
PHYSICAL REVIEW E 93, 012214 (2016)

Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability
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We study the nonlinear waves on constant backgrounds of the higher-order generalized nonlinear Schrödinger
(HGNLS) equation describing the propagation of ultrashort optical pulse in optical fibers. We derive the breather,
rogue wave, and semirational solutions of the HGNLS equation. Our results show that these three types of solutions
can be converted into the nonpulsating soliton solutions. In particular, we present the explicit conditions for the
transitions between breathers and solitons with different structures. Further, we investigate the characteristics of
the collisions between the soliton and breathers. Especially, based on the semirational solutions of the HGNLS
equation, we display the novel interactions between the rogue waves and other nonlinear waves. In addition, we
reveal the explicit relation between the transition and the distribution characteristics of the modulation instability
growth rate.
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I. INTRODUCTION

Soliton, breather, and rogue wave are three types of non-
linear waves existing in various physical fields. The temporal
optical solitons have been widely investigated due to their
potential applications in the long-distance optical fiber com-
munication and all-optical ultrafast switching devices [1,2].
Rogue waves, initially termed to describe the extreme wave
events that emerge in deep oceans [3], also have been
extensively concerned both in experimental observations and
theoretical predictions. In addition, these extreme wave events
were observed in such areas as nonlinear fiber optics [4,5],
Bose-Einstein condensations (BECs) [6,7], plasmas [8], and
even finance [9]. Rogue waves, which have a peak amplitude
generally more than twice the significant wave height, appear
from nowhere and disappear without a trace [10]. Although
their fundamental origins have not been explored quite
clearly, there has been a consensus that rogue waves can
be intimately associated with certain types of breathers of
the underlying evolution equations [11–13]. Breathers serving
as the potential prototypes for the rogue waves in various
fields of physics develop owing to the instability of small
amplitude perturbations that may grow in size to disastrous
proportions [14]. There are, generally speaking, two types of
breather structures, namely, the Akhmediev breather (AB) [15]
and the Kuznetsov-Ma breather (KMB) [16]. The AB is
a space periodic wave that is localized in time, while the
KMB is localized in space and periodic in time. In certain
limit cases, they both become the Peregrine soliton solution
of the nonlinear Schrödinger (NLS) equation, and can be
also regarded as two potential prototypes to explain the
dynamics of rogue waves in a series of fields of physics.
In addition, rogue waves are not limited to the solutions of
1D NLS systems. As examined in Ref. [17], some analogs
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can be observed as the self-focusing or filamentary ultrafast
pulses undergoing diffraction, full chromatic dispersion, Kerr
and plasma nonlinearities, self-steepening, and modulational
instability (MI).

Recent studies have reported the intricate relation between
the soliton and breather (or rogue wave) solutions of such
generalized nonlinear models as the Hirota equation [18,19],
fifth-order NLS equation [20], and coupled Hirota equa-
tions [21]. As mentioned in Ref. [22], one has to assume
that the perturbed field quantities are of order ε

1
2 (instead

of ε as in the NLS equation), which leads to the need to
take certain additional terms into account. In this case, one
obtains the generalized NLS equation that can be converted
into the Raman-extended derivative NLS (R-EDNLS) equa-
tion [23,24]. The applications of ultrashort pulses (USPs)
can enhance the information capacity in the optical fiber
and the higher-order effects should be considered in the
corresponding mathematical models. For example, (1) it is
necessary to consider the fourth-order dispersion (FOD) when
the pulse width is below 10 fs [25]; (2) the higher-order
nonlinearities should not be ignored when the optical field
frequency approaches a resonant frequency of the optical fibers
material [1,26]; (3) the self-steepening (SS) and self-frequency
shift (SFS) should be added when extremely narrow pulse
has very high optical intensity as the FOD and cubic-quintic
nonlinearities being considered [26,27]. N. Akhmediev et al.
have indicated that the breather solutions of the Hirota [19] and
fifth-order NLS [20] equations can be converted into soliton
solutions on a nonzero background. Liu et al. have investigated
the state transition between the Peregrine soliton and W-shaped
traveling wave induced by higher-order effects and background
frequency [18,21]. Moreover, such transitions have also been
found in certain coupled systems. For example, Wang et al.
have discovered the elastic collision between a transformed
periodic wave and a breather for the variable-coefficient NLS
and Maxwell-Bloch (NLS-MB) equations [28]. In the case of
the same velocity, the breather of the NLS-MB system can be
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converted into various nonlinear localized and periodic waves,
including multipeak soliton, periodic wave, antidark soliton,
and W-shaped soliton [29].

