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The ultimate semiclassical wave packet propagation technique is a complex, time-dependent Wentzel-Kramers-
Brillouin method known as generalized Gaussian wave packet dynamics (GGWPD). It requires overcoming
many technical difficulties in order to be carried out fully in practice. In its place roughly twenty years ago,
linearized wave packet dynamics was generalized to methods that include sets of off-center, real trajectories
for both classically integrable and chaotic dynamical systems that completely capture the dynamical transport.
The connections between those methods and GGWPD are developed in a way that enables a far more practical
implementation of GGWPD. The generally complex saddle-point trajectories at its foundation are found using
a multidimensional Newton-Raphson root search method that begins with the set of off-center, real trajectories.
This is possible because there is a one-to-one correspondence. The neighboring trajectories associated with each
off-center, real trajectory form a path that crosses a unique saddle; there are exceptions that are straightforward
to identify. The method is applied to the kicked rotor to demonstrate the accuracy improvement as a function of
� that comes with using the saddle-point trajectories.
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I. INTRODUCTION

Gaussian wave packet propagation is an extremely impor-
tant tool for understanding a vast array of physical problems.
For example, it has been applied to problems involving driven
cold atoms [1], electrons in strong fields [2], fidelity studies
[3,4], and a broad range of spectroscopic and pump-probe
experiments [5,6]. In the short wavelength limit, it is natural to
rely on semiclassical methods and approximations as a way of
understanding the essential physics and for making practical
calculations. The pinnacle of such approaches, excluding the
introduction of higher-order uniformizations of caustics or
diffraction corrections, is a complex, time-dependent Wentzel-
Kramers-Brillouin (WKB) method. For Gaussian wave packet
propagation that was shown to be generalized Gaussian wave
packet dynamics (GGWPD) [7,8]. Although they are not
identical, there is substantial overlap between GGWPD and
the earlier work on the saddle-point approximation applied to
the path integral in a coherent state representation [9,10].

In GGWPD, classical Lagrangian manifolds of complex
phase space points are identified for both initial and final wave
packet states; one can also identify the final state as a position
or momentum eigenvector and construct the fully propagated
wave packets as well. There is a boundary value problem of
identifying the initial complex manifold of phase points as
initial conditions, propagating them, and intersecting the man-
ifold of ending phase points with the final complex manifold.
That determines the generally complex saddle points of an
analytically continued, time-dependent WKB theory [11] for
propagating wave packets, and that information can be used to
generate the best semiclassical approximation to the dynamics
(neglecting uniformization and diffraction extensions).

Direct, full implementation of GGWPD is rather im-
practical for nontrivial, two- and higher-degree-of-freedom

dynamical systems. There are a few basic reasons for
this. First, for each degree of freedom, there are four
dimensions in the complexified phase space. The initial
and final Lagrangian manifolds have half the dimensions.
In one-degree-of-freedom (D = 1) dynamical systems, the
saddle points lie at intersections of two two-dimensional,
unbounded manifolds in a four-dimensional space. For D = 2
the manifolds are four-dimensional in an eight-dimensional
phase space. Thus, increasing the number of degrees of
freedom appears to push the boundary value problem beyond
treatment. Second, complexified classical mechanics has many
challenging complications related to the analytical structure of
the complexified phase space, such as runaway trajectories
that have infinite values of position or momentum within
finite times, which are indicative of singularities and branch
cuts [8]. The determination of whether the contribution of a
particular saddle should be included, i.e., is on the good side of
a Stokes surface, can be very challenging. As a final example,
beginning with D � 2 dynamical systems, there is a likely
possibility of at least some chaotic dynamics. As the length of
the propagation time increases, the number of necessary saddle
points has to explode exponentially rapidly. There is recent
work on the implementation of GGWPD [12,13], though for
the most part, the above-mentioned difficulties remain.

Considerable work on semiclassical wave packet methods
has been directed towards developing practical calculational
tools, but with some compromises. Several initial value rep-
resentations have been developed [14–17], which effectively
are sophisticated, hybrid semiclassical-numerical integration
methods. They have the advantages of simpler implementation
than GGWPD and the uniformization of some kinds of caustic
singularities. Several difficulties exist with these methods as
well [18], not least of which is that increasing propagation
times and numbers of degrees-of-freedom tend to rapidly
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expand the quantity of necessary trajectories, and some of the
methods weight most the least contributing trajectories (which
end up largely relying on phase cancellations to reduce their
importance).

Another approach is to generalize linear wave packet
dynamics [19,20] to the use of representative, off-center,
but real trajectories. Each representative trajectory, through
the quadratic expansion of the classical action function and
subsequent integration is incorporating the effects of a subset
of an infinite number of like-behaving trajectories found in
continuous branches. In this way, the representative, off-center,
real trajectories have the advantage of capturing the complete
classical transport, i.e., all classically allowed dynamical pos-
sibilities are identified and incorporated. Thus, any dynamical
nonlinearities are taken into account. These methods were
applied to the hydrogen atom [21,22], an integrable system,
the stadium billiard [23,24], and the quantum bakers map [25],
the latter two systems being fully chaotic. They proved to be
extremely accurate to time scales far beyond the Ehrenfest
time [24–26] where linearized wave packet dynamics break
down.

For integrable systems, the desired off-center, real tra-
jectories are selected from a manifold of real phase points,
which is normal to the energy surface. In local action-angle
coordinates, the angle variables are fixed on the manifold, and
the action values are varied over the part of the phase space
that has significant weight in the Wigner transforms of the
wave packets. So long as a single set of action-angle variables
is necessary within the wave packet’s domain of the phase
space, the corresponding shearing trajectory sum captures the
complete classical transport.

For chaotic systems, the trajectory sum is over all trajecto-
ries heteroclinic to the initial and final phase space centroids
of the wave packets. These are trajectories that in the infinite
past approach the infinite past of the initial wave packet’s
phase space center, and hence lie on its unstable manifold, and
in the infinite future approach the infinite future of the final
wave packet’s center, and hence lie on its stable manifold. The
intersections of the two manifolds identify the heteroclinic
trajectories. This classical transport problem is completely
solved by the resulting heteroclinic trajectory sums in the limit
that the corresponding classical densities are well localized
within convergence zones in the normal coordinate forms
[27,28].

Although well motivated by physical considerations, off-
center, real trajectory methods are not on as solid mathematical
foundations as GGWPD or more generally, time-dependent
WKB methods [29]. Developing the links between the two
methods has multiple purposes. It sheds light on the missing
mathematical foundations of off-center, real trajectory meth-
ods, provides an interpretation and a more economical and
intuitive means of implementing GGWPD that incorporates
the full classically allowed transport, and the � dependence
can be analyzed and contrasted for the two methods.

Each true saddle point found using a representative, off-
center, real trajectory corresponds to the classical transport
pathway represented by the aforementioned branch of tra-
jectories associated with that off-center, real trajectory (i.e.,
its infinite subset of like-behaving trajectories). Within that
branch are real trajectories that together form a path that

crosses from one side to the other of the saddle. Of course, that
path doesn’t pass through the saddle point, which is complex.
These saddles are always on the good side of Stokes surfaces.
The existence of saddle points other than these within GGWPD
would correspond to tunneling corrections or those that must
be excluded by being on the wrong side of Stokes surfaces.

The paper is organized as follows, the next section gives the
background information needed for GGWPD and off-center,
real trajectory sums for integrable and chaotic systems. This
is followed by a description of an immensely easier imple-
mentation method for GGWPD beginning with the presumed
known off-center, real trajectories, and a derivation of the
saddle-point expression. A very simple, analytical example is
worked out in detail to illustrate the comparative workings
of successively sophisticated semiclassical approximations:
(i) linearized wave packet dynamics; (ii) off-center, real
trajectory methods; and (iii) GGWPD. The GGWPD im-
plementation method is applied to the kicked rotor in a
near-integrable regime and another that is strongly chaotic
for the purpose of showing the improvement of carrying out
GGWPD relative to off-center, real trajectory methods as a
function of �. Finally, we point to interesting directions for
future work.

