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We investigated the phase-response curve of a coupled system of density oscillators with an analytical approach.
The behaviors of two-, three-, and four-coupled systems seen in the experiments were reproduced by the model
considering the phase-response curve. Especially in a four-coupled system, the clustering state and its incidence
rate as functions of the coupling strength are well reproduced with this approach. Moreover, we confirmed that the
shape of the phase-response curve we obtained analytically was close to that observed in the experiment where a
perturbation is added to a single-density oscillator. We expect that this approach to obtaining the phase-response
curve is general in the sense that it could be applied to coupled systems of other oscillators such as electrical-circuit
oscillators, metronomes, and so on.
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I. INTRODUCTION

Many phenomena seen in biology, chemistry, physics, and
other fields can be discussed by being simplified as coupled
nonlinear oscillators [1–11]. It has been reported that such
coupled nonlinear oscillators can exhibit various kinds of
behaviors, such as perfect synchronization, N -phase modes,
chaos, and clustering [1]. Among them, the clustering of
coupled nonlinear oscillators has been attracting increasing
interest. Generally, nonlinear oscillators are described by sets
of nonlinear differential equations. Thus, it is difficult to
understand how clustering occurs directly from the form of
the differential equations. To attain an analytical understanding
of the mechanism of clustering, numerous studies have been
conducted mainly with a theoretical approach. For example,
Kori et al. investigated the clustering of coupled electrochem-
ical oscillators. In their study, they analyzed the clustering
phenomena under the assumption that the system is near the
bifurcation point [12].

Density oscillators have been investigated as a good
experimental system for a sustained nonlinear oscillator, which
was first introduced by Martin [13]. When a higher-density
fluid is put in a smaller vessel with a bore at its bottom,
and the smaller vessel is settled in a lower-density fluid
in a larger vessel, upward flow of the lower-density fluid
and downward flow of the higher-density fluid recurs; this
is called density oscillation. When two density oscillators
are coupled, i.e., two smaller vessels are settled in one
larger vessel, antiphase synchronization occurs. It is also
known that an N -coupled system can show an N -phase mode
or clustering in certain situations [3,14,15]. In the density
oscillation, switching between upward and downward flow is
important, and it is difficult for us to adopt the theory near the
bifurcation points. In previous studies, various mathematical
models for density oscillators have been proposed. Some
of them use a form of Rayleigh equation [14–16], whereas
others investigated the mechanism regarding the pressure
change based on hydrodynamics [17–19]. González et al.
measured the phase responses experimentally and discussed
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the phase-response curve [20], but they did not investigate the
coupled systems.

In the present article, we consider coupled sustained
nonlinear oscillators represented by density oscillators. We
employ a phase description of the density oscillators to
try to understand the clustering of the coupled system.
First, we introduce the experimental results for the coupled
density oscillators and show the existence of the clustering
mode for four-coupled oscillators. Then, we construct the
model equation for the density oscillator based on the phase
description. To confirm the validity of the phase description,
we compared the analytical results with the experimental
ones for two-, three-, and four-coupled density oscillators. We
also measured the phase-response curve experimentally and
compared our measurements with the analytical results. The
present study will help our understanding of coupled nonlinear
sustained oscillators.

II. EXPERIMENT: SYNCHRONIZATION OF
A COUPLED SYSTEM

First, we observed synchronization of density oscillators to
investigate the characteristics of a coupled system of density
oscillators. The experimental setup is shown in Fig. 1.

A large vessel containing a low-density fluid was prepared,
and small vessels containing a high-density fluid were put
inside it. These inner vessels had nearly identical bores of
diameters ∼1 mm at their bottoms. We used fresh water
(density ρ = 1.00 g/ml) as the low-density fluid and saline
water (density ρ ′ = 1.14 g/ml) as the high-density fluid. The
surface area of the inner vessel, S ′, was fixed at 1200 mm2,
and we observed the behavior of the system as the surface area
of the outer vessel, S, was changed from 1300 to 10 700 mm2.
When S = 2000 mm2, the intrinsic period of one oscillator
without coupling was 25 ± 1 s. Additionally, the coupling
strength is known as an increasing function of S ′/S. Thus
we conducted experiments under various coupling strengths.