Among various mechanisms that are related to the rogue-
wave formation, the MI is the most accepted one. The
pioneering work on the MI can refer to Bespalov and Talanov’s
study [30]. MI is a process in which the amplitude and phase
modulations of a wave grow due to the interplay between
the nonlinearity and dispersion [31]. The MI associated
with the growth of periodic perturbations on an unstable
continuous-wave background is a basic and ubiquitous non-
linear phenomenon of a large variety of nonlinear dispersive
models [32]. In the initial evolution of MI, sidebands within the
instability spectrum experience an exponential amplification at
the expense of the pump [33]. The subsequent wave dynamics
shows the more complex cases, and it involves a cyclic
energy exchange between multiple spectral modes [33]. In
the context of fiber optics, MI originated from noise leads
to a series of high-contrast peaks of random intensity, which
have structures similar to ocean rogue waves [34]. The recent
studies indicate that the MI demonstrates certain interesting
characteristics with the additional physical effects considered,
such as the higher-order dispersion and nonlinear terms [35]
and cross-phase modulation [36]. For instance, Baronio et al.
have indicated that rogue-wave formation is related to a
special kind of MI, namely, the baseband MI whose bandwidth
includes arbitrarily small frequencies [36]. Liu et al. have
recently found that an intriguing transition, described by an
exact explicit rational solutions of the Hirota [18] as well as
the coupled Hirota equations [21], is consistent with the MI
analysis that involves a MI region and a stability region in a
low perturbation frequency region.

In this paper, we study the higher-order generalized NLS
(HGNLS) equation [38],

iqt + qxx + 2q|q|2 + γ1
(
qxxxx + 6q2

xq
∗ + 4q|qx |2

+ 8|q|2qxx + 2q2q∗
xx + 6|q|4q) = 0. (1)

Hereby, q(x,t) denotes the complex envelope and γ1 stands
for the strength of higher-order linear and nonlinear effects.
In a long-distance and high-speed optical fiber transmission
system, Eq. (1) models the propagation of USP with the
FOD, cubic-quintic nonlinearity, self-steepening, and self-
frequency shift [39]. In addition, Eq. (1) can also describe
the nonlinear spin excitations in one-dimensional isotropic
biquadratic Heisenberg ferromagnetic spin with the octupole-
dipole interaction [38,40–43]. Reference [43] has investigated
the Painleve property, derived the Lax pair, discussed the
infinite conservation laws, and obtained some soliton solutions
for Eq. (1). Reference [37] has presented breathers and
multisoliton solutions of Eq. (1). The rogue wave solutions
of Eq. (1) have been derived via the modified Darboux
transformation (mDT) in Ref. [44]. Note that the effect of
quintic nonlinear term in the R-EDNLS has been revealed
in detail in Refs. [23,24]. In these works, Bergé et al. have
discussed the dynamics of localized wave collapse in the R-
EDNLS equation both analytically [23] and numerically [24].
Hereby, we reveal the intricate relation between the breather
and soliton solutions of Eq. (1), which involves not only the
quintic nonlinearity but also some other higher-order effects

resulting from certain physical context. Furthermore, we study
the interactions among different types of nonlinear waves,
including breathers, rogue waves, and solitons. In addition,
we reveal the explicit relation between the transition and the
distribution characteristics of the MI growth rate.

The arrangement of the paper is as follows: In Sec. II,
we will present the breather, rogue wave, and semirational
solutions of Eq. (1). The breather-to-soliton conversions will
be studied in Sec. III. The characteristics of interactions among
different types of nonlinear waves will be discussed in Sec. IV.
The semirational rogue wave-to-soliton conversions will be
investigated in Sec. V. The link between the MI growth rate
and the transition characteristic will be revealed in Sec. VI.
Finally, Sec. VII will present the conclusions of this paper.

II. BREATHER, ROGUE WAVE, AND SEMIRATIONAL
SOLUTIONS

In this section, we pay attention to the analytical solutions
of Eq. (1). Based on the lax pair and mDT of Eq. (1), the
first-order breather solution reads as [44]

q
[1]
B =

(
c + 2 β

G
[1]
B + i H

[1]
B

D
[1]
B

)
ei ρ, (2)

with

ρ = a x + b t, b = (a4 − 12a2c2 + 6c4)γ1 + 2 c2 − a2,

G
[1]
B = k1k2 cos(t VH + x hR) cosh(2 χI )

− cosh(t VT + x hI ) sin(2 χR),

H
[1]
B = cos(2 χR) sinh(t VT + x hI )

+ k1k2 sin(t VH + x hR) sinh(2 χI ),

D
[1]
B = cosh(t VT + x hI ) cosh(2 χI )

− k1k2 cos(t VH + x hR) sin(2 χR),

h = 2

√
c2 +

(
λ + a

2

)2

= hR + i hI , k1 = 1, k2 = −1,

d = γ1[a(a2 − 6c2) − 8λ3 + 4aλ2

+ (4c2 − 2a2)λ]
h

2
t + [x + (2λ − a)t]

h

2

= (x + {2λ − a + γ1[a(a2 − 6c2) − 8λ3 + 4aλ2

+ (4c2 − 2a2)]}t)h
2

= [x + (dR + i dI )t]
h

2
,

χ = 1

2
arccos

h

2
, VT = 2(dR hI + dI hR),

VH = 2(dR hR − dI hI ).