II. BACKGROUND

It is convenient to make use of both Dirac and wave function
notations. Using the Greek letters, α,β as a shorthand to denote
the parameters that define particular kets associated with unit
normalized Gaussian wave packets,

|α〉 = | �pα,�qα,bα〉, (1)

where the mean position and momentum parameters, ( �pα,�qα),
can be regarded as position and conjugate momentum variables
in a 2D-dimensional real phase space, and bα is a symmetric,
positive definite D-dimensional variance or covariance matrix;
this matrix could have complex entries as long as all of
its eigenvalues have positive real parts (complex entries
would give the flexibility of building in chirping of the wave
functions). This leads to

〈�x|α〉 = 〈�x| �pα,�qα,bα〉 = φα(�x)

=
(

2Ddet[bα]

πD

)1/4

exp

[
−(�x − �qα) · bα · (�x − �qα)

+ i

�
�pα · (�x − �qα)

]
, (2)

where implicitly the right vectors are column vectors and the
left vectors are row vectors. The form of the normalization
constant is valid for bα real symmetric, otherwise it has to
be replaced by (bα + b∗

α)/2D; the equations given ahead also
assume bα real symmetric. To obtain the normalization and
several of the equations that follow in the text, a useful integral
identity is(

πD

det[A]

)1/2

=
∫ ∞

−∞
d �x exp[−(�x − �q0) · A · (�x − �q0)], (3)

where the matrix A must satisfy the constraints on bα

mentioned above.
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For mechanical dynamical systems with potentials of
constant, linear, or quadratic spatial dependence, even if time
dependent, the evolution is such that an initial Gaussian wave
packet remains a Gaussian, albeit possibly moved and distorted
by the dynamics. Letting t0 = 0, the unitary evolution of a
system governed by a Hamiltonian H gives

UH (t)|α〉 = |αt 〉, (4)

where the time dependence of the parameters can be solved by
making use of the classical trajectory with ( �pα,�qα) as its initial
condition. For more general potentials, this relation remains
approximately true up to the Ehrenfest time scale [30] on which
the wave packet remains localized well enough to correspond
to a classical density, and is the approximation method known
as linearized wave packet dynamics [19,20].

For physical problems in which knowing the dynamics
approximately up to the Ehrenfest time scale suffices, it is
an extraordinarily useful method [5]. The great simplification
is that there is no need to determine which trajectory or
trajectories to use, the initial condition is ( �pα,�qα). Running this
trajectory and solving the stability equations can be done in
any number of degrees of freedom as long as the Hamiltonian
is known or well approximated. In some cases, such as found
in many spectroscopic experiments, the quantity of interest
may be a correlation function (or it can be considered a matrix
element of the time-dependent Green’s function in a wave
packet representation or its Fourier transform), 〈β|UH (t)|α〉.
Even if the means of φβ(�x),φα(�x) cannot be connected by
a real trajectory, the limitations of using linearized wave
packet dynamics are roughly the same, i.e., it works up to the
Ehrenfest time, unless φβ(�x) is far in the tail of 〈�x|UH (t)|α〉,
where the approximation would fail earlier, but the overlap
would also be quite small.

Generally speaking, beyond the Ehrenfest time scale non-
linearities arise in the dynamics and the possibility of multiple
pathways for wave amplitudes to interfere opens up. Both
phenomena signal the breakdown of a linearization of the
dynamics and a more sophisticated method becomes necessary
that is capable of accounting for all the nonlinearities and
wave interference. As noted in the introduction, the pinnacle
of semiclassical approximations for wave packets is GGWPD
[7,8] and it does contain all the information about nonlinear
dynamics in the short wavelength regime.

A. GGWPD

One way to view the key element of a time-dependent WKB
theory is the identification of the appropriate Lagrangian man-
ifold of trajectories for a given state. Approximate quantum
propagation follows by the propagation of the manifold as a set
of trajectory initial conditions. If interest lies in the propagated
state’s overlap with a final state, then the intersections of the
propagated manifold with the manifold of the final state gives
the needed stationary phase points.

The key underlying GGWPD is the identification of this
manifold. If one allows for complex positions and conjugate
momenta, then there is an ambiguity in the form of a wave
packet as described by Eq. (2). Leaving aside the global
phase and normalization for a moment, any complexified pair
of position momentum values ( �P, �Q), which preserves the

column vector relation,

2bα · �Q + i

�

�P = 2bα · �qα + i

�
�pα (5)

leaves the spatial dependence of the Gaussian wave packets
identical. This can be verified by inspection of the resultant
quadratic forms of the exponential argument. In fact, the set
of all {( �Pα, �Qα)} satisfying the ket equations is the appropriate
Lagrangian manifold underlying |α〉 [8]. Clearly, if one were
to scale bα with �

−1, then � drops out of the equation entirely.
This scaling fixes the overall shape of a wave packet’s phase
space density, only the volume is determined by �. Since
the locations of the saddle points are independent of � with
this scaling, this gives an excellent approach to studying the
accuracy of the method as � → 0.

Although all the points on the above manifold leave the
spatial dependence invariant, expressing Eq. (2) and its bra
vector version in terms of the complex phase space variables
does not leave the normalization and phase invariant. Consider
a particular point on the ket manifold as a complex center of
the wave packet, say ( �P0, �Q0). Adjusting the normalization
coefficient to

N 0
α =

(
2Ddet[bα]

πD

)1/4

exp

[
i

�
( �P0 · �Q0 − �pα · �qα)

+ �Q0 · bα · �Q0 − �qα · bα · �qα

]
(6)

restores both the normalization and phase. This is already
indicating something useful about the phase point ( �P0, �Q0). By
using Eq. (5) and its complex conjugate form, the real variables
( �pα,�qα) can be eliminated from Eq. (6). For the purpose of
separating the contributions to the normalization and phase
explicitly, it is convenient to have a notation for the real and
imaginary parts of the phase points. Denote them �P0 = �PR

0 +
i �PI

0 and �Q0 = �QR
0 + i �QI

0, where ahead the 0 refers to time
(initial condition or final condition, t). After some algebra,
one finds

N 0
α =

(
2Ddet[bα]

πD

)1/4

exp[F−
0 (α)]

F−
0 (α) = i

2�2
�PR

0 · b−1
α · �PI

0 − 1

4�2
�PI

0 · b−1
α · �PI

0

− �QI
0 · bα · �QI

0 − 1

�

�PR
0 · �QI

0 (7)

where the − sign in the notation F−
0 is for a ket vector.

The first term adjusts the phase and the last three terms the
normalization. The bra vector version is given by

N t
β =

(
2Ddet[bβ]

πD

)1/4

exp[F+
t (β)]

F+
t (β) = i

2�2
�PR
t · b−1

β · �PI
t − 1

4�2
�PI
t · b−1

β · �PI
t

− �QI
t · bβ · �QI

t + 1

�

�PR
t · �QI

t , (8)

where three minor changes are necessary. In Eqs. (2) and (5)–
(8), the sign of the momenta are reversed, α is replaced by β
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for the final wave packet, and the time is replaced by the final
t instead of the initial t = 0.

In a number of works, a concept of complex but nearly
real trajectories is used; see Refs. [31,32] and references
therein. This has an important intuitive appeal, but there does
not appear to be any definition of the meaning of nearly
real. The normalization correction terms of Eqs. (7) and (8)
may provide a step in that direction. Although there is no
measure of distance in real phase space, let alone complex
phase space, the sum of terms given by imaginary momenta
weighted by b−1

α , imaginary position weighted by bα , and
the correlation between the real momentum and imaginary
position is unit free. Furthermore, this sum contains a useful
wave-packet-shape and � dependence. Ahead it is seen to show
up directly in the expressions for propagating wave packets and
correlations functions, Eqs. (18) and (20), as an exponential
decay factor. One might then consider the complexity of any
complex phase point ( �P0, �Q0) to be greater, the greater the
decay factor given in Eq. (6). The measure of complexity of a
phase point is generally not the same for F−

0 (α) and F+
t (β).

However, some caution is warranted and we find that
considering a saddle-point trajectory to be nearly real can be
rather misleading. Instead, the property of whether or not a
saddle has a set of real trajectories that form a path across
itself is better defined and more fundamental. We call such
saddles real crossing saddles and the rest noncrossing ones.
It is worth noting that the definition of a real crossing saddle
does not imply that its saddle point is actually nearly real by
any kind of intuitive logic. There generally are real crossing
saddles with very strongly Gaussian damped contributions.