To compare the behavior of the experimental system with
that of the phase oscillator model, we need to extract phases
of oscillators from the experimental results. To do so, we first
measured the brightness at points just below the bores of the
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FIG. 1. Experimental system: (a) Snapshot of side view.
(b) Schematic illustration of the top view. S and S ′ denote surface
areas of the outer and inner vessel, respectively. (c) Schematic
illustration of the side view. H and h denote the water levels from the
height of the bore outside and inside the vessel, respectively.

small vessels as a function of time, as shown in Fig. 2. The
time resolution of this measurement was 0.1 s.

In this time course, regions of higher and lower brightness
correspond to upflow and downflow, respectively. Therefore,
we defined each time when flow changes from downward to
upward as corresponding to the origin of the phase; phases
of other states are defined via linear interpolation, with the
phase difference �φi of the ith oscillator from the N th
oscillator being defined by �φi = φi − φN . Of course, the
phases defined as above are not exact especially on a short
timescale, i.e., in one or two periods, but we are interested in the
phenomena on a long timescale and so the phase description
works in such a case. In fact, synchronization and clustering
usually last more than ten periods. Hence, inaccuracy from
data processing can be neglected.

Experimental results for two and three coupled oscillators
are shown in Fig. 3. In a two-coupled system, antiphase
synchronization was observed, and a three-phase mode with a
phase differences of 2π/3 appeared in a three-coupled system.

Results for a four-coupled system are shown in Fig. 4.
Generally, the clustering state was more likely to appear for
smaller S, i.e., stronger coupling. To evaluate this tendency
quantitatively, we defined criteria to determine the state of
the system for an arbitrary combination of phase differences
�φi,j = φi − φj ,(i,j = 1, · · · ,4 and i �= j ) as follows:
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FIG. 2. Time series of the brightness (dashed curve) and phase
(solid curve), where the brightness was measured in the box in the
snapshot shown in Fig. 1(a).
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FIG. 3. Time evolution of the phase difference in (a) a two-
coupled system and (b) a three-coupled system observed in the
experiments. In both cases, S = 4000 mm2 and S ′ = 1200 mm2.
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FIG. 4. Time evolution of the phase difference in a four-coupled
system observed in experiments. We changed the coupling strength,
which is a decreasing function of S. (a) S = 10 700 mm2, (b) S =
6700 mm2, (c) S = 4000 mm2, (d) S = 2000 mm2, and (e) S =
1300 mm2. S ′ = 1200 mm2 for all cases.
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FIG. 5. Proportion of the time duration for each state in a four-
coupled system with various coupling strengths. White bars denote
2-2 cluster states, light blue (light gray) 2-1-1 cluster states, red
(dark gray) phase locked states, and black asynchronous states. Total
experimental times are 11 225, 24 921, 44 073, 38 172, and 15 986 s
for S = 10 700, 6700, 4000, 2000, and 1300 mm2, respectively.

1. Phase locking: Time change of the phase
difference is smaller than a threshold, i.e.,
|�φi,j (t + �t) − �φi,j (t)|/�t < 2πεlock/�t .

2. Clustering: The phase is locked, and the phase difference
is smaller than a threshold, i.e., �φi,j (t) < 2πεcluster.

In this analysis, εlock = 0.0005 and εcluster = 0.05. Based
on these criteria, we separated the system into four states as
follows:

1. Two-cluster state:Two oscillators are in phase (cluster-
ing), and the other two oscillators are also in phase (clustering).
Two sets of the two oscillators keep the same phase difference
(phase locking). This state is also called the 2-2 cluster state.

2. Three-cluster state: Two oscillators are in phase (clus-
tering), and the other two oscillators are at phases that are
different from each other (phase locking). This state is also
called 2-1-1 cluster state.

3. Phase-locked state: The phase is locked without cluster-
ing. Strictly, the clustering state is also a phase-locked state.
However, for convenience, we isolate the clustering state from
the phase-locked state in this article.

