O(a∗

c − a) and
O(ε). We note that the velocity of a cluster does not depend
on b. So we can determine the velocity at an arbitrary a on
the critical curve. Then we expand a = 2V ′(b) beyond a∗

c =
2V ′(b∗

c ) as

a = 2V ′(b)

= 2

{
V ′(b∗

c ) − V ′′(b∗
c )(b∗

c − b) + 1

2!
V ′′′(b∗

c )(b∗
c − b)2

}
.

(19)

We can estimate the size of limit cycle ε by b∗
c − b. Thus, using

V ′′(b∗
c ) = 0, Eq. (19) provides the relation between O(a∗

c − a)
and O(ε):

a∗
c − a = −V ′′′(b∗

c )ε2. (20)

Finally, we determine c(a) from Eqs. (18) and (20), in
b = b∗

c ,a < a∗
c , as

c(a) = −b∗
cV

′(b∗
c ) + b∗

c

3!
(a∗

c − a) = c∗ + b∗
c

3!
(a∗

c − a)

= c∗
(

1 − a∗
c − a

3a∗
c

)
. (21)

Here we use the relation c∗ = − 1
2a∗

c b
∗
c , which is derived

from the condition (14) for a∗
c ,b

∗
c , and c∗ together with

a∗
c = 2V ′(b∗

c ).

B. The case a > ac,bc �= b∗
c

We denote bc, which satisfies the critical condition ac =
2V ′(bc) where ac < a∗

c and bc �= b∗
c . It is enough to consider

the case bc < b∗
c for the symmetry of bc with respect to b∗

c ,
shown as Fig. 3.

We remind the bistable (or coexistence) phase (ii) for a
homogeneous flow and a cluster flow solutions in the phase
diagram in Fig. 3. The bistability of two solutions indicates
the existence of an unstable limit cycle in this region. Then we
investigate the limit cycle appearing at the Hopf bifurcation
point ac with bc( �=b∗

c ). For this purpose, we should determine
the velocity of the cluster c(a) in the region a > ac in the
vicinity of this Hopf bifurcation point.

In the similar way as the previous case, we set �xJ =
bc − ε, and �xF = bc + ε, where ε > 0, at a(> ac), for a
given bc �= b∗

c . We first calculate c(a) as the expansion with
respect to ε, which is the size of the limit cycle in the vicinity
of (ac,bc). Using Eq. (15), we derive the formula of c as

c = −bcV
′(bc) +

{
V ′′(bc)

2!
− V ′′′(bc)bc

3!

}
ε2. (22)

We note the first order of ε is vanishing again as the previous
case. In this case, we remark that V ′′(bc) �= 0. We should
calculate the relation between O(ε) and O(a − ac) by the
dependency on a of the limit cycle from this formula.

Next, in the same way as the previous case, the dependency
on a for c(a) is determined along the critical relation a =
2V ′(b) and ac = 2V ′(bc) by expanding O(b − bc), where a >

ac, b > bc in the case bc < b∗
c :

a = 2V ′(b)

= 2

{
V ′(bc) + V ′′(bc)(b − bc) + 1

2!
V ′′′(bc)(b − bc)2

}
.

(23)

Owing to V ′′(bc) �= 0 the first order term is dominant, and
a − ac = 2V ′′(bc)(b − bc), where V ′′(bc) > 0 in the case bc <

b∗
c . The size of the limit cycle is estimated as ε by b∗

c − b, in
the same way as in case A.

Then we obtain the relation as

a − ac = 2V ′′(bc)ε. (24)

From Eqs. (22) and (24), we obtain

c(a) = c(ac) +
{

V ′′(bc)

2!
− V ′′′(bc)bc

3!

}[
a − ac

2V ′′(bc)

]2

. (25)
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The obtained correction term in c(a) beyond c(ac) is second
order with respect to O(a − ac).