Further, to obtain the second-order solution, we need two
complex eigenvalues, i.e., λ2j−1 = α2j−1 + i β2j−1 where j =
1,2. The expression for the second-order breather solution is
given as follows [44]:

q
[2]
B = q[0] − 2 i

	
[2]
1

	
[2]
2

, (3)
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FIG. 1. First-order breather with a = 0.5, c = 0.6, γ1 = 0.1, and
λ1 = λ∗

2 = 0.1 + 0.65 i.

with

q[0] = c ea x+b t , λ1 = λ∗
2 = α1 + β1 i,

λ3 = λ∗
4 = α2 + β2 i,

ψ2 = −ϕ∗
1 , ϕ2 = ψ∗

1 ; ψ4 = −ϕ∗
3 , ϕ4 = ψ∗

3 ;

ϕj = i
k1

c

(
a + hj

2
+ λj

)
ei (dj + ρ

2 ) + k2 e−i(dj − ρ

2 ),

ψj = k1 ei (dj − ρ

2 ) + i
k2

c

(
a + hj

2
+ λj

)
e−i(dj + ρ

2 ),

j = 1,3, k1 = −k2 = 1,

	
[2]
1 =

∣∣∣∣∣∣∣∣∣
ϕ1 λ2

1ϕ1 ψ1 λ1ϕ1

ϕ2 λ2
2ϕ2 ψ2 λ2ϕ2

ϕ3 λ2
3ϕ3 ψ3 λ3ϕ3

ϕ4 λ4
2ϕ4 ψ4 λ4ϕ4

∣∣∣∣∣∣∣∣∣,

	
[2]
2 =

∣∣∣∣∣∣∣∣∣
ϕ1 λ1ψ1 ψ1 λ1ϕ1

ϕ2 λ2ψ2 ψ2 λ2ϕ2

ϕ3 λ3ψ3 ψ3 λ3ϕ3

ϕ4 λ4ψ4 ψ4 λ4ϕ4

∣∣∣∣∣∣∣∣∣.
Figure 1 describes the first-order breather of Eq. (1).

Figure 2 shows an example of the second-order breather
collision, which leads to the second-order central rogue wave
in the (t,x) plane. By assuming λ1 → λ0 = α0 + β0 i and
λ2 → λ∗

0 = α0 − β0 i in the solution Eq. (2), Fig. 3 exhibits the
first-order rogue wave of Eq. (1). It should be pointed out that

FIG. 2. Second-order breather with a = 0.4, c = 0.4, γ1 =
0.5, λ1 = λ∗

2 = 0.1 + 0.5 i, and λ3 = λ∗
4 = 0.5 i.

FIG. 3. First-order rogue wave with a = 0.1, c = 0.8, γ1 = 0.1,
and λ0 = −0.05 + 0.8 i.

these solutions have been reported in Ref. [44]. Further, if we
only let λ1 → λ0 = α0 + β0 i and λ2 → λ∗

0 = α0 − β0 i in the
two-breather solution, we can obtain the semirational rogue
wave solution which is depicted in Fig. 4. Such a solution is
expressed in forms of the mixed rational-exponential functions
and describes the nonlinear superposition of a breather with a
Peregine soliton. This diagram has also been displayed in other
models, e.g., the NLS equation [14], the integrable quintic
NLS equation [45], the derivative NLS equation [46], and the
Lenells-Fokas equation [47]. In addition, some multicompo-
nent systems such as the vector NLS equations [48], the wave
resonant-interaction equations [49], the generalized NLS and
Maxwell-Bloch equations [50], and the coupled Hirota equa-
tions [51] admit these hybrid solutions. The determinant forms
of mixed rational-exponential solutions can be presented by
improving the Taylor expansion technique [46,47]. Physically,
they can be used to study the interactions among different types
of nonlinear waves [48,49] and explain the mechanism of the
higher-order rogue waves [46,47]. From Fig. 4, we observe
that a second-order central rogue wave appears in the (t-x)
plane with S0 = 0 (S0 is the shift parameter that controls the
location of the Peregine soliton). It should be noted that the
semirational solution of Eq. (1) will degenerate into that of
the scalar NLS equation [14] if we set γ1 = 0. These hybrid
solutions are one way to bridge the gap between a general
second-order solution and an isolated rogue wave [14].