4. Asynchronous state: This is the state of a system that is
not in one of the above states.

In Fig. 5, the proportion of time in which the system is in
each state is seen to depend on the coupling strength. In each
condition, from two to four experiments were performed.

As we can see from Fig. 5, the two-cluster state (2-2
cluster state) appeared most frequently in the system with
the strongest coupling. As coupling strength decreases, the
three-cluster state (2-1-1 cluster state), the phase-locked state,
and asynchronous state appeared in this order. This means that,
with sufficient strength of coupling, the two-cluster state (2-2
cluster state) would be most likely to appear. Of course, this
result depends on the threshold values, but over a broad range
of threshold values, the same trend was observed.

III. MATHEMATICAL MODEL

In this section, we discuss the mathematical model that
reflects the features of the experimental system. First, we
consider a single oscillator with a perturbation used to obtain
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FIG. 6. Schematic illustration of the phase response in a density
oscillator. (a) In the case of upflow. (b) In the case of downflow.
Whether the phase is preceded or delayed depends on the state in
which the perturbation is added.

a phase response, and then a coupled system is taken into
account.

One possible cause of synchronization in coupled density
oscillators is the change in the water level in the outer vessel.
Therefore, we regard the change in the water level in the outer
vessel as the perturbation. Let P and P ′ denote the water
pressure at the bottom of a bore and at the top of a bore,
respectively. That is, P = ρgH and P ′ = ρ ′gh, where ρ and
ρ ′ are the densities of the low-density and the high-density
fluids, respectively, and g is the gravity acceleration. H

and h are the water levels in the outer and inner vessels,
respectively. h = H = 0 corresponds to the height of the bore.
Additionally, pressure difference is defined as Pdiff = P − P ′.
We hypothesize that switching from upflow to downflow and
from downflow to upflow occurs at each constant value of Pdiff .

When downflow occurs, Pdiff increases owing to the
increase in water level in the outer vessel and decrease in
water level in the inner vessel. If some water is poured into the
outer vessel during downflow, Pdiff suffers additional sudden
increase. This increase in Pdiff leads to flow-switching earlier,
which means the phase is preceded. In contrast, if the system is
perturbed in the same way during upflow, the phase is delayed
(Fig. 6).

Let us describe the idea more precisely. The time evolution
of water level in each vessel can be expressed by using a
combination of exponential functions [16]. In addition, we
impose conservation of flow, SḢ = −S ′ḣ, and we get the
following relation between the water level and the phase:

h(φ) =
⎧⎨
⎩

ae−αφ + b, (0 � φ < π )

−ae−α(φ−π) + b′, (π � φ < 2π )
, (1)

H (φ) =
⎧⎨
⎩

− S
S ′ ae−αφ + B, (0 � φ < π )

S
S ′ ae−α(φ−π) + B ′, (π � φ < 2π )

, (2)

where a, b, b′, B, and B ′ are fitting parameters set
so that they satisfy the continuity conditions h(0) =
h(2π ), limφ→π+0 h(φ) = limφ→π−0 h(φ), H (0) = H (2π ), and
limφ→π+0 H (φ) = limφ→π−0 H (φ). α is also a parameter, with
2π/α denoting the characteristic time. In this model, we
assume the switching of flow occurs at φ = 0 and π .
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Using Eqs. (1) and (2), we can obtain the relationship
between Pdiff and φ from Pdiff = ρgH − ρ ′gh as

Pdiff(φ) =
⎧⎨
⎩

−(
ρ S

S ′ + ρ ′)gae−αφ + D, (0 � φ < π )

(
ρ S

S ′ + ρ ′)gae−α(φ−π) + D′. (π � φ < 2π )
.