The coefficient is calculated by using the formula in
Appendix B to rewrite V ′′(bc),V ′′′(bc), which depends on
a∗

c as well as ac. For the condition that c(a) > c(ac) should
be satisfied, the calculation is performed with respect to
O(a∗

c − ac) as well as O(a − ac). After the calculation, we
obtain the final form of c(a) up to the order O(a − ac)2 as

c(a) = c(ac)

{
1 − a∗

c (a − ac)2

12a2
c (a∗

c − ac)

}
. (26)

Here we use the relation c(ac) = − 1
2acbc.

We note that the cluster whose velocity is given as Eq. (26)
corresponds to the unstable limit cycle appearing in the bistable
phase. In this case, the meaning of the velocity of a cluster
is different from the velocity in case A, where the cluster
is a real jam cluster observed in a circuit. However, we can
investigate the property of the Hopf bifurcation at (bc,ac) using
the dynamical system Eq. (8) with the velocity c(a) in Eq. (26).

We should remark that ac < a < a∗
c , which is easily seen by

the phase diagram Fig. 3. In the case of changing the parameter
a along a > ac, at a given bc �= b∗

c , the inequality of these
parameters leads the inequality of orders as

O(a − ac)2 < O

[
(a − ac)2

a∗
c − ac

]
< O(a − ac). (27)

Thus, we should make double expansions with respect
to O(a∗

c − ac) as well as O(a − ac) carefully to perform
calculations in the case bc �= b∗

c .

VI. ANALYSIS OF DYNAMICAL SYSTEM FOR
THE OV MODEL: EIGENVALUE

We have prepared the analysis of the dynamical system
well defined by determining the velocity c(a). The analysis is
carried out using the dynamical system [Eq. (8)] by expanding
with respect to dynamical variables (u,v). Up to the first order
the equations are written as

du

dξ
= v

dv

dξ
= −6

b2

[
1 + c

b V ′(b)

]
u + 3

b

[
− 1 + 2 c2

a b2 V ′(b)

]
v. (28)

We should note that the above dynamical system for the
first order of (u,v) is not the linearized system of original OV
model but the nonlinear system describing the cluster flow,
which is formulated by the nonlinear effect in the interaction
of many particles. The analysis is individually given for each
case in bc = b∗

c and bc �= b∗
c .

A. The case a < a∗
c ,bc = b∗

c

At the critical point a = a∗
c , bc = b∗

c , the first order terms
of (u,v) in the r.h.s. of the second equation in Eq. (28) vanish
due to the relation of the velocity of a cluster, c∗ = −a∗

c b
∗
c /2 =

−b∗
cV

′(b∗
c ).

Using Eq. (21) for c(a) we expand Eq. (28) in terms with
O(a∗

c − a). The result is

du

dξ
= v

dv

dξ
= − a∗

c

2c∗2
(a∗

c − a)u − 1

2c∗ (a∗
c − a)v. (29)

From the above dynamical system formulated up to first
order O(a∗

c − a) [Eq. (29)], the eigenvalues are

λ± = −a∗
c − a

4c∗ ∓ i

√
(a∗

c − a)(a + 7a∗
c )

4c∗ . (30)

The eigenvalues are complex conjugate, and the real part of
the eigenvalues vanishes at the bifurcation point a = a∗

c , faster
than the imaginary part. This result is consistent with that
the transition shows Hopf bifurcation, which is proved in our
previous paper [12].

The real part of the eigenvalues is positive for a < a∗
c ,

because of c∗ < 0. The flow in the phase space (u,v) for a <

a∗
c , bc = b∗

c diverges as an unstable spiral, which means that
the trivial solution corresponding to a homogeneous particle
flow is unstable. This result is consistent with the analysis in
Ref. [12].