Based on these solutions, we can implement the corre-
sponding breather-to-soliton conversions of Eq. (1) and study

FIG. 4. Second-order semirational rogue wave with a = 0.4, c =
0.6, γ1 = 0.1, λ0 = −0.2 + 0.6 i, and λ1 = λ∗

2 = 0.1 + 0.6 i.
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FIG. 5. Solutions of Eq. (5) on a complex plane of λ = α + β i. (a): a = 0.5, c = 1, and γ1 = − 6
11 . (b): a = 0.5, c = 1, and γ1 = − 17

11 .

(c): a = 0.5, c = 1, and γ1 = − 19
55 .

FIG. 6. A breather transformed into an oscillation W-shaped soliton with a = 0.5, c = 1, γ1 = −0.6, and λ1 = λ∗
2 = 0.504 + 0.7 i. (b) is

the contour plot of (a). (c) is the cross-sectional view of (a) at t = 0.

FIG. 7. A breather transformed into an oscillation M-shaped soliton with a = 0.5, c = 1, γ1 = −0.6, and λ1 = λ∗
2 = 0.504 − 0.7 i. (b) is

the contour plot of (a). (c) is the cross-sectional view of (a) at t = 0.

FIG. 8. A breather transformed into a W-shaped soliton with a = 0.5, c = 0.9, γ1 = −0.243, and λ1 = λ∗
2 = −0.25 − i. (b) is the contour

plot of (a). (c) is the cross-sectional view of (a) at t = 0.
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FIG. 9. A breather transformed into a M-shaped soliton with a = 0.5, c = 0.6, γ1 = −0.6, and λ1 = λ∗
2 = 0.349 − 0.7 i. (b) is the contour

plot of (a). (c) is the cross-sectional view of (a) at t = 0.

FIG. 10. A breather transformed into an oscillation W-shaped soliton with a = 0.5, c = 1, γ1 = −4.382, and λ1 = λ∗
2 = 0.504 + 0.36 i.

(b) is the contour plot of (a). (c) is the cross-sectional view of (a) at t = 0.

FIG. 11. A breather transformed into an antidark soliton with a = 0.5, c = 0.9, γ1 = −0.076, and λ1 = λ∗
2 = −0.25 + 1.8 i. (b) is the

contour plot of (a). (c) is the cross-sectional view of (a) at t = 0.

FIG. 12. A breather transformed into a periodic wave with a = 0.5, c = 0.9, γ1 = −0.373, and λ1 = λ∗
2 = −0.25 + 0.8 i. (b) is the contour

plot of (a). (c) is the cross-sectional view of (a) at t = 0.
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FIG. 13. A rogue wave transformed into a W-shaped soliton with a = 0.5, c = 0.9, γ1 = −0.298, and λ0 = −0.25 + 0.9 i. (b) is the
contour plot of (a). (c) is the cross-sectional view of (a) at t = 0.

the interactions among different nonlinear waves, including the
breather, rogue wave, and soliton on nonzero backgrounds.

III. BREATHER-TO-SOLITON CONVERSIONS OF EQ. (1)

In order to explore the dynamical properties of Eq. (1), we
first pay attention to the explicit expression of the solution
Eq. (2). It includes the hyperbolic functions sinh F (cosh F )
and the trigonometric functions sin G (cos G), where dR +
dI hR

hI
and dR − dI hI

hR
are the corresponding velocities. In this

case, the hyperbolic functions and trigonometric functions,
respectively, characterize the localization and the periodicity
of the transverse distribution t of those waves. The nonlinear
structure described by the solution Eq. (2) can be seen as a
nonlinear combination of a soliton and a periodic wave with
the velocities dR + dI hR

hI
and dR − dI hI

hR
. Next, we will display

various nonlinear wave structures that depend on the values of

velocity difference, namely, dI (h2
R+h2

I )
hRhI

.
If the velocity difference is not equal to zero, i.e.,

dI ( h2
R+h2

I

hRhI
) �= 0 (or dI �= 0), the solution Eq. (2) characterizes

the localized waves with breathing behavior on a plane-wave
background (i.e., the breathers and rogue waves). Further,
if α = − a

2 , we have the ABs with |β| < |c|, the KMBs
with |β| > |c|, and the Peregrine soliton with |β| = |c|. Such
solutions have been derived in Ref. [44] (also see Figs. 1, 2,
and 3).