For a quantity such as 〈β|UH (t)|α〉, the idea is to propagate
the initial conditions for a time t from the set of all complex
phase points {( �Pα, �Qα)} satisfying Eq. (5) and locate the
intersections with the set {( �Pβ, �Qβ)} associated with the final
state. As each intersection indicates a saddle point, following
the method of steepest descents gives a sum of contributions
over these saddle points as the approximation to 〈β|UH (t)|α〉.
There are many possible complications, such as the existence
of saddle points that must be thrown away, but this is a
brief outline of the main ideas. Carrying out the direct
implementation of GGWPD means following this prescription,
i.e., solving the complex boundary value problem directly.

B. Off-center, real trajectory sums

Consider a system’s classical transport and how its prop-
erties are captured by a time-dependent correlation function
between an initially localized Gaussian density of phase space
points ρα centered at point ( �pα,�qα) and a final destination
Gaussian density ρβ centered at point ( �pβ,�qβ ). For simplicity,
let ( �pα,�qα) and ( �pβ,�qβ) be periodic trajectories of a continuous
dynamical system or fixed points of a dynamical map. t is the
time of propagation. In the limit of highly localized densities,
it can be expressed as a sum over certain trajectories [21–25]

�βα(t) =
∑

γ

〈
ρβ,T t

γ ρα

〉
, (9)

where each γ denotes a particular trajectory branch. Each
branch contains like-behaving trajectories that take time t to
leave the neighborhood of ( �pα,�qα) and arrive in the neighbor-

hood of ( �pβ,�qβ). Each term γ represents a distinct dynamical
pathway for connecting the two regions. An individual T t

γ

is a linearized dynamical time propagation representing the
behavior of a branch labeled γ . One trajectory is selected
from γ as its representative and its stability matrix is used to
account for all the other members of that branch.

The quantum mechanical analog in the semiclassical limit
of the correlation function is

〈β|UH (t)|α〉 =
∑

γ

〈β|Uγ (t)|α〉, (10)

where |α〉 is the ket vector corresponding to a quantum wave
packet centered at ( �pα,�qα) and Uγ (t) is the appropriately
linearized unitary time translation operator corresponding
to the canonical transformation represented by T t

γ . The
summation is over the same branches as necessary for the
classical expression. These two equations hold equally well
for open or bounded systems.

There are Gaussian integrals to perform for these methods
generated by considering one of the representative trajectories
and making a quadratic expansion of its classical action to
account for neighboring trajectories. This quadratic expansion
is effectively constructing a local, complex saddle, even though
one is not seeking the location of its saddle point. One is
just doing the resultant Gaussian integrals. The trajectories
neighboring the representative one form a continuous set
that create a path crossing this saddle. This effective saddle
would be the true saddle if the dynamics locally were strictly
linear. Local nonlinear dynamics introduce a degradation of
the off-center, real trajectory method relative to GGWPD,
but one sees the connection between the two methods; i.e.,
γ can be considered the index for real crossing saddles.
All of the parameters necessary to express those integrals’
results analytically are given by the representative trajectory’s
classical action, geometric phase index, and stability matrix
elements. A good review of the basic quadratic expansion
techniques giving the explicit expressions relating the second
action derivatives with stability matrix elements can be found
in Ref. [20].

1. Integrable dynamics

Implementing off-center, real trajectory methods for inte-
grable systems was developed in Refs. [21,22] and applied
to the Coulomb potential with vanishing angular momentum.
The only way to classically transport from one region to the
other is along tori that are common to both regions (intersect
both regions). Making a canonical transformation to local
action-angle variables for the initial-state region identifies the
tori, which potentially may intersect the final-state region. It is
not necessary to run multiple trajectories on a single torus as
that gives redundant transport information. Instead, by fixing
the angle variables and varying the actions, one is maximally
exploring the set of transport possibilities. Somewhat ideally,
one would find the coordinate transformation to action-angle
variables for the phase point ( �pα,�qα) and invoke the short wave-
length approximation to justify expanding the Hamiltonian
locally up to quadratic order in these action-angle variables;
that gives the energy, and periods of motion and shearing rates
for each of the degrees of freedom. In practice, it is possible to
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avoid the explicit construction of local action-angle variables
much like as done in Ref. [22]. There approximate fixed angle
trajectory manifolds are constructed intuitively for ( �pα,�qα) and
( �pβ,�qβ). However, the method is very weakly dependent on the
exact representative trajectory being used, and any of the other
trajectories in its neighborhood give nearly the same result. It
is not really necessary to have the angle variables fixed as the
action variables change over the manifold. However selected,
the former manifold is propagated a time t numerically and
intersections are found with the latter manifold.

2. Chaotic dynamics

For chaotic systems, there are heteroclinic trajectories that
converge to ( �pα,�qα) for t → −∞ and converge to ( �pβ,�qβ) for
t → ∞ [23–25], if ( �pα,�qα) and ( �pβ,�qβ) are chosen as periodic
orbits. Otherwise, the mental image becomes slightly more
complicated. They provide a convenient set of representative
trajectories as they are in one-to-one correspondence with
the necessary γ branches. The summation is over finite-time
segments of the infinite histories of the heteroclinic trajectories
that satisfy the fixed time constraint. This is a complete solution
of the classical transport problem in the limit of a shrinking,
localized density, which at some point is within a convergence
zone shown to exist in the normal coordinate form [27,28].
There are no transport pathways from the neighborhood of
( �pα,�qα) to the neighborhood of ( �pβ,�qβ ) not accounted for
by some heteroclinic trajectory. The trajectories are found by
constructing the unstable manifold of ( �pα,�qα) and the stable
manifold of ( �pβ,�qβ), and intersecting them. The necessary
classical information and quadratic expansions follow by the
same general methods as for the integrable systems.

III. IMPLEMENTING GGWPD

To begin, consider the essential ingredient in the method of
steepest descents. Once a complex trajectory that serves as a
saddle point is found, there is a quadratic expansion performed
about the saddle point, a deformation of a path for a line
integral, and a Gaussian integral evaluated. To the extent that
the exponential argument is a purely quadratic function, one
could expand it to second order about any other point and
get exactly the same results as if expanded about the saddle
point, i.e., where the linear term disappears. However, if there
are cubic and higher-order corrections, expanding about the
saddle is optimal. Depending on the strength of the higher-
order terms, there still has to be a neighborhood of points
about the saddle point where, if a quadratic expansion and
integration are performed, the result will still be very nearly
the same as the optimal one.

Suppose that it is a real crossing saddle, i.e., there exists
a path of real trajectories crossing it. Suppose further that
some of those trajectories are close enough to the true saddle
trajectory to give nearly the same result; i.e., both expansions
lead to rather different looking Gaussian integrals, but the
implied saddle constructed by the quadratic expansion about
the real trajectory has nearly the same shape and location. Then
one would also expect that one could construct a Newton-
Raphson scheme starting with that real trajectory as an initial
guess that would converge rapidly to the complex trajectory

represented by the saddle point. Indeed, the Newton-Raphson
scheme has been introduced as a way of finding nearly real
complex trajectories [31,32]. Here, the idea is to apply the
Newton-Raphson scheme to the full set of representative,
off-center, real trajectories for any given dynamical system.
In the case that the neglected local dynamical nonlinearities
are strong enough, the Newton-Raphson scheme may not
converge. If so, some alteration of the search method must be
incorporated, but there is still the γ one-to-one correspondence
of representative, off-center, real orbits and real crossing
saddles up to the point where nonlinearities create saddles
that coalesce and merge into each other.

As happens for any root in this scheme, there is a set of
neighboring points in its neighborhood for which the method
converges, which may be considered a basin of convergence.
Note that all the basins of convergence of various distinct roots
must be mutually exclusive. The representative, off-center, real
trajectory lies somewhere on only one particular saddle, the
one to which it is associated, even if it cannot be guaranteed
that it is inside the basin of convergence. If the representative
trajectory is close enough and the local dynamics linear
enough, the Newton-Raphson iterative procedure rapidly
converges to the saddle point for that saddle. The interpretation
of the saddle point’s contribution is given by its associated real
trajectory branch.