B. The case a > ac,bc �= b∗
c

At the critical point a = ac, bc �= b∗
c , the r.h.s. of the second

equation in Eq. (28), which are the first order terms for u,v,
also vanish due to the relation c(ac) = −acbc/2 = −bcV

′(bc).
Using the formula of c(a) in Eq. (26) we expand Eq. (28)

in terms with O(a − ac) for a > ac. The result is

dv

dξ
= − a∗

c

8c2(ac)

(a − ac)2

(a∗
c − ac)

u

+
{

3(a − ac)

2c(ac)
+ (5a∗

c − 6ac)

4c(ac) ac

(a − ac)2

(a∗
c − ac)

}
v. (31)

The contribution of the first order O(a − ac) vanishes in the
term u. We should calculate by taking into account the next
to leading contribution as O( (a−ac)2

a∗
c −ac

), considering the relation
Eq. (27).

Thus, the linearized dynamical system for (u,v) is obtained
as

du

dξ
= v

dv

dξ
= − a∗

c

8c2(ac)

(a − ac)2

(a∗
c − ac)

u + 3(a − ac)

2c(ac)
v. (32)

The eigenvalues are obtained by carefully taking into
account a contribution O( (a−ac)2

a∗
c −ac

) up to the order O(a − ac) as

λ± = 3(a − ac)

4c(ac)
± i

(a − ac)

4c(ac)

√
2ac

a∗
c − ac

. (33)

This result also shows that the real part of the eigenvalues
vanishes faster than the imaginary part at the bifurcation point
a = ac, which is understood by the comparison of the order of
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each part as Eq. (27). Then the transition is a Hopf bifurcation
at a = ac, as well as the previous case at a = a∗

c

In contrast to the previous case, the real part of the
eigenvalues is negative for a > ac, because of c(ac) < 0. The
flow in the phase space (u,v) for a > ac, bc �= b∗

c converges
as a stable spiral, which means that the trivial solution
corresponding to a homogeneous flow is stable. This indicates
that the Hopf bifurcation at a = ac is subcritical, because a
uniform flow is unstable for a < ac by the analysis in Ref. [12].

VII. THE FEATURE OF HOPF BIFURCATION IN THE OV
MODEL: ANALYSIS INCLUDING HIGHER ORDER

The dynamical system for OV model [Eq. (8)] is formulated
by expansion with respect to (u,v). The second equation in
Eq. (8) is denoted formally up to the third order term as follows:

dv

dξ
= f1(u,v) + f2(u,v) + f3(u,v), (34)

where f1(u,v) is the first order term in Eq. (28) and
f2(u,v),f3(u,v) are higher order terms of (u,v), as

f2(u,v) =
{

6 c

b3

V ′′(b)

V ′(b)2 + 3

b2

V ′′(b)

V ′(b)

}
u2

− 6 c2

a b3

V ′′(b)

V ′(b)2 u v − V ′′(b)

V ′(b)
v2 (35)

and

f3(u,v)

=
{
−6c

b3

V ′′(b)2

V ′(b)3 + 3cV ′′′(b)

b3V ′(b)2 − 3V ′′(b)2

b2V ′(b)2 + 2V ′′′(b)

b2V ′(b)

}
u3

+
{

6 c2

a b3

V ′′(b)2

V ′(b)3 − 3 c2

a b3

V ′′′(b)

V ′(b)2

}
u2 v

+
{

V ′′(b)2

V ′(b)2 − V ′′′(b)

V ′(b)

}
u v2, (36)

up to the third order.
In the case bc = b∗

c even order terms of (u,v) vanish for such
as V ′′(b∗

c ) = 0, V (4)(b∗
c ) = 0, . . . , while in the case bc �= b∗

c

even order terms exist as well as odd order terms. We make
calculations individually in each case.