(3)

Here, D and D′ are also parameters decided by the continuity
conditions. Based on this expression of pressure difference, we
can discuss the phase response. We assume that pouring some
water into the outer vessel corresponds to the extra addition to
the pressure Pdiff by a small amount �Pext. Here, we consider
the pressure increase within the first order of the phase shift
�φext:

�Pext = dPdiff

dφ
�φext. (4)

Thus, we find the following time-evolutional equation of the
phase shift unless dPdiff/dφ is zero:

dφext

dt
=

(
dPdiff

dφ

)−1
dPext

dt
. (5)

Here, dφext/dt stands for the phase shift resulting from the
perturbation. Thus, the time evolution of the phase of a single
density oscillator can be expressed as

dφ

dt
= ω + dφext

dt
= ω +

(
dPdiff

dφ

)−1
dPext

dt
. (6)

It is remarkable that the description in Eq. (6) resembles
the phase oscillator model [1,21]. We can regard the factor
(dPdiff/dφ)−1 as phase response and the factor dPext/dt as a
perturbation. Therefore, if we can devise a relation between
the phase and an essential physical quantity that responds to
a perturbation, we can obtain the phase response according to
Eq. (6). The analytical form of the phase response of a density
oscillator is

ζ (φ) =
(

dPdiff

dφ

)−1

=
[

− g

(
S

S ′ ρ + ρ ′
)

dh

dφ

]−1

. (7)

Now, we consider a coupled system. We assume that the
perturbation comes only from the pressure change resulting
from the flow by the other oscillators. That is, in a coupled
system, one oscillator changes the water level in the outer
vessel, and this change can be regarded as a perturbation for
the other oscillators.

First, we define the phase and the inner water level of the ith
oscillator as φi and hi , respectively. Additionally, to simplify
the problem, we assume that the parameters for each oscillator
such as ρ ′, S ′, and ω are identical. In an N -coupled system,
conservation of flow is expressed as

SḢ = −
N∑
k

S ′ḣk. (8)

The pressure exerted from the outside to the inside of one
oscillator is

P = ρgH. (9)

Now, the external pressure change caused by the ith oscillator,
Pext,i , should be expressed as the difference between the
outside pressure P and the outside pressure change caused
by the ith oscillator. Thus,

dPext,i

dt
= Ṗ − (−ρg

S ′

S
ḣi) = −ρg

S ′

S

∑
j �=i

ḣj . (10)

Here, Eqs. (8) and (9) are used. Therefore, the time evolution
of the ith density oscillator in an N -coupled system can be
described as

dφi

dt
= ω +

[
− g

(
S

S ′ ρ + ρ ′
)

dhi

dφi

]−1
⎛
⎝−ρg

S ′

S

∑
j �=i

ḣj

⎞
⎠.

(11)

However, this equation is not closed with respect to phases,
since the factors ḣj are functions of time t . To transform
this equation into a equation closed with respect to phases,
we expand ḣj under the assumption that the coupling is
sufficiently weak; that is, the coupling is considered to be
of the order of ε. Then we can derive

dφi

dt
= ω + ε

[
− g

(
S

S ′ ρ + ρ ′
)

dhi

dφi

]−1
⎛
⎝−ρg

S ′

S

∑
j �=i

ḣj

⎞
⎠,

(12)

and

ḣj = dhj

dφj

dφ

dt
= dhj

dφj

[ω + O(ε)]. (13)

By substituting this into the Eq. (12) and neglecting the second-
and higher-terms of ε, we obtain

dφi

dt
= ω + ε

[
−g

(
S

S ′ ρ + ρ ′
)

dhi

dφi

]−1
⎛
⎝−ρgω

S ′

S

∑
j �=i

dhj

dφj

⎞
⎠

= ω + εω
ρ

ρ + S ′
S
ρ ′

(
S ′

S

)2(
dhi

dφi

)−1 ∑
j �=i

dhj

dφj

. (14)

To simplify the equation, we define the strength of the
coupling, K , the phase-response function, z(x), and the
equivalent external force from one oscillator, p(x), as

K = εω
ρ

ρ + S ′
S
ρ ′

(
S ′

S

)2

, (15)

z(x) =
⎧⎨
⎩

−eαx, (0 � x < π )

eα(x−π), (π � x < 2π )
, (16)

p(x) =
⎧⎨
⎩

−e−αx, (0 � x < π )

e−α(x−π). (π � x < 2π )
. (17)