Instead, if dI = 0, the wave described by the solution Eq. (2)
is superposed by a soliton and a periodic wave, where each has
the same velocity dR . It should be noted that the case dI = 0
is equivalent to

VT

hI

= VH

hR

, (4)

i.e.,

β2 γ1 = 1
4 (a2 − 2 c2 − 4 a α + 12 α2)γ1 − 1

4 . (5)

Equation (4) [i.e., Eq. (5)] implies the extrema of trigonometric
and hyperbolic functions in the solution Eq. (2) is located
along the same straight lines in the (x,t) plane, which leads
to the transformation of the breather into a continuous soliton.
Choosing different values of γ1 in Eq. (5), we plot the curves
on the α-β plane. From Fig. 5, we discover that Eq. (5) shows
three types of curves. Figure 5(a) corresponds to the condition

γ1 = γ0, where

γ0 = 3

2 a2 − 6 c2
, (6)

and the curves of the real and imaginary parts of the eigenvalue
are two intersecting lines. However, when the parameter γ1

meets the condition γ1 < γ0 or γ1 > γ0, Fig. 5(b) or 5(c) has
two branches without the intersection.

Under the transition condition Eq. (5), we display four types
of conversion solitons such as the oscillation W-shaped soliton
with β < c and α > − a

2 in Fig. 6, the oscillation M-shaped
soliton −β < c and α > − a

2 in Fig. 7, the W-shaped soliton
−β > c and α = − a

2 in Fig. 8, and the M-shaped soliton −β >

c and α > − a
2 in Fig. 9. The main difference between Figs. 6

(or 7) and 8 (or 9) is that the former has the oscillatory tails. The
W-shaped solitons in Figs. 6 and 7 possess a single maximum
peak while M-shaped ones shown in Figs. 8 and 9 have two
peaks. Additionally, in order to illustrate the effect of the value
of the imaginary part of eigenvalue (β), we plot Fig. 10 where
the wave profile exhibits more peaks than Fig. 6.

In order to better understand this multipeak localized
structure of Eq. (1), we will extract separately the soliton and
periodic wave from the mixed solution Eq. (2). Specifically,
the soliton exists in isolation when hR vanishes, while the
periodic wave independently exists when hI vanishes. Cor-
respondingly, the analytical expressions read, for the soliton,

q
[1]
S =

(
c + 2 β

G
[1]
S + i H

[1]
S

D
[1]
S

)
ei ρ, (7)

FIG. 14. Collision between a W-shaped soliton and a breather
with a = 0.3, c = 0.7, γ1 = −0.257, λ1 = λ∗

2 = −0.12 + 0.5 i, and
λ3 = λ∗

4 = 0.2 + 0.9 i. (b) is the contour plot of (a).
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FIG. 15. Collision between two W-shaped solitons with a = 0, c = 0.5, γ1 = 0.355, λ1 = λ∗
2 = −0.6 + 0.5 i, and λ3 = λ∗

4 = 0.6 + 0.5 i.

(b) is the contour plot of (a). (c) is the cross-sectional view of (a).

with

G
[1]
S = cosh(2 χI ) − cosh(hI (x + 2t dR)) sin(2 χR),

H
[1]
S = cos(2 χR) sinh(hI (x + 2t dR)),

D
[1]
S = cosh(hI (x + 2t dR)) cosh(2 χI ) − sin(2 χR),

and for the periodic wave,

q
[1]
P =

(
c + 2 β

G
[1]
P + i H

[1]
P

D
[1]
P

)
ei ρ, (8)

with

G
[1]
P = cos[hR(x + 2t dR)] cosh(2 χI ) − sin(2 χR),

H
[1]
P = sin[hR(x + 2t dR)] sinh(2 χI ),

D
[1]
P = cosh(2 χI ) − cos[hR(x + 2t dR)] sin(2 χR).

Figure 11 exhibits the solitary wave propagating along x

direction. It is shown that this soliton lies on a plane-wave
background with the peak (c − 2 β)2, which is known as the
antidark soliton first reported in the scalar NLS system with
the third-order dispersion [52]. Moreover, as the value of the
parameter c is approaching zero, this solitonary wave will
turn into a standard bright soliton. Figure 12 demonstrates
the periodic waves propagating in the x direction with the
period P = π

hR
. In particular, as the period hR → 0, namely,

β → c, the periodic wave will become a single pulse with the

W-shaped structure, as depicted in Fig. 13. In this case, the
solution Eq. (2) reduces to the following rational form

q
[1]
RS = c ei ρ

[
324 c2 − 24 i(18 c4 − 1) t

c2(4 c2 (44 c t + 9 x)2 + 81)
− 1

]
. (9)

The maximum height (9c2) of the W-shaped wave is nine times
the background intensity while the minimum is zero. Although
this property is the same as that of the Peregrine soliton,
the W-shaped wave features the soliton-like propagation
properties. It should be noted that, although the structures
in Figs. 8 and 13 have the similar profiles, the analytical
formulas of them are different (the former expression is a
mixed trigonometric and hyperbolic functions while the latter
one is rational functions). In addition, we should note that the
solution described by Eq. (9) can be also obtained in the order:
breather→rogue wave→W-shaped soliton. This means that
the W-shaped soliton in Fig. 13 can be derived from the rogue
wave in Fig. 3 with the transition condition Eq. (5) held. The
similar mechanism has been found in the Hirota and coupled
Hirota equations [18,21].