If the representative trajectory is not close enough or the
branch has enough curvature, then before attempting to apply a
Newton-Raphson search, it would be necessary to add an extra
step in the process. One might first find a more optimal real
trajectory from the branch or perhaps, just to put a brake into
the Newton-Raphson scheme. Since this involves real-crossing
saddles, there is a best trajectory from the branch to use (the
one that lies on the curve of steepest ascents). After finding
it, presumably the Newton-Raphson method would descend
toward the actual saddle point. Since the representative, off-
center, real trajectory sums describe the complete classical
transport, this method locates every saddle point that can be
interpreted a result of a classically allowed process. Those
saddle points that are noncrossing must necessarily be related
to classically nonallowed processes, i.e., tunneling, or be on
the wrong side of Stoke’s surfaces and unphysical. Such saddle
points are left for future investigations.

It is known that for even the simplest functions with
multiple roots of a single complex variable, the domains of
convergence are fractals. Nevertheless, exceptions to the one-
to-one correspondence require sufficiently strong higher-order
curvature corrections to coalesce saddles. The lowest-order
curvature correction is determined by the locally evaluated
third derivatives of the action function. These corrections turn
out to be visible as strong curvatures in the branch under
consideration. So in spite of the complicated nature of the
exact basins of convergence, it is clear when the search scheme
from off-center, real trajectory to its associated saddle point
may lead to failure.

For continuous time dynamical systems, each saddle point
found at some fixed time contributes throughout a continuous
time window. As time continuously changes, the saddle-point
trajectory continuously changes as well. The trajectory also
shifts its energy. At some point, earlier in time and later in time,
its energy is shifted so far outside of the energy uncertainty
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of the wave packet that its contribution fades away. The end
result of this one-dimensional parameter family of saddle
points typically produces a chirped-like smooth function of
time to propagating wave packets or correlation functions.
This is illustrated in the earlier work on the stadium in their
Fig. 16 [24].

A. Identifying the associated complex trajectories

For the correlation function expression given in Eq. (10)
consider one member from the set of off-center, real trajectory
initial conditions, { �pγ

0 ,�qγ

0 }. Assuming the local dynamics are
linear enough, it lies in the basin of attraction of a saddle-point
trajectory one wishes to locate. Label its initial condition
( �Pγ

0 , �Qγ

0 ). The constraints that the trajectory of interest must
satisfy are obtained by subtracting the right-hand side of
Eq. (5) using the initial condition ( �Pγ

0 , �Qγ

0 ) that propagates
to ( �Pγ

t , �Qγ
t ). Thus, a saddle-point trajectory must satisfy

2bα · ( �Qγ

0 − �qα

) + i

�

( �Pγ

0 − �pα

) = �0

2bβ · ( �Qγ
t − �qβ

) − i

�

( �Pγ
t − �pβ

) = �0, (11)

where clearly this just indicates that ( �Pγ

0 , �Qγ

0 ) is one member
of the set {( �Pα, �Qα)} and ( �Pγ

t , �Qγ
t ) is the associated propagated

member of the set {( �Pβ, �Qβ)}.
If some ( �P0, �Q0), such as one member of the set { �pγ

0 ,�qγ

0 },
is not a saddle-point trajectory, then the right-hand sides
of Eqs. (11) do not vanish, but rather equal some complex
constant vectors �C0 and �Ct , respectively. The basic idea is to
use ( �C0, �Ct ) to solve for a shift of ( �P0, �Q0) towards ( �Pγ

0 , �Qγ

0 ),
i.e., solve for

�P ′
0 = �P0 + δ �P0

�Q′
0 = �Q0 + δ �Q0, (12)

where ( �P ′
0,

�Q′
0) is a much better approximation of ( �Pγ

0 , �Qγ

0 ).
Then one updates the initial conditions ( �P ′

0,
�Q′

0) → ( �P0, �Q0),
recalculates ( �C0, �Ct ), and solves for a new set of shifts
(δ �P0,δ �Q0). This is repeated until the procedure converges to
the saddle point of interest.

In Eq. (11) there appears to be 8D unknown quantities and
only 4D constraints, but ( �Pγ

t , �Qγ
t ) is precisely determined by

the initial conditions ( �Pγ

0 , �Qγ

0 ). Thus, the shifts (δ �P0,δ �Q0) also
determine (δ �Pt ,δ �Qt ). For small (δ �P0,δ �Q0), a very accurate
approximation is to use the stability matrix of the trajectory
whose initial conditions are given by ( �P0, �Q0),(

δ �Pt

δ �Qt

)
=

(
M11
M21

M12
M22

)(
δ �P0

δ �Q0

)
(13)

to replace the quantities (δ �Pt ,δ �Qt ). This approximation is the
complex, multidimensional equivalent of using the slope in a
Newton-Raphson recursive root finding method. After a couple
steps of algebra, the relations to use recursively are found

to be,

− �C0 = 2bα · δ �Q0 + i

�
δ �P0

− �Ct = 2bβ · (M21 · δ �P0 + M22 · δ �Q0)

− i

�
(M11 · δ �P0 + M12 · δ �Q0). (14)

Being linear, these equations are straightforwardly solved for
(δ �P0,δ �Q0). The updated constants �C0 and �Ct rapidly approach
null vectors, and thus the sequence of updated ( �P0, �Q0) simi-
larly approach the saddle-point trajectory ( �Pγ

0 , �Qγ

0 ) associated
with the classically allowed transport following ( �pγ

0 ,�qγ

0 ).

B. Explicit saddle-point expressions

The explicit multi-degree-of-freedom expressions deriving
from the GGWPD method can be determined using an
analytically continued version of the van Vleck-Gutzwiller
propagator for incorporating the quantum dynamics; see
Ref. [33]. Attention must be paid to both the phase and
prefactor. A quadratic expansion of the exponential argument
in terms of stability matrix elements gives the most explicit
form of the results.

1. Taylor series expansion of the propagator

The usual form of the van Vleck-Gutzwiller propagator is
given as

G(�x,�x ′; t) =
(

1

2πi�

)D/2 ∑
γ

∣∣∣∣ 1

det(M21)γ

∣∣∣∣1/2

× exp

(
i

�
Sγ (�x,�x ′; t) − iνγ π

2

)
, (15)

where the γ summation is over all the trajectories that begin
at �x ′ and finish at �x in exactly a time t . In order to use
this propagator to arrive at the desired results, there are two
main issues that need to be addressed, the multidimensional
complex quadratic expansion of the action function and how to
interpret the absolute value of the determinant after analytical
continuation to complex variables.

One way to obtain the desired relationship between second
derivatives of a complexified version of Sγ (�x,�x ′; t) and
stability matrix elements follows by recognizing that the
relation (

δ �pt

−δ �p0

)
=

⎛⎝ ∂2Sγ

∂ �x∂ �x
∂2Sγ

∂ �x ′∂ �x
∂2Sγ

∂ �x∂ �x ′
∂2Sγ

∂ �x ′∂ �x ′

⎞⎠∣∣∣∣∣∣
�qt ,�q0

·
(

δ�qt

δ�q0

)
(16)

can be algebraically rearranged for the variables to be in the
same column vectors as found in Eq. (13), and it is sufficient to
reinterpret the derivatives as being due to complex positions.
This algebraic rearrangement generates the relations⎛⎝ ∂2Sγ

∂ �Qt ∂ �Qt

∂2Sγ

∂ �Q0∂ �Qt

∂2Sγ

∂ �Qt ∂ �Q0

∂2Sγ

∂ �Q0∂ �Q0

⎞⎠
=

(
M11 · M−1

21 M12 − M11 · M−1
21 · M22

−M−1
21 M−1

21 · M22

)
, (17)
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where the stability matrix elements may now be complex.
Thinking ahead of using this matrix for evaluating multivariate
Gaussian integrals, it is necessary to know whether it is
symmetric. That is assured by the possibility of applying
the derivatives in the opposite order and obtaining the same
result. It is amusing to note that for free particle propagation of
complex initial conditions the stability elements remain real,
but for general dynamical systems that is not the case.

Next consider the question about the interpretation of the
absolute value of the determinant. For real trajectories, it can
only be positive or negative. Taking the absolute value and
using the geometric index ν is just a way of keeping track
of the sheet of a multivalued function, and making sure that
phase variation remains smooth (no discontinuous jumps when
changing sheets of the function). Extended to complex trajec-
tories, the determinant’s phase can be anywhere on the unit
circle, not just plus or minus unity. However, applying the same

logic of maintaining smooth phase evolution, the phase index
is just keeping track of the correct square-root branch (it has a
positive real part). One does not want the absolute value, the
phase is necessary as well. Thus, the issue is resolved by taking
the correct branch of the square root, not taking the absolute
value. The absolute value notation is dropped on the deter-
minant, but no new notation is added to indicate taking the
correct branch of the square root. It is left implied. Ahead, this
enables algebraic simplifications involving this square root,
and it eventually disappears.