A. The case a < a∗
c ,bc = b∗

c

In this case, f2(u,v) = 0. As for the third order
term f3(u,v), using the relations 2V ′(b∗

c ) = a∗
c ,V

′′(b∗
c ) =

0, and V ′′′(b∗
c ) = −m2a∗

c in Appendix A; moreover, c∗ =
−a∗

c b
∗
c /2 = −b∗

cV
′(b∗

c ), the leading term is the 0th order with
respect to O(a∗

c − a), as

f3 = m2

(
2

b∗2
c

u3 + 3

b∗
c

u2 v + 2u v2

)
, (37)

where we use a ∼ a∗
c and c ∼ c∗.

We note that m is a parameter appeared in the general
explicit formulation of the OV function, which has the
dimension of the inverse of length. The parameter can be
formally removed by the scale transformation defined as
mb → b, mξ → ξ , mu → u, v → v, and mc → c. In the

transformation, the equations of dynamical system Eq. (8)
are invariant.

Next, we rewrite the equations of dynamical system Eq. (34)
with Eq. (37) in a two-dimensional system of (u,v) to the
equation of the complex conjugate pair with (z,z̄). After the
calculation, which is shown in Appendix C, the equation is
expressed as

dz

dξ
= λz + F3(z,z̄), (38)

where (λ,λ̄) = (λ+,λ−), with λ± = α ± iβ (α is the real part
of the eigenvalues, and β is the imaginary part of them) in
Eq. (30), and

F3(z,z̄) = 1

2β
(1 − i)f3(u,v(x(z,z̄),y(z,z̄)). (39)

F3(z,z̄) is calculated using the formulas in Appendix D.
In order to obtain the normal form, we perform the nonlinear

transformation for z,z̄ to eliminate the terms except z2z̄. The
normal form of Eq. (38) is obtained as

dz

dξ
= λz + λ3 z2z̄, (40)

where

λ3 = 3

4b∗
c

−
(

3

2b∗
c

2β
+ 9α

4b∗
cβ

)
i. (41)

The explicit equation of the normal form expressed in the
polar coordinates z = r exp(iθ ) up to the leading order in the
expansion with respect to O(a∗

c − a) is

ṙ = αr + 3

4b∗
c

r3

θ̇ = β − 1

β

(
3

2b∗
c

2 + 9α

4b∗
c

)
r2. (42)

To verify that Eq. (40) with Eq. (41) shows Hopf bifurcation
at a = a∗

c , we rewrite Eq. (40) using the invariance in the
property of normal form by a spatiotemporal rescaling: z →
z′ = z/β, ξ → ξ ′ = ξβ. The normal form is rewritten as

dz′

dξ ′ =
(

α

β
+ i

)
z′ + (λ3 z′2z̄′ + β2λ5 z′3z̄′2), (43)

where α/β = O(a∗
c − a)

1
2 and higher orders follow with

respect to O(β2) = O(a∗
c − a). At the Hopf bifurcation point,

the real part of the eigenvalues vanishes, whereas the imaginary
part remains.

The result in the normal form Eq. (42) shows that the
coefficients of linear and the third order terms of r are
both positive. So the attractive limit cycle is not obtained
up to this order of expansion. However, we convince the
existence of a stable limit cycle for the following reason.
First, we note that the trivial fixed point r = 0 corresponding
(u,v) = (0,0) exists, and it is stable in a > a∗

c , by the analysis
in our previous paper [12]. The stability of the trivial fixed
point r = 0 is changed at the Hopf bifurcation point a∗

c from
a > a∗

c to a < a∗
c , from the stable fixed point to the unstable

one, and the flow diverges as spiral, which is analytically
verified by Eq. (30). We remark that the fixed point is only
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a

a > ac
* ac > a*

ac
*

FIG. 5. Hopf bifurcation of the OV model in the case of bc = b∗
c .

The horizontal axis is a sensitivity a, the vertical axis is the projection
of two-dimensional phase space (u,v). The center line shows the
trivial solution (a homogeneous flow). The solid curve shows the
limit cycle (a jam flow solution). The solid line and curve denote
stable solutions, and the dotted line means an unstable homogeneous
flow solution. Arrows are examples of flows from an unstable solution
to a stable one in the phase space, which shows a supercritical Hopf
bifurcation.