IV. NONLINEAR WAVE INTERACTIONS OF EQ. (1)

In this section, we will construct the higher-order breather-
to-soliton converted solutions which requires the parameters
located on any of the curves in Fig. 5. For example, in

FIG. 16. Elastic collision between a W-shaped soliton and an oscillation soliton with a = 0.7, c = 0.5, γ1 = 0.613, λ1 = λ∗
2 = −0.37 +

0.51 i, and λ3 = λ∗
4 = 0.6 − 0.5 i. (b) is the contour plot of (a). (c) is the cross-sectional view of (a).
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FIG. 17. Collision between a periodic wave and M-shaped
solitons with a = 0.7, c = 0.5, γ1 = 0.539, λ1 = λ∗

2 = −0.35 +
0.382 i, and λ3 = λ∗

4 = 0.6 + 0.44 i. (b) is the contour plot of (a).

the solution Eq. (3), we choose the parameters of one
component in the two-breathers meeting Eq. (4). Therefore,
the corresponding breather is converted into a soliton while
another remains unchanged. Figure 14 characterizes the elastic
interactions between a breather and a W-shaped soliton. Such
interaction produces a higher-order rogue wave in the center as
the two-breather interaction. We omit other figures describing
the interactions between the breather and M-shaped soliton (or
oscillation solitons) because the properties of the interactions
are similar. From this figure, we find that the soliton and
breather maintain their amplitudes, velocities, shapes, and
period (for the breather) before and after the interaction except
for the shifts. Such interactions are similar to those of the
ordinary solitons of Eq. (1) [37].

On the other hand, to convert a two-breather solution
into a two-soliton solution, we select all parameters in the
solution Eq. (3) satisfying Eq. (4), i.e., the eigenvalues αj

and βj (j = 1,2) on the curves in Fig. 5. Several examples
of two-breather collisions converted to two-soliton collisions
with these eigenvalues are shown in Figs. 15 (interaction
between two W-shaped solitons) and 16 (interaction between
a W-shaped soliton and an oscillation W-shaped soliton).
Figures 17 and 18 describe the interactions between a periodic
wave and a M-shaped soliton and between a periodic wave
and a W-shaped soliton, respectively. It is found that these
interactions are also elastic.

FIG. 18. Collision between a periodic wave and oscillation
solitons with a = 0.4, c = 0.7, γ1 = −0.555, λ1 = λ∗

2 = −0.2 +
0.667 i, and λ3 = λ∗

4 = 0.18 − 0.52 i. (b) is the contour plot of (a).

FIG. 19. Collision between a breather and a W-shaped soliton
with S0 = 0, a = 0.4, c = 0.6, γ1 = −0.833, λ0 = −0.2 + 0.6 i,
and λ1 = λ∗

2 = 0.1 + 0.6 i.

V. SEMIRATIONAL ROGUE WAVE-TO-SOLITON
CONVERSIONS

In this section, based on the semirational rogue wave in
Fig. 4, we study the interactions between the breather and
soliton, and the soliton and rogue wave. First, we consider the
parameter λ0 = α0 + β0i in the rogue wave satisfying Eq. (4).
In this case, the rogue wave is converted into a W-shaped
soliton while the breather remains unchanged, as depicted in
Fig. 19. The interaction is elastic as that of Fig. 14.

In Sec. II, we present the breather, rogue wave, and
semirational solutions for HGNLS equation with k1 = 1 and
k2 = −1. However, to derive different rogue-wave patterns, k1

and k2 are set to be arbitrary constants. Thus, we set k1 and k2

as following:

k1 = exp

[
−h

4
(S0 + S1ε + S2ε

2 + S3ε
3 + · · · + Sk−1ε

k−1)

]
,

k2 = exp

[
h

4
(S0 + S1ε + S2ε

2 + S3ε
3 + · · · + Sk−1ε

k−1)

]
.