2. Time-evolving wave functions

All the ingredients exist at this point to write down the
explicit expression for the full GGWPD multi-degree-of-
freedom equation for the evolution of the wave packet φα(�x).
It is given by applying Eq. (3) and doing a bit of algebra,

φα(�x; t) =
∫ ∞

−∞
d �x ′G(�x,�x ′; t)φα(�x ′) =

(
1

2πi�

)D/2(2Ddet[bα]

πD

)1/4 ∑
γ

exp

[
i

�
S
(�x, �Qγ

0 ; t
) − iνγ π

2
+ F−

0 (α,γ )

]

×
(

1

det[M21]γ

)1/2 ∫ ∞

−∞
d �x ′ exp

[
−(�x ′ − �Qγ

0

) ·
(

bα − i

2�
M−1

21 M22

)
· (�x ′ − �Qγ

0

)]
=

(
2Ddet[bα]

πD

)1/4 ∑
γ

exp
[

i
�
S
(�x, �Qγ

0 ; t
) − iνγ π

2 + F−
0 (α,γ )

]
(det[M22 + 2i�M21 · bα])1/2

. (18)

The set of saddle-point trajectories γ depends in a complicated way on the position �x and the dynamics generated by H , and thus
φα(�x) is no longer in the form of a Gaussian wave packet nor a sum over Gaussian wave packets. However, if H is no greater
than quadratic in the phase space variables, the sum reduces to a single term. The expression can, after some work, be reduced to
that of linearized wave packet dynamics, which, of course, gives a Gaussian wave packet form. Because the saddle point depends
continuously on the value of �x and there is only one trajectory for linearized wave packet dynamics, the work involved is to show
that for every value �x, the two expressions are equivalent.

3. Correlation functions

Similarly, all the ingredients exist to give the explicit expression for time-dependent correlation functions 〈β|UH (t)|α〉, or
less generally, the coherent state representation of the time-dependent Green’s function. The necessary algebra is slightly more
complicated and three linear algebra identities are very helpful. They are, in no particular order,

det[A]det[B] = det[AB]

det[A] = det

[
1 0
0 A

]
det

[
A B
C D

]
= det[A − BD−1C]det[D]. (19)

After applying Eq. (3) and some linear algebra

〈β|UH (t)|α〉 =
∫ ∞

−∞
d �xd �x ′φ∗

β(�x)G(�x,�x ′; t)φα(�x ′)

=
(

1

2πi�

) D
2

N 0
αN t

β

∑
γ

exp

[
i

�
S
( �Qγ

t , �Qγ

0 ; t
) − iνγ π

2

](
1

det[M21]γ

) 1
2
∫ ∞

−∞
d �xd �x ′

× exp

[
−(�x − �Qγ

t ,�x ′ − �Qγ

0

) ·
[

bβ − i
2�

M11M−1
21

i
2�

(
M11 · M−1

21 · M22 − M12
)

i
2�

M−1
21 bα − i

2�
M−1

21 M22

]
·
( �x − �Qγ

t

�x ′ − �Qγ

0

)]

= (4Ddet[bα]det[bβ])1/4
∑

γ

exp
[

i
�
S
( �Qγ

t , �Qγ

0 ; t
) − iνγ π

2 + F−
0 (α,γ ) + F+

t (β,γ )
](

det
[
M11 · bα + bβ · M22 + 2i�bβ · M21 · bα − i

2�
M12

])1/2 . (20)
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It is worth noting that this expression, at least superficially,
is much simpler than the one required for off-center, real
trajectory methods because of the complicated looking terms
introduced by nonvanishing linear terms in the Gaussian
integrals; see the Appendix. It is also separated into parts that
can be interpreted more easily. There is the classical action of
the complex trajectory, its stability matrix, and the functions
F−

0 (α,γ ) and F+
t (β,γ ) that contain a phase and a measure

of how complex are the initial and final coordinates of the
trajectory. This expression is used with the kicked rotor in
the next section to illustrate the comparison of accuracy of
GGWPD and off-center, real trajectory methods.

4. Comparing semiclassical methods: instructive analytic example

It is instructive to compare the basic workings of linearized
wave packet dynamics, off-center, real trajectory methods,
and GGWPD, where this ordering is in terms of increasing
sophistication. Perhaps, the simplest example in which the
trajectories can be worked out analytically for all three
approximations is for free particle propagation. In addition,
all three approximations are exact, and thus contain identical
information. They are just obtaining it from the trajectories
and organizing it in their respective expressions differently.

For the purposes of this comparison, a single degree of
freedom gives a sufficient illustration. Let b−1

α = 4σ 2 and κ =
�t/(2mσ 2). The stability matrix for every possible trajectory,
real or complex is

Mt =
(

1 0
t/m 1

)
. (21)

The exact expression for a propagated wave packet can be
written in the form that comes from linearized wave packet
dynamics as follows

φα(�x; t) =
(

1

2πσ 2

)1/4( 1

1 + iκ

)1/2

× exp

[
− (x − qt )2

4σ 2(1 + iκ)
+ ipt

�
(x − qt ) + ip2

t t

2m�

]
,

(22)

where the trajectory with initial conditions (p0,q0) = (pα,qα)
gives the classical trajectory

pt = pα

qt = qα + t

m
pα. (23)

The last term in the exponential is the phase that comes from∫ t Ldt ′, κ chirps the Gaussian, i.e., puts fast phase oscillation
out front and slow phase oscillation behind the wave packet
center, and (pt ,qt ) shifts the center appropriately.

The off-center, real trajectory method arrives at this result
in a very different way. A different trajectory is used for
every argument x of the wave packet. Given that momentum
is the action variable for free particle motion, to locate the
representative off-center, real trajectory for some given value
of x, one propagates the set of initial conditions (p0,qα) for all
real p0, and finds which one intersects the with the set (pt ,x)
for all pt . The initial conditions and trajectories as a function

of x are thus,

p0 = pα + m

t
(x − qt )

q0 = qα. (24)

Only if x coincides with the moving wave packet’s center does
the off-center, real trajectory equal the linearized wave packet
trajectory. Otherwise, the initial momentum is detuned from
pα so that the trajectory arrives exactly at x no matter what
value of x or time t is considered. As time varies, the method
uses trajectories across the entire wave packet: short times,
high momenta; long times, low momenta. In more general
nonlinear dynamical systems, the local dynamics of all the
phase space of the packet is explored and there is the capacity to
include multiple contributions that cannot be accounted for in
linearized wave packet dynamics. The improvements with this
method for problems with nonlinear dynamics are optimized
if the bα matrix stretches the wave packet more along the set
of propagated initial conditions rather than transverse.

The GGWPD method improves further on the off-center,
real trajectory method by incorporating information about the
shape of the initial wave packet into the complexified trajecto-
ries. The initial conditions for the saddle-point trajectories are
given by

P0 = pα + iκm

t

(
x − qt

1 + iκ

)
Q0 = qα + x − qt

1 + iκ
. (25)

The initial conditions are a function of the final real position x

as for the off-center, real trajectory method, but are shifted from
the linearized wave packet trajectory by complex terms that
contain information about the shearing and shape parameter
κ , and the distance of x from the moving wave packet
center qt .

Since the off-center, real trajectories are supposed to be
close to the saddle-point trajectories, consider the comparison
of the real parts of the initial conditions of the saddle-point
trajectories and the off-center, real trajectory initial conditions.
After some algebra, one finds

PR
0 − p0 = −m

t

(
x − qt

1 + κ2

)
QR

0 − q0 = x − qt

1 + κ2
. (26)

The wave packet amplitude is extremely small unless x is
within a few widths of qt , and κ increases proportionally with
time. Thus, for x where there is some chance of non-negligible
contribution, the real parts of the saddle-point trajectories
approach the off-center, real trajectory initial conditions as t

increases. Consistent with this, the imaginary parts shrink with
time as well. However, it can be rather misleading to think of
the off-center, real trajectory as being near the saddle-point
trajectory in any case where x is not so close to qt . Finally, it
turns out that the final term in F−

0 (α) from Eq. (7) (has real
momentum and imaginary position) cancels with the damping
term in the complexified classical action. Thus, for free particle
motion, the overall damping factor is given by the other two
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real terms in that expression, which involve only the squared
imaginary parts of the position and momentum, respectively.