The above description shows that the coupling strength K is
an increasing function of S ′/S, as has been known empirically.
Profiles of z(x) and p(x) are shown in Fig. 7. The signs of z(x)
and p(x) are defined so that z(x) exhibits the same behavior
as ζ (x). By using these definitions, the time evolution of the
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FIG. 7. Profiles of z(x) and p(x) plotted with α = 1.0.

phase can be expressed as

dφi

dt
= ω + Kz(φi)

∑
j �=i

p(φj ). (18)

When coupling between oscillators is weak enough for the
phase change to be sufficiently small during one oscillation
period, the coupling function can be averaged over the
oscillation period. Through averaging, the coupling function
can be written as a function depending only on a phase
difference. In general, for a weakly coupled oscillator,

dφi

dt
= ω + K

∑
j �=i

f (φi,φj ), (19)

can be averaged as

dφi

dt
= ω + K

∑
j �=i

�(φi − φj ), (20)

where

�(x) = 1

2π

∫ 2π

0
dψ f (x + ψ,ψ). (21)

The averaged coupling function in a coupled system of density
oscillators is

�(x) = 1

2π

∫ 2π

0
dψ z(x + ψ)p(ψ)

=

⎧⎪⎪⎨
⎪⎪⎩

− 1
π

[x e−α(π−x) − (π − x) eαx]
(0 � x < π )

1
π

[(x − π ) e−α(2π−x) − (2π − x) eα(x−π)]
(π � x < 2π )

, (22)

which is plotted in Fig. 8(a).

IV. ANALYSIS AND NUMERICAL CALCULATION

By using both nonaveraged and averaged model equations
obtained in the previous section, we performed a linear
stability analysis and a numerical calculation. For the linear
stability analysis, we define the phase difference ψi and
a small difference from the fixed point θi (i = 1,2, . . . ,

N − 1) as

ψi = φi − φN, (23)

θi = ψi − ψ∗
i (θi � 1), (24)

where N is the number of the oscillators in the coupled system,
and ψ∗

i is the fixed point.
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FIG. 8. (a) Profile of the averaged coupling function for a density
oscillator. (b) Relation between �a(x) = �(π + x) − �(π − x) and
x. The slope of the curve is negative around x = 0, which means that
the two-coupled oscillators exhibit stable antiphase synchronization.
Here we set α = 1.0.

For the numerical calculation, we computed the time
evolution of the obtained phase model under an angular
velocity ω = 2π/25 with N = 2, 3, and 4 oscillators by using
the Euler method. For all cases, initial phase of each oscillator
is determined by using a uniform pseudorandom number in
[0,2π ) and the time step is set to be 0.001.

A. Two-coupled system

First, we perform a linear stability analysis for a nonaver-
aged coupling system. A two-coupled system with nonaver-
aged coupling can be expressed as

dφ1

dt
= ω + Kz(φ1)p(φ2), (25a)

dφ2

dt
= ω + Kz(φ2)p(φ1). (25b)

Then, we assume 0 � φ2 < π � φ1 < 2π . By changing the
indices of the oscillators, the condition 0 � φ1 < π � φ2 <

2π is always satisfied. The fixed point we focus on is ψ∗
1 = π .

By making θ1 close enough to 0, the duration satisfying 0 �
φ1, φ2 < π , or π � φ1, φ2 < 2π can be made short enough to
be negligible.

The synchronous state is expressed as ψ̇1 = 0. Analyzing
the stability of the synchronous state entails only the stability
around the fixed point of ψ1. The equation to be analyzed is

dψ1

dt
= Kz(φ1)p(φ2) − Kz(φ2)p(φ1) (26)

= −K(eα(ψ1−π) − e−α(ψ1−π)). (27)

In this equation, we can see that ψ1 = π is a fixed point. To
analyze the stability, we consider

dθ1

dt
� −αK(eαθ1 + e−αθ1 )|θ1=0 θ1 = −2αKθ1. (28)

Since −2αK < 0, antiphase synchronization is stable in the
nonaveraged coupled system.