(10)
On the one hand, the value of the shift parameter S0 plays
an important role in the location of the first-order rogue
wave [53,54]. On the other hand, we report that it can influence
the interaction of nonlinear waves here. Note that the elastic
collision in Fig. 19 corresponds to the case S0 = 0. Instead,
Fig. 20 shows the inelastic interaction between a breather and
a W-shaped soliton with S0 = 1.5. We note that the maximum
and minimum intensities of the W-shaped solion significantly
increase after the interaction but the breather maintains its
physical quantities. Our findings indicate that not only does the
shift parameter S0 control the locations of the rogue waves, but
it also has the effects on the characteristics of the interactions
among different nonlinear waves.

Only when the breather parameters λ1 = λ∗
2 = α1 + β1i

in the semirational solution satisfy Eq. (5), we can observe
the interactions between the rogue waves and solitons. For
example, by choosing the proper parameters, Fig. 21 displays
the interaction between a W-shaped soltion and a rogue wave.
It is found that the rogue wave is broken off two half when the
soliton passes through it. Similarly, Fig. 22 describes the in-
teraction between an oscillation W-shaped soltion and a rogue
wave. Finally, Fig. 23 is plotted for the interaction between
an antidark soliton and rogue wave. Such physical quantities
as intensities, widths, shapes, and velocities of the solitons
remain unchanged after the collision except for the shifts.
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FIG. 20. Inelastic collision between a breather and a W-shaped soliton with S0 = 1.5, a = 0.4, c = 0.6, γ1 = −0.833, λ0 = −0.2 + 0.6 i,
and λ1 = λ∗

2 = 0.1 + 0.6 i.

VI. MI CHARACTERISTICS

We establish the explicit relation between the transition
and the distribution characteristics of the MI growth rate for
Eq. (1) in this section. Based on the method of investigating
the MI of the NLS equation [1], we hereby perform a linear
stability analysis of the plane-wave solution. It is easy to find
that Eq. (1) admits the plane-wave solution as

q(x,t) = c ei (a x+b t), (11)

where c, a, and b are real parameters, and substitution of the
perturbation solution,

q(x,t) = [c + ε q̂(x,t)] ei (a x+b t), (12)

into Eq. (1) yields the evolution equation for the perturbation
as

2 c2 q̂(x,t) − 12 a2 c2 γ1q̂(x,t) + 12 c4 γ1q̂(x,t)

+ 2 c2 q̂∗(x,t) − 12c2 a2 γ1q̂
∗(x,t) + i q̂(0,1)(x,t)

+ 2 i aq̂(1,0)(x,t) − 4 i a3 γ1q̂
(1,0)(x,t)

+ 24iac2γ1a
2q̂(1,0)(x,t) + q̂(2,0)(x,t) − 6a2γ1q̂

(2,0)(x,t)

+ 8 c2 γ1q̂
(2,0)(x,t) + 2 c2 γ1q̂

∗(2,0)(x,t)

+ 4 i a γ1q̂
(3,0)(x,t) + γ1 q̂(4,0)(x,t) = 0, (13)

FIG. 21. Collision between a W-shaped soliton and a rogue wave
with a = 0.5, c = 0.6, γ1 = −0.188, λ0 = −0.25 + 0.6 i, and λ1 =
λ∗

2 = −1.1 i.

where the superscripts (i,j ) in q̂(i,j )(x,t) stand for the i- and
j -order derivatives with respect to x and t . Noting the linearity
of Eq. (13) with respect to q̂, we introduce

q̂(x,t) = U1 ei (� x−	 t) + V1 e−i (� x−	∗ t), (14)

which is characterized by the wave number � and frequency
	. Using Eq. (14) in Eq. (13) gives a linear homogeneous
system of equations for U1 and V1:

2 c2 U1 + 2 c2 V1 − 12 a2 c2 U1γ1 + 12 c4 U1γ1 − 12a2c2V1γ1

+ 12 c4V1γ1 − 2 a U1� + 4a3U1γ1�

− 24ac2U1γ1� − U1 �2 + 6 a2U1γ1�
2

− 8 c2U1γ1�
2 − 2 c2 V1γ1�

2 + U1 	 = 0, (15)

2 c2 U1 + 2 c2 V1−12 a2 c2 U1γ1 + 12 c4 U1γ1 − 12 a2 c2 V1γ1

+ 12 c4V1γ1 + 2 a V1� − 4a3V1γ1� + 24 a c2V1γ1�

−V1 �2 − 2 c2U1γ1�
2 + 6 a2 V1γ1�

2

− 8 c2 V1γ1�
2 − V1 	 = 0. (16)

From the determinant of the coefficient matrix of
Eqs. (15)∼(16), the dispersion relation for the linearized
disturbance can be determined as

	2 + J1 	 + J0 = 0, (17)

FIG. 22. Collision between an oscillation soliton and a rogue
wave with a = 0.3, c = 0.9, γ1 = −0.737, λ0 = −0.15 + 0.9 i, and
λ1 = λ∗