Overall, this simple example helps to illustrate the increas-
ing level of sophistication of the three kinds of semiclassical
approximations. The first, linearized wave packet dynamics,
is fine until nonlinear dynamics appears. This is the Ehrenfest
time scale, beyond which, being restricted to a single orbit,
it has no built-in mechanism to handle the nonlinearities. The
off-center, real trajectory method builds in all the nonlinearities
in the dynamics and is not limited by the Ehrenfest time scale
whatsoever, but the nonlinearities are accounted for without
taking account of the wave packet shape. GGWPD does do
this, and in addition, though beyond the scope of this paper,
has the capacity to incorporate tunneling through the existence
of additional saddle points. So long as transport is dominant
(tunneling is a tiny component) and the wave packet shape
is well adapted to the problem, the off-center, real trajectory
method and GGWPD should return compatible results. In the
next section, GGWPD is seen to be more accurate though.

IV. KICKED ROTOR

The kicked rotor is a simple, yet extraordinary paradigm
for both classical and quantum dynamical systems, which
as a function of a parameter, spans the possibilities from
classically integrable to strongly chaotic dynamics. It has also
been experimentally realized with cold atoms and a BEC
in a kicked optical lattice [34,35]. A great deal is known
about its classical and quantum dynamics [36–38]. It is a
mechanical-type particle constrained to move on a ring that
is kicked instantaneously every multiple of a unit time, t = n.
The Hamiltonian is

H (q,p) = p2

2
− K

4π2
cos(2πq)

∞∑
n=−∞

δ(t − n). (27)

The classical mapping equations for the version on the unit
phase space torus are:

pn+1 = pn − K

2π
sin(2πqn) (mod 1)

qn+1 = qn + pn+1 (mod 1). (28)

For the kicking strength parameter K = 0, the system is
integrable, and for very small values, the system remains nearly
integrable. For K values exceeding 2π , the system is strongly
and almost completely chaotic. The stability matrix for a single
iteration of a trajectory is,

Mn =
(

1 −K cos(2πqn)
1 1 − K cos(2πqn)

)
, (29)

which are multiplied together consecutively for trajectories
with greater numbers of iterations.

In its quantum realization, the dynamics are generated by
iterations of the unitary Floquet operator,

F̂ = exp

(−ip̂2

2�

)
exp

[
iK

4π�2
cos 2πq̂

]
. (30)

Its corresponding matrix elements in configuration space,
Frs = 〈qr | F̂ | qs〉, are

Frs = 1√
iN

exp

[
iπ (r − s)2

N

]
exp

[
iNK

2π
cos

2πs

N

]
, (31)

where N is the Hilbert space dimension; 1 � r,s � N . Thus,
the value of Planck’s constant is fixed by 2π�N = 1. By
increasing N , or equivalently decreasing �, the semiclassical
limit can be studied in great detail. The initial state is taken to
be a wave packet whose position representation is evaluated at
the discrete set of N position values qs = s/N using Eq. (2)
to obtain the amplitude with the caveat that due to the discrete
nature of the basis, the prefactor is somewhat modified in order
to obtain a true unit norm. Propagation then proceeds by the
expected matrix multiplication with the Floquet operator.

In all of the calculations, the choice of position representa-
tion variance of the wave packet [b−1

α = 4σ 2 = 2� = 1/(πN )]
is such that the momentum and position uncertainties are equal.
Thus, the shape of the wave packet’s phase space analogy
appears circular in the plots and remains so for all values of
�. The area inside the 2σ contour for any wave packet then
is equal to h = 1/N . As mentioned above, the saddle points
are independent of � with this choice, which simplifies the
interpretation and calculations for comparing the accuracies
of the semiclassical approximations as a function of �.

A. Preliminaries

The geometry of phase space is more complicated for the
phase space with complex ( �P, �Q), and is no longer a torus as
the space is not periodic in imaginary position and momentum.
For this and other reasons, in the phase space of real variables, it
turns out to be convenient to use the “unfolded torus”, meaning
that by not invoking the modulus 1 operations in the mapping
equations, there is a “flat” phase space that extends to infinity.
Each unit square is a repetition of the fundamental torus, which
is taken to be the [0,1) × [0,1) square. Any two real points
separated by an integer in either q or p are the same point; i.e.,
(p,q) and (p + np,q + nq) are the same point. The integers
np and nq can be thought of as winding numbers (including
negative integers), i.e., how many times a particle has wrapped
around the cycles of the torus, which generally do have phase
consequences in quantum mechanics. A Gaussian wave packet
has an image within each unit square. However, for small
enough values of � and our choice of variance, the tails of the
images have fallen sufficiently in magnitude before reaching
the original wave packet, and can be neglected.

It is sufficient to understand the classical transport of the
single Gaussian density for the purposes of finding the set {γ }
of trajectories to use for implementing GGWPD; one must
consider its contributions to all the final images in determining
{γ }, however. The analytically continued mapping equations,
stability matrices, and action functions are needed for this.
They are given by

Pn+1 = Pn − K

2π
sin(2πQn)

Qn+1 = Qn + Pn+1

Mn =
(

1 −K cos(2πQn)
1 1 − K cos(2πQn)

)
012213-9
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S(Qt ,Q0) =
t−1∑
n=0

S(Qn+1,Qn)

S(Qn+1,Qn) = (Qn+1 − Qn)2

2
+ K

4π2
cos(2πQn), (32)

where the modulus operation is not being applied.

B. An integrable example

The goals of providing the kicked rotor examples are to
demonstrate: (i) the relationship between the representative,
off-center, real trajectories and the saddle points for both
integrable and chaotic systems; (ii) the improvements that
arise using the full GGWPD, particularly as compared with
off-center, real trajectory methods; and (iii) the behavior in
the semiclassical limit, i.e., � → 0. For this it is helpful to
identify an example with at most one or two saddle points.
To begin, consider an integrable (near-integrable) system
for which K = 0.05. The real phase space structure, and
initial and final classical densities corresponding to Gaussian
wave packets are shown in Fig. 1. The initial wave packet’s
analogous classical density is pictured on the left. The circles
represent the 2σ contours for the density. The large circle is for
h = 1/50 and the small one for h = 1/700, the range of h over
which the � dependence is calculated in the various figures.
The same is pictured on the right for the final wave packet’s
analogous classical density. The vertical line through the center
of the left density is the collection of shearing trajectories
that the off-center, real trajectory method uses. After two
iterations forward in time, it ends up as the long sloped
line. Its intersection with the right vertical line representing
the final state’s trajectory collection gives the off-center, real

0.0 0.2 0.4 0.6 0.8 1.0
q

0.7

0.8

0.9

1.0

p

FIG. 1. The phase space structure of the example integrable
dynamics for which K = 0.05. An initial classical Gaussian density
is centered at (pα,qα) = (0.815,0.2) and a final one at (pβ,qβ ) =
(0.77,0.8). The 2σ contours are shown that correspond to the large
and small limiting values of � in the quantum calculations. The light,
mostly horizontal curves are the tori underlying the dynamics. The
sloped dashed line on the right is the result of propagating the initially
vertical dashed line of initial conditions pictured on the left for two
time steps. The off-center, real trajectory lies at the intersection of
the dashed sloped and solid vertical lines on the right. The torus on
which it resides is darkened.

100 200 300 400 500 600 700
N

0.0
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β|
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>|

QM
off-center trajectory
GGWPD

FIG. 2. The absolute magnitude of the quantum, off-center,
real trajectory, and GGWPD results versus N . The off-center,
real trajectory initial condition is (p0,q0) = (0.8075799,0.20) and
the saddle point (P0,Q0) = (0.8019843 + i0.0062830,0.2062830 +
i0.0130157). Both semiclassical methods give very accurate results.
The overall decrease with increasing N is due to the fact that the
overlapping density gets further away from the wave packet centers
measured in terms of the shrinking widths.

trajectory to be used in the off-center, real trajectory method
[21,22]. It also provides the initial guess for finding the true
saddle point. In this example, there is clearly one and only
one saddle point. The fact that the sloped line is so straight
indicates that locally the dynamics are very well captured by a
linearization, and that the off-center, real trajectory method is
expected to give an excellent approximation. One also expects
the Newton-Raphson method to rapidly converge under such
circumstances and the saddle-point trajectory is converged to
double precision with four iterations. Note that the off-center,
real trajectory method is better optimized than linearized wave
packet dynamics, and a better approximation.