(u,v) = (0,0) in Eq. (8). The OV model has no solution of
infinity r = ∞, and flow in the phase space (u,v) moves
inward. It is because the model is a dissipative system with
asymmetric interaction, which has a relaxation state. By the
Poincaré-Bendixson theorem [14], the stable limit cycle should
exist in the intermediate region. Thus, we can illustrate the
Hopf bifurcation in the case at b = b∗

c in Fig. 5 and conclude
the transition is a supercritical Hopf bifurcation.

B. The case a > ac,bc �= b∗
c

In this case, f2(u,v) exists. From Eq. (35) by 2V ′(bc) = ac:

f2(u,v) = V ′′(bc)

{[
6 c

bc c(ac)2
− 3

bc c(ac)

]
u2

− 6 c2

abc c(ac)2
uv − 2

ac

v2

}
. (44)

Using the relation in Appendix B,

V ′′(bc) = ∓mac

√
1 − ac

a∗
c

= ∓mO(a∗
c − ac)

1
2 , (45)

we perform the double expansion with respect to O(a∗
c − ac)

as well as O(a − ac). Moreover we use the relation c(ac) =
− 1

2acbc and after m is rescaled:

f2(u,v) = O(a∗
c − ac)

1
2

{
6

b2
c

u2 + 24

bc

uv + 2v2 + O(a − ac)

}
.

(46)

As for f3 in Eq. (36), we note that

V ′′2(bc) = m2O(a∗
c − ac) (47)

and

V ′′′(bc) = m2ac

(
2 − 3

ac

a∗
c

)

= m2{−ac + O(a∗
c − ac)}, (48)

from Appendix B. We rewrite it using 2V ′(bc) = ac [Eqs. (47)
and (48)] as

f3(u,v) = m2{−ac+O(a∗
c − ac)}

{[
3c

bc c(ac)2
− 2

bc c(ac)

]
u3

− 3 c2

abc c(ac)2
u2v + bc

c(ac)
uv2

}
+ m2O(a∗

c − ac).

(49)

Using the relation c(ac) = − 1
2acbc and the rescaling with m,

leads to

f3(u,v) = 2

b2
c

u3 + 3

bc

u2v + 2uv2 + O(a∗
c − ac) + O(a − ac).

(50)
The contribution of f2(u,v) to higher order O3(u,v) in the

normal form is negligible up to the order O(a∗
c − ac) as well

as O(a − ac), because the overall factor of f2 is O(a∗
c − ac)

1
2 ,

while the order of the leading term in f3 is the 0th order with
respect to O(a∗

c − a).
Thus, the normal form Eq. (40) in case B is obtained by

replacing the corresponding eigenvalue λ and λ3.
The final result of the normal form up to the leading order

in the expansion with respect to O(a − ac) is

ṙ = α r + 3

4bc

r3

θ̇ = β − 1

β

(
3

2bc
2 + 9α

4bc

)
r2, (51)

where α and β are the real and imaginary parts of eigenvalue
λ in Eq. (33).

In this case, α is negative valued. Then the unstable limit
cycle is derived, as

r =
√

−4αbc

3
=

√
2(a − ac)

ac

; (52)

here we use c(ac) = −acbc/2. The limit cycle is only depen-
dent on a, not on b. The result is consistent with the property of
the OV model. A flow starting the region inside of the unstable
limit cycle converges as spiral into the trivial fixed point.

A stable limit cycle cannot be obtained up to the third order
term r3 in the case bc �= b∗

c , also. We need a calculation of
higher order at least the fifth order. However, we can stress the
same statement that in the case bc = b∗

c again. Thus, we can
illustrate the Hopf bifurcation at ac in the case bc �= b∗

c in Fig. 6
and conclude the transition is a subcritical Hopf bifurcation.