2 = 0.42 − 0.6 i.
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FIG. 23. Collision between an antidark soliton and a rogue wave
with a = 0.5, c = 0.6, γ1 = −0.188, λ0 = −0.25 + 0.6 i, and λ1 =
λ∗

2 = 1.1 i.

with

J1 = −4 a �(4 a2 γ1 + 6 c2γ1 + Z),

J0 = �2
(
16 a6γ1

2 − 4 a4γ1(4 + 12 c2γ1 + 9 γ1�
2)

+ (Z + 6 a2γ1)[24 c4γ1 − �2 + c2(4 − 10 γ1�
2)]

+ 4 a4{1 + 3 γ1[24 c4γ1 + �2 + c2(4 + 8 γ1�
2)]}),

Z = 1 − 6 a2γ1 + 6 c2 γ1.

Solving the above equation, we have

	 = 2a�(4 a2 γ1 + 6 c2γ1 + Z)

±�
√

Z[�2(4 c2 γ1 + Z) − 4 Z c2]. (18)

In this case, the frequency 	 becomes complex and the
disturbance will grow with time exponentially if and only if
�2 < �2

c = 4 Z c2

4 c2γ1+Z
, and the growth rate of the instability is

given by

� = |�|
√

Z[−�2(4 c2 γ1 + Z) + 4 Z c2]. (19)

To obtain the maximum growth rate of the instability, we take
the derivative of Eq. (19), with respect to �, and set it to zero.
Then, in the range of γ1 > 1

6 a2−6 c2 or γ1 � 1
6 a2−10 c2 , we obtain

�max = ±
√

(2 c2 Z)/(4 c2 γ1 + Z). (20)

With the above value of �max, we obtain the following
maximum growth rate of the instability:

�max = 2 c2 |Z|√
1 + 4 c2 γ1/Z

. (21)

Figure 24 shows the effect of γ1 on the maximum growth
rate of the instability (�max) with c = 0.9 and a = 0.5. It is
found that �max decreases with the increase of γ1 for γ1 �

1
6 a2−10 c2 while it increases with the increase of γ1 for γ1 >

1
6 a2−6 c2 . In fact, γ1 not only affects the the maximum growth
rate of the instability, but also is responsible for localization of
transformed solitons in the space direction.

Figure 25 shows the characteristics of MI on the (a,�)
plane. In the case γ1 = 0, namely, the scalar NLS equation,
it is shown in Fig. 25(a) that the MI exists in the region
−2 c < � < 2 c, and the distribution of the zero-frequency
MI growth rate is uniform. Nevertheless, in the case γ1 �= 0,

FIG. 24. The effect of γ1 on the maximum growth rate of the
instability with c = 0.9 and a = 0.5.

it is found that the higher-order effects affect the distribution
characteristic of MI growth rate in the subregion −2 c < � <

2 c. Figure 25(b) contains two symmetric modulation stability
(MS) regions where the corresponding MI growth rate is zero.
Further, the MS regions [the dashed red lines in Fig. 24(b)]
can be presented analytically,

a = as = ±
√

1

6 γ1
+ c2, (22)

i.e.,

6γ1 = 1

a2 − c2
. (23)

The MS condition Eq. (23) includes three parameters, i.e., the
higher-order effects coefficient γ1, the background amplitude
c, and wave number a. In order to reveal the link between the
MS condition Eq. (23) and transition condition Eq. (5), we need
to let the eigenvalue λ approaches λ0 = − a

2 + i c, which is the
formation condition of the rogue wave in Fig. 3. Interestingly,
we discover that the MS condition Eq. (23) exactly coincides
with the transition condition Eq. (5) that are required for the
existence of the conversion solitons in Fig. 13. Similar to the
cases of the Hirota [18] and coupled Hirota equations [21],
this finding suggests that the transition between rogue waves

FIG. 25. Characteristics of MI growth rate 	 on (a,�) plane with
c=1. (a) γ1 = 0; (b) γ1 = 0.01. Here the dashed red lines represent the
stability region in the perturbation frequency region −2 c < � < 2 c,

which is given as a = as = ±
√

1
6 γ1

+ c2.
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and conversion solitons can occur in the MS region with low
frequency perturbations.

VII. CONCLUSIONS

We have presented first- and second-order solutions of the
HGNLS equation and have shown that they can be converted
into solitons on constant backgrounds. The condition for
conversion has been explicitly presented. We have calculated
the locus of eigenvalues on the complex plane which convert
breathers into solitons. The solitons with these eigenvalues
can collide as normal solitons on a zero background. We
have provided several illustrations of such special solitons
and patterns of their interactions, including the elastic and

inelastic collisions. We have also shown that this conversion
is associated with the MI analysis that involves a MS region.
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