The overall accuracy of the two semiclassical methods are
compared in Fig. 2. The overlap magnitude of 〈β|UH (t =
2)|α〉 is plotted as a function of inverse � (N ). Clearly, both
semiclassical theories accurately represent the quantum propa-
gation. It is not possible to see which semiclassical theory is the
better approximation from this figure. A more sensitive view
of the absolute magnitude of the errors in the semiclassical
approximations is shown in Fig. 3. The agreement is excellent
for both semiclassical methods, but GGWPD is improving
more quickly as � → 0 and is approaching two orders of
magnitude of improvement. Given how linear the shearing

100 200 300 400 500 600 700
N

10-5

10-4

10-3

|C
Q

M
 - 

C
SC

|

off-center trajectory
GGWPD

FIG. 3. Differences of the quantum overlap and semiclassical
approximations. The notation on the y axis is C = 〈β|UH (2)|α〉
with the subscript indicating the evaluation. The difference of the
magnitudes are shown on a logarithmic scale.
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FIG. 4. Relative magnitude errors of the two semiclassical
methods. The notation on the y axis is A = |〈β|UH (2)|α〉| with
the subscript indicating the evaluation. The ratio of the quantum
magnitude to the semiclassical magnitudes are shown as a function
of N . Note that whereas the GGWPD method approaches unity with
increasing N , the off-center, real trajectory method apparently does
not.

trajectory manifold slicing through the final wave packet is,
this is a somewhat surprising improvement in accuracy.

There are two interesting features of the errors in the
off-center, real trajectory method not present in the GGWPD
results. First, as shown in Fig. 4, although the absolute error
is decreasing, the relative error does not appear to vanishing
for the off-center, real trajectory method. This is seen by the
fact that the ratio of quantum magnitude to its magnitude does
not appear to be approaching unity as it does for GGWPD.
So it has the feature of an absolute error, which is shrinking
even though its relative error is not. There is no contradiction
with the idea that in the � limit the error should vanish because
in this limit the off-center, real trajectory moves further and
further away from the wave packet center measured in widths.
At some point, it is beyond or outside the phase space region
that needs to be taken into account and it would not even
be included. If at longer times there were a trajectory close
enough to the wave packet centers to be included, it would
give a more accurate contribution. Second, as seen in Fig. 5,
there is a slight drift in the phase relative to the quantum phase.
It is rather small, but unlike in GGWPD, it does not approach
a vanishing phase difference. In spite of these two features, the
off-center, real trajectory method is nevertheless quite good. It
is just not as excellent as GGWPD.
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FIG. 5. Phase errors of the two semiclassical methods. The
notation is Aeiφ = 〈β|UH (2)|α〉 with the subscript indicating the
method.

C. A chaotic example

Consider a strongly chaotic system with K = 8.25. There
are two very convenient fixed points of the mapping on which
to place the initial and final densities, respectively, and the
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FIG. 6. Phase space structure of a chaotic example. In
the top panel, the unstable manifold of the initial Gaussian
density at (pα,qα) = (0,0) (dashed line) is propagated two
iterations and overlapped with the Gaussian density at
(pβ,qβ ) = (0.0,0.5) = (1.0,1.5) = (0.0,−0.5) (torus repetitions of
the same density). The steep branches inside the initial density
squeeze, stretch, and translate into the shapes and locations seen by
the branches in the final density. The stable manifold of the final
density (dotted line) shows the orientation of the branch inside the
initial density. In the bottom panel is an expanded view of the initial
wave packet’s phase space inside the dashed square. Two heteroclinic
trajectory initial conditions denoted by dots inside their respective
branches are (p0,q0)1 = (−0.0892369,−0.0766275) and (p0,q0)2 =
(−0.1125783,−0.0966593) (the other two are found by reflection
through the origin). The saddle-point trajectory initial conditions are
(P0,Q0)1 = (0.0095152 − i0.0611558,−0.0611558 − i0.0095152)
and (P0,Q0)2 = (0.0115409 − i0.0764952,−0.0764952 −
i0.0115409); the real parts are denoted by diamonds and they
are seen to reside in the branches as well. Inspection reveals
P0 = iQ0 as required by Eq. (11) for a wave packet centered at
(pα,qα) = (0,0) with 2σ 2 = �.
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related wave packets as shown in Fig. 6(a). Due to the phase
space being a torus, in principle all the images of the final
density should be shown for a complete figure. Adding any
positive or negative integer to the p or q value represents
the same phase space point. Only three images of the final
density are shown to simplify the figure. The solid line circles
correspond to the 5σ contours for the largest and smallest value
of h. The heteroclinic trajectories lie on the intersections of the
unstable manifold of (pα,qα) = (0,0) and the stable manifold
of (pβ,qβ ) = (0.0,0.5) (and its images); as just mentioned
the images at (pβ,qβ ) = (1.0,1.5) = (0.0,−0.5) represent the
same density. For t = 2, there are two heteroclinic trajectories
(actually four trajectories, but due to reflection symmetry they
come in pairs, it simply doubles the semiclassical result).
However, a third heteroclinic trajectory not included in the
calculations would be found if the final phase space density
centered at (pβ,qβ) = (1.0,0.5) or (−1.0,−0.5) were used.
The branch represented by this heteroclinic trajectory is
further from the center of the initial and final densities and
exponentially suppressed compared to the other two (the fact
that it is left out affects the accuracy of GGWPD only for
the largest values of �). As for the near-integrable case, the
Newton-Raphson procedure converged to double precision
on the saddle-point trajectories with four iterations. For
very strongly chaotic systems and longer time dynamics, the
procedure leading to Eq. (14) may prove less reliable because
the trajectory is too unstable to follow or even maintain the unit
determinant of its stability matrix. Incorporating techniques,
such as found in Ref. [39], may help alleviate this problem.

The two heteroclinic trajectories do not appear to be the
best representative trajectories for their respective branches
due to the way the unstable and stable manifolds intersect.
This is illustrated in Fig. 6(b), where the phase space density
corresponding to the initial wave packet is expanded. The
heteroclinic and real parts of the saddle-point trajectories are
shown. The heteroclinic trajectories are a greater number of
widths from the center than many other trajectories within
their respective branches. Not too surprisingly, an interesting
shift occurs in the real parts of the saddle points relative to
the heteroclinic trajectories. The real parts remain inside their
respective branches, but end up very close to the regions where
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FIG. 7. Differences of the quantum overlap and semiclassical
approximations. The notation is the same as Fig. 3. The difference
magnitudes are shown on a logarithmic scale. The GGWPD errors
are multiple orders of magnitude smaller and an oscillation appears
in the errors as the phase relationship between the two contributions
varies with N .
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FIG. 8. Relative magnitude errors of the two semiclassical meth-
ods. The notation is the same as Fig. 4. The ratio of the quantum
magnitude to the semiclassical magnitudes are shown as a function
of N . Note that whereas the GGWPD method approaches unity with
increasing N , the off-center, real trajectory method apparently does
not.

the branches would be tangent to the circular width contours,
and thus closest to the center of the density.

Both semiclassical approximations work very well, much
like the integrable case. The absolute magnitude of the errors
of both semiclassical methods are illustrated in Fig. 7. Again,
the errors in magnitude of the difference from the quantum
value decrease with shrinking � and the GGWPD errors
shrink more rapidly. The new feature is the introduction of
a small oscillation. As there are two saddle points or two off-
center, real trajectories, varying � varies the phase relationship
between the two contributions smoothly. For certain values, the
two contributions and their errors destructively interfere and at
other values, they constructively interfere. As � shrinks, one of
the contributions becomes more prominent and the oscillations
fade.

Consider the relative magnitude errors shown in Fig. 8.
The heteroclinic trajectory sum has a magnitude that diverges
from the quantum result, unlike the GGWPD result, even
though the absolute errors are shrinking. This is similar to
the integrable example, except a bit worse since there the
integrable example appeared to approach a constant relative
error, just not converge. Finally, consider the phase errors
shown in Fig. 9. The interference oscillations of the two
contributions with � are most prominent in this case for the
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FIG. 9. Phase errors of the two semiclassical methods. The
notation is the same as in Fig. 5. The GGWPD phase error vanishes
quickly in the semiclassical limit, but the heteroclinic trajectories’
errors go through interference oscillations of decreasing magnitude
with �. Unlike the integrable example, there does not seem to be a
small phase drift.
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off-center, real trajectory method. In fact, it is not entirely clear
if the heteroclinic trajectory sum phase error is vanishing,
but it is quite small. On the other hand, the GGWPD result
rapidly converges to the correct phase without the phase error
oscillations seen for the off-center, real trajectory method.