In the averaged coupling system, we obtain

dθ1

dt
= K�a(θ1), (29)
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FIG. 9. Results of the numerical calculation for (a) a nonaveraged
and (b) an averaged two-coupled system. Both systems show
antiphase synchronization. For each calculation, the parameters are
K = 0.001 and α = 1.0.

where we set

�a(θ1) = �(π + θ1) − �(π − θ1)

=

⎧⎪⎪⎨
⎪⎪⎩

− 2
π
{(π + θ1) sinh(αθ1) + θ1 sinh[α(π + θ1)]}

(−π � θ1 � 0)
− 2

π
{(π − θ1) sinh(αθ1) + θ1 sinh[α(π − θ1)]}

(0 � θ1 � π )

.

(30)

Equations (29) and (30) can be rewritten as

dθ1

dt
� K[�a(0) + �′

a(0)θ1] = −2K

π
[πα + sinh(απ )]θ1.

(31)
Thus, we can see the antiphase synchronization is stable,
which corresponds to Fig. 8(b). It should be noted that �(x)
is not differentiable at x = π as can be seen in Eq. (22),
but that �a(θ1) is differentiable at θ1 = 0 considering �(x)
is antisymmetric around x = π .

In the numerical calculation, antiphase synchronization
appeared stably for both nonaveraged and averaged models as
shown in Fig. 9, which corresponds well to the results obtained
by the linear stability analysis.

B. Three-coupled system

In the nonaveraged coupling model, there is no fixed point
that corresponds to the three-phase mode. In the averaged
coupling model, generally,

dψ1

dt
= K[�(ψ1 − ψ2) + �(ψ1) − �(−ψ1) − �(−ψ2)],

(32)
dψ2

dt
= K[�(ψ2 − ψ1) + �(ψ2) − �(−ψ1) − �(−ψ2)].

(33)

In Eqs. (32) and (33), ψ1 = 4π/3, ψ2 = 2π/3 and ψ1 = 2π/3,
ψ2 = 4π/3 are the fixed points that correspond to the three-
phase mode, and the equation to be considered is

d

dt

(
θ1

θ2

)

= K

(
2�′( 2

3π
) + �′( 4

3π
) −�′( 2

3π
) + �′( 4

3π
)

�′( 2
3π

) − �′( 4
3π

)
�′( 2
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3π
)
)(

θ1

θ2

)
.

(34)
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FIG. 10. Plot of (a + b)/K against α. From the plot, it can be
seen that bifurcation occurs at α � 1.5.

Now, we define the matrix A as

A =
(

2a + b −a + b

a − b a + 2b

)
, (35)

where a = K�′(2π/3) and b = K�′(4π/3). Eigenvalues of A

are calculated as

λ = 3(a + b) ±
√

−3(a − b)2

2
. (36)

To discuss the stability of the fixed point, it is only necessary
to consider the real part of the eigenvalues because the
eigenvalues are complex conjugates. Since their real part is
3(a + b)/2, the equation to be considered is

a + b =K

[
�′

(
2

3
π

)
+ �′

(
4

3
π

)]

=2
K

π

[
sinh

(
1

3
πα

)
− 2

3
πα cosh

(
1

3
πα

)

− sinh

(
2

3
πα

)
+ 1

3
πα cosh

(
2

3
πα

)]
. (37)

The plot of the real part of the eigenvalues of the system
is shown in Fig. 10. From Eq. (37), we can calculate that
a bifurcation occurs at α = αc � 1.419. If 0 < α < αc, the
three-phase mode is stable.

From the numerical calculation, a quasistable three-phase
mode, in which each phase difference was close to 2π/3 but
was vibrating, so not exactly equal to 2π/3, was observed when
α = 1.0 in the nonaveraged model, as in Figs. 11(a) and 11(b).
With the averaged model, the three-phase mode arose stably,
when α = 1.0 as shown in Figs. 11(c) and 11(d), whereas,
when α = 2.0, the three-phase mode became unstable and a
slow modulation of the phase difference around 2π/3 was
observed in both the nonaveraged model [Fig. 11(e)] and the
averaged model [Fig. 11(f)].