VIII. METASTABILITY OF JAMMING TRANSITION

In the phenomena of the formation of a traffic jam in
real highways, the important characteristic feature is the
metastability in a jamming transition, as shown in data of the
relation between vehicle density and flow rate, the so-called
q-ρ diagram, in Fig. 7. The flow rate discontinuously changes
from the state of homogeneous flow to the state of jam flow.

From the result of our study in this paper, the property is
explained by the subcritical Hopf bifurcation between a trivial
solution (homogeneous flow) and a limit cycle solution (jam
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ac

a

ac > aa > ac

FIG. 6. Hopf bifurcation of the OV model in the case of b �= b∗
c .

The horizontal and vertical axes are the same in Fig. 5. The center line
and the curve show the trivial and limit cycle solution, respectively.
The solid line and curve mean stable, and dotted ones signify unstable.
Arrows are presented as flows from an unstable solution to a stable
one in the phase space, which shows subcritical Hopf bifurcation in
the bistable (coexistence) phase.

flow). The realistic process of the emergence of a jam is as
follows.

In the phase diagram as Fig. 3, the sensitivity of vehicles
is smaller than the supercritical point a∗

c , as the density of
vehicles (the mean headway) becomes larger (smaller), the
point on the traffic situation moves from right to left in
the phase diagram with fixed sensitivity. The point moves
from the phase (i) to (ii). The phase (ii) is the bistable
for a free (homogeneous) flow and a jam flow. If a tiny
disturbance occurs in the state in this phase, the free traffic
flow suddenly changes to the state of a jam flow. This process
is mathematically explained as the subcritical Hopf bifurcation
obtained in this paper. The similar phenomena to this transition
are the first order transition in equilibrium statistical physics
in materials, such as the phase transition from water (liquid)
to ice (solid).

0 50 100 150

(1/Km)

0

50

100

150

200

250 q (1/5min)

ρ

FIG. 7. The typical fundamental diagram (the relation between
vehicle density and flow rate) by 1-month data measured at a point
on freeway. The critical density is nearly 25 (vehicle/km). The data
are measured by Japan Highway Public Cooperation.

FIG. 8. The time sequence in the q-ρ space from 07:00 to 10:25
on 2 Aug 1996 at the upper stream of Nihonzaka tunnel in the Tomei
Expressway [15].

The more explicit reflection of subcritical Hopf bifurcation
can be observed in highway traffic as the process of appearance
and disappearance in the period of the lifetime of a jam.
We observe the whole process of the emergence of a jam
from a homogeneous flow and the disappearance of a jam
to a homogeneous flow in a day. According to the density
increasing and decreasing, the time sequence of changing in
state forms the hysteresis loop in q-ρ space. The examples of
such an empirical data are shown in Refs. [15] and [16].

In Fig. 8 the time sequence of changing state of flow in the
q-ρ space is shown. From a free flow with growing density,
the emergence of a jam is seen. After the maximal density
it begins to decrease, and the state shows the disappearance
of a jam and back to a free flow. The hysteresis loop process
in q-ρ space is clearly observed, which has the peak of the
maximal flow near the critical density and the minimum flow
at the largest density.

IX. SUMMARY AND DISCUSSION

Let us summarize the results in this paper. We investigate the
property of transition from a homogeneous flow solution to a
moving-cluster (jam flow) solution in the OV model. In the OV
model the moving-cluster solution is identified as a limit cycle
in the headway-velocity space. Using the continuum system
derived from the original discrete system of particles, we show
the transition is Hopf bifurcation, as in the previous paper.

In this paper, we further investigate the property of Hopf
bifurcation in the dynamical system of an OV model. For this
purpose, we introduce a dynamical system of a traveling wave,
r(x,t) ≡ r(x − ct), in a continuum system (5), where c is the
velocity of a moving cluster corresponding to the limit cycle
depending on a.