V. CONCLUSIONS AND OPEN PROBLEMS

Without adding corrections for diffraction and uniformiza-
tions to account for coalescing saddle points, the ultimate
semiclassical theory for propagating wave packets is GGWPD.
It entails carrying out in full details the method of steepest
descents applied to such quantities as φ(�x; t) and 〈β|UH (t)|α〉.
The latter quantity, in some circumstances, can be considered
the same as part of a coherent state representation of the
Feynman path integral [9] and has been the subject of
many studies; see Ref. [33] and references therein. The
method has the potential to give very accurate results for a
wide variety of physical problems that are effectively in a
short wavelength limit, and in addition, the potential to give
very physical interpretations of the essential physics in such
problems.

The GGWPD method has been in existence for more
than 25 years [8], but has not developed into a widely used
and practical technique. The barriers to its direct implemen-
tation are considerable. Most important are the difficulties
of analytically continuing classical dynamics in a complex
domain where both position and momenta are complex. It
requires high-dimensional root searches in multiple degrees
of freedom with quantities exhibiting highly complicated
functional behaviors. It also requires determining whether a
particular saddle should be kept or dropped. However, by
recognizing that real classical dynamics imprints itself on the
complex dynamics, it is possible to develop indirect root search
methods that are vastly easier to implement and avoid several
of the pitfalls that a direct root search method would have
to confront. The research contained in Refs. [31,32,40] are
noteworthy in this regard for their advances and understanding,
and they rely explicitly or implicitly on the notion of a complex
trajectory being nearly real.

Although the concept of nearly real may be important, it
is also rather nebulous. We adopt a different perspective, but
for some trajectories it is clearly related: that of real crossing
saddles. The representative, off-center, real trajectory methods
introduced more than twenty years ago [21–25] sidestepped
the complex trajectories issue raised by GGWPD [8]. It is
worth emphasizing that the off-center, real trajectory methods
have no connection to initial value representations [14–17].
They begin by giving complete classical transport solutions
of initially localized phase space densities in integrable and
chaotic systems.

With this complete set of representative trajectories, each
relating to a distinct classical transport process, carrying out
wave packet dynamics leads to a Gaussian integral for each
representative trajectory that can be considered the construc-
tion of an approximate saddle, but without going through the
trouble of locating the actual saddle point. The saddle points
of those approximate saddles are complex, but there exists a
line of real trajectories in each integral that crosses the saddle,
and the notion of complex trajectories was entirely avoided.

Here, we have shown that there is a one-to-one correspondence
between the approximate representative trajectory saddles and
a subset of the true complex saddles of GGWPD, and that these
saddles are easily found with a Newton-Raphson scheme if the
branches are locally linear. Since, the representative trajectory
method gives a complete transport solution, that accounts for
a complete set of saddles associated with classically allowed
processes. Any remaining saddles not found in this way are
necessarily related to classically nonallowed processes, such
as tunneling, or are to be rejected for being on the wrong side
of Stokes surfaces. The saddles found with the representative,
real trajectories are always on the good side.

One of the most vexing problems of root searching is
identifying the set of basins of convergence within which there
lies a single root. These basins may be extremely small or
buried deep in a space of enormous volume. Nevertheless,
generally speaking, once a single point within a basin of
attraction is identified, using it to initiate a recursive search
algorithm tends to converge rapidly to the desired root. From
this perspective, the representative, real trajectories provide
a meaningful way to generate one and only one point either
within or close to every basin of convergence of a unique
saddle, so long as the saddle point is associated with a
classically allowed transport process. If the trajectory is only
close to the basin of convergence, an additional initial step must
be added to the Newton-Raphson scheme. This not only greatly
simplifies the root search problem, it inextricably links the
physical interpretation of the real trajectory to the saddle-point
trajectory within whose basin of attraction it lies. It may be
rather difficult to find an interpretation of a complex trajectory
without this connection.

The relationship between off-center, real trajectories and
saddle points is illustrated here with the kicked rotor for a
number of reasons. First, by changing kicking strength, it is
possible to have an integrable (or nearly integrable) system
and a strongly chaotic one. Second, as a map it provides an
extremely simple example that allows for a very detailed view
of the how everything works. For a continuous time system, if
one identifies a saddle point at one time, then as time changes
the saddle-point trajectory deforms continuously and has to
be followed as a function of time. This is straightforward
due to continuity (except in presumably rare cases passing
through bifurcations or crossing branch cuts), but adds an
unnecessary level of difficulty for initially demonstrating the
off-center and saddle-point (real-crossing) connection. Third,
it was possible for simplicity to use convenient fixed points
and arrange for only one or two off-center, real trajectories
to be involved. Finally, it was possible to compare and
contrast the quality of the two approximations as a function
of �. Not surprisingly, although both methods worked very
well, GGWPD improved the results greatly, even though the
cases treated had a local dynamics with very linear branches.
The off-center, real trajectory method contained a couple of
novel features in its errors that were cured in the GGWPD
approach. The off-center, real trajectory method’s degradation
of the GGWPD method would become rather important
in a dynamical system where the off-center, real trajectory
branches exhibited more curvature. The greater the curvature
of the real trajectory manifolds, the greater the degradation of
the GGWPD result.
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Within a broad range of semiclassical approximations,
it is often taken for granted that, in practice, initial value
representations are superior to methods that require root
searches. This is not necessarily so. It depends on the problem,
the goals (e.g., whether a black box technique is sought),
and it depends on the the level of sophistication that can
be applied to the root search. There are always vastly fewer
representative, off-center, real trajectories or saddle points
needed than the number of trajectories required for initial value
representations. In fact, it is not surprising to the authors that
systems, such as the strongly chaotic stadium billiard where
the off-center branches or saddle points explode in number
exponentially fast, have only been treated by off-center, real
trajectory methods, not initial value representations. Using the
method of this paper continuing with the stadium example,
GGWPD would be both straightforward to implement, take
almost no additional computational time, and be more accurate
than the original heteroclinic summation technique [24]. Even
the far simpler Coulomb problem displaying revivals and
fractional revivals that are treatable semiclassically [22] may
not have been done yet with an initial value representation
method. In addition, the fact that either a representative or
saddle-point trajectory represents a branch of trajectories gives
a clear physical interpretation. Each representative (saddle-
point) trajectory reflects a unique transport pathway. As seen in
the Coulomb revival problem [22], after 20 periods of motion,
a transport branch for 17,18,19, . . . ,23 collisions with the
nucleus all return with a 2π phase shift between branches of
consecutive collision number. One might say as a shorthand
that seven orbits are sufficient to explain the first revival, but
the true meaning is that there are seven contributing transport
pathways (branches) changing continuously with time in the
time neighborhood of the revival. Initial value representation
methods do not automatically provide interpretations of this
kind, and if one goes through the process of classifying the
transport pathways with their trajectories, then one has done
all the essential work required for a root search method.

There are a number of further directions suggested by this
work. Wave packet propagation shows up in an incredibly
broad range of systems. Applying the method to interesting
physical systems possessing multiple degrees of freedom is an
obvious extension to pursue. That would open up many new
possibilities. Although, we did not give such an application
here, the necessary expressions were given. Possible systems
of interest are not limited to quantum ones as other wave
mechanical systems, such as found in acoustics and optics,
also provide many important applications. Some wave systems
are amenable to paraxial optical approximations in which the
results here would apply directly. Otherwise, new expressions
may be derived for the propagation proceeding via the wave
equation. Another direction that would be very interesting is to
develop a method to locate tunneling saddle-point trajectories
without having to use a direct, complex approach. Despite
their not being related to classically allowed processes, there
may yet exist methods to locate them with a sufficient
understanding of the connections between real and complex
classical dynamics.
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APPENDIX

The expression for the representative, off-center, real
trajectory method needed for the kicked rotor section is given
here for completeness. It is

〈β|UH (t)|α〉 =
∑
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∑
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