Then the equation of motion in the continuum system
expressed in a partial differential equation (PDE) (5) is
rewritten as the ordinary differential equation (ODE) for a
traveling wave. In order to define the derived ODE system, we
should determine the velocity c(a) of a moving cluster, which
can be evaluated by the property of limit cycles in the original
discrete system of particles in OV model.
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First, we recognize that the Hopf bifurcation point of the
ODE system derived from the PDE system is just the critical
point ac of the original many-particle system of the OV model,
because the velocity of a cluster in the ODE is just the same
velocity in the original OV model.

We can determine the velocity of the cluster c(ac) at the
Hopf bifurcation point ac. Then we calculate it by expansion
in terms of O(a − ac) for given b = bc in order to obtain
c(a) for the purpose of constructing the dynamical system to
investigate the property of Hopf bifurcation.

We investigate each case of bc = b∗
c and bc �= b∗

c individ-
ually, considering each with the characteristic property of the
phase diagram, that is, the existence of a bistable phase for
homogeneous flow and jam flow, as shown in Fig. 3.

We calculate the normal form of the dynamical system in
each case and investigate the property of Hopf bifurcation, up
to the third order in terms of dynamical variables (u,v). As
the result, in the case a < a∗

c for bc = b∗
c the trivial fixed point

corresponding to a homogeneous flow solution is unstable.
Then the Hopf bifurcation at a∗

c is supercritical, while in the
case a > ac,bc �= b∗

c , an unstable limit cycle exists. Then the
Hopf bifurcation at ac is subcritical.

In the realistic situation on highway traffic, the sensitivity
of the OV model is almost common with usual vehicles. The
reflection of the subcritical Hopf bifurcation for the transition
in the dynamical system is observed in the phenomena
changing car density in highway. Those are the metastability
of jamming transition of flow rate q near the critical density ρc,

and the hysteresis phenomenon in q-ρ space. These specific
phenomena in real traffic flow are well described analytically
using the subcritical Hopf bifurcation in the dynamical system
investigated in this paper, which is derived from the OV model.
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APPENDIX A: GENERAL EXPLICIT FORMULA
OF OV FUNCTION

We denote OV function V (�x) as defined by

V (�x) := V (�x ; b) = V (r + b ; b), (A1)

where

V (�x ; b) = v0{tanh m(�x − b∗
c ) − tanh m(b − b∗

c )}. (A2)

Then, for an arbitrary value b,

V (b ; b) = 0. (A3)

The above definition provides rather simple calculation, which
needs no Euler-Lagrange transformation, without the loss of
generality:

V ′(�x) = mv0{1 − tanh2 m(�x − b∗
c )},

V ′′(�x) = m2v0 {−2 tanh m(�x − b∗
c )}{1 − tanh2 m(�x − b∗

c )},
V ′′′(�x) = m3v0 2{−1 + 3 tanh2 m(�x − b∗

c )}{1 − tanh2 m(�x − b∗
c )},

V (4)(�x) = m4v0 {−8 tanh m(�x − b∗
c )}{−2 + 3 tanh m(�x − b∗

c )}{1 − tanh2 m(�x − b∗
c )};

(i) b �= b∗
c

V ′(b) = mv0{1 − tanh2 m(b − b∗
c )},

V ′′(b) = m2v0 {−2 tanh m(b − b∗
c )}{1 − tanh2 m(b − b∗

c )},
V ′′′(b) = m3v0 2{−1 + 3 tanh2 m(b − b∗

c )}{1 − tanh2 m(b − b∗
c )},

V (4)(b) = m4v0 {−8 tanh m(b − b∗
c )}{−2 + 3 tanh m(b − b∗

c ){1 − tanh2 m(b − b∗
c )};

(ii) b = b∗
c

V ′(b∗
c ) = mv0 = 1

2a∗
c ,

V ′′(b∗
c ) = 0,

V ′′′(b∗
c ) = −2m3v0 = −m2a∗

c ,

V (4)(b∗
c ) = 0,

· · ·
V (2n)(b∗

c ) = 0.

APPENDIX B: FORMULA OF v0m

In the case bc �= b∗
c , we define η = bc − b∗

c . (In the case
bc = b∗

c , then ac = a∗
c ,η = 0.)

From the critical relation 2V ′(bc) = ac, the formula below
follows:

a∗
c = 2mv0,

ac = 2mv0{1 − tanh2 mη}
= a∗

c {1 − tanh2 mη}.

Then

tanh2 mη = 1 − ac

a∗
c

,

tanh mη = ±
√

1 − ac

a∗
c

(±η > 0, < 0).
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Using the formula in Appendix A, we derive the relations as
follows:

V ′(bc) =mv0{1 − tanh2 mη},
V ′′(bc) =m2v0 {−2 tanh mη}{1 − tanh2 mη},
V ′′′(bc) =m3v0 2{−1 + 3 tanh2 mη}{1 − tanh2 mη},
V (4)(bc) =m4v0 {−8 tanh mη}{−2 + 3 tanh mη}

{1 − tanh2 mη}.
From the above relations, we derive the following:

V ′(bc) = 1

2
ac, (B1)

V ′′(bc) = ∓ mac

√
1 − ac

a∗
c

, (B2)

V ′′′(bc) = m2ac

(
2 − 3

ac

a∗
c

)

= m2ac

{
− 1 + 3

(
1 − ac

a∗
c

)}
. (B3)

APPENDIX C: COMPLEX CONJUGATE FORM

The linear term of the equation of dynamical system

d

dξ

(
u

v

)
=

(
0 1
A B

)(
u

v

)
(C1)

can be linearly transformed to a Jordan’s normal form, as

d

dξ

(
x

y

)
=

(
α −β

β α

)(
x

y

)
(C2)

by a matrix P such as(
x

y

)
= P −1

(
u

v

)
,

(
α −β

β α

)
= P −1

(
0 1
A B

)
P. (C3)

Then we can rewrite it by z = x + iy,z̄ = x − iy as

d

dξ

(
z

z̄

)
=

(
λ 0
0 λ̄

)(
z

z̄

)
, (C4)

where λ = α + iβ,λ̄ = α − iβ. The relation between A,B and
α,β is 2α = B, α2 + β2 = −A. P is obtained as

P =
(

1 1
α + β α − β

)
, P −1 = 1

2β

(−α + β 1
α + β −1

)
.

(C5)
The nonlinear term is obtained by using P .

APPENDIX D: FORMULA FOR (u,v) �→ (z, z̄)

u2 = − i

2
z2 + zz̄ + i

2
z̄2, (D1)

uv = β − αi

2
z2 + αzz̄ + β + αi

2
z̄2, (D2)

v2 =
{
αβ − (α2 − β2)i

2

}
z2 + (α2 + β2)zz̄

+
{
αβ + (α2 − β2)i

2

}
z̄2, (D3)

u3 = − 1
4 (1+i)z3+ 3

4 (1 − i)z2z̄ + 3
4 (1 + i)zz̄2 − 1

4 (1 − i)z̄3,

(D4)

u2v = − 1
4 {−α + β − (α + β)i}z3

+ 1
4 {3α + β − (3α − β)i}z2z̄

+ 1
4 {3α + β + (3α − β)i}zz̄2

− 1
4 {−α + β + (α + β)i}z̄3, (D5)

uv2 = 1
4 {−α2 + 2αβ + β2 − (α2 + 2αβ − β2)i}z3

+ 1
4 {3α2 + 2αβ + β2 − (3α2 − 2αβ + β2)i}z2z̄

+ 1
4 {3α2 + 2αβ + β2 + (3α2 − 2αβ + β2)i}zz̄2

+ 1
4 {−α2 + 2αβ + β2 + (α2 + 2αβ − β2)i}z̄3.

(D6)
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