C. Four-coupled system

In the numerical calculation, the behavior of the nonaver-
aged coupled system can vary with the parameter values of
K and α as shown in Fig. 12. We investigated the tendency
to cluster with changing K and α. In each condition, ten
calculations were performed. To distinguish the state of the
system, we defined three states and thresholds to classify the
states as follows:
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FIG. 11. Results of the numerical calculation for a three-coupled
system. (a), (b) A nonaveraged system with α = 1.0. (c), (d) An
averaged three-coupled system with α = 1.0. (b) and (d) are expanded
figures of (a) and (c), respectively. (e) A nonaveraged three-coupled
system with α = 2.0 and (f) an averaged three-coupled system with
α = 2.0. The averaged system shows a three-phase mode when
α = 1.0, whereas the nonaveraged system shows a quasistable three-
phase mode with small fluctuation when α = 1.0. Both averaged
and nonaveraged systems show an unstable three-phase mode with
a slow modulation of the phase difference, when α = 2.0. For each
calculation, we set K = 0.001.
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FIG. 12. Results of numerical calculation for a four-coupled
system. The parameters are (a) α = 1.5, K = 0.03, (b) α = 1.5,
K = 0.01, and (c) α = 0.5, K = 0.01.
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FIG. 13. Diagram obtained by the numerical calculation for a
four-coupled system with various parameters. The red circle, blue
cross, and green triangle represent the clustering state, nonclustering
state, and ambiguous state, respectively. With higher K and α, the
system tends to show a clustering state.

1. Two-cluster state: In this state, the phase difference
between two of four oscillators and that between the other
two oscillators are both smaller than 2π × 10−3 in t = 8000
to 10 000. The phase difference between the two pairs of
oscillators are around π . For example, in Fig. 12(a), two pairs
of two oscillators are at the same phase and the phase difference
of the two pairs is π .

2. 2-2 mode: In this state, the time changes of the phase
differences for all oscillators for every time step are always <

2π × 10−3 in t = 8000 to 10 000. For example, in Fig. 12(c),
two pairs of oscillators have phase differences fixed at π , and
the phase difference of these pairs is fixed at a constant value.

3. Ambiguous state: This state describes any state other
than those listed above.

The calculation results are shown in Fig. 13. The 2-2 cluster
state appeared more frequently for larger K or α.

We also performed a numerical calculation for a four-
coupled system with the averaged model. In this calculation,
we observed the 2-2 mode but never observed any clustering
state under any conditions we tried.

V. EXPERIMENT: MEASUREMENT OF THE
PHASE-RESPONSE CURVE

To obtain the phase response of a density oscillator, we
performed the following experiment: Fresh water in the outer
vessel of a single density oscillator and a pipette were con-
nected with a rubber tube. The water level was measured with
a laser displacement meter (LT9010M, Keyence). By adding
or removing a fixed amount of fresh water with the pipette
at an arbitrary phase, the system was perturbed as shown in
Fig. 14. Because water was added or removed alternately,
the cumulative effect of addition and removal of water was
negligible. Based on these results, the phase response was
obtained by plotting the phase shift versus the phase at
which the perturbation was added. The ratio of pressure
added through one perturbation, Ppert, to the amplitude of
the pressure difference, �Pamp ≡ max (�P ) − min (�P ), is
Ppert/�Pamp � 0.17.

The phase response of a density oscillator has already been
obtained experimentally by González et al. by using a pulselike
perturbation [20]. In our study, the perturbation is a single

012212-7



HORIE, SAKURAI, AND KITAHATA PHYSICAL REVIEW E 93, 012212 (2016)

Laser Displacement Meter Pipette

FIG. 14. Schematic illustration of the side view of the experimen-
tal system to measure the phase response.

addition or single removal of water, which is easy to relate
to the change in water level resulting from other oscillators’
evolution in a coupling system.

To obtain the phase shift, we constructed a linear fit of
the phase evolution both before and after the perturbation. As
a phase before the perturbation, we used the data in three
periods just before the perturbation. As a phase after the
perturbation, we used the data in the three periods that occur
two periods after the perturbation, as shown in Fig. 15, because
the transient period of a density oscillator after a perturbation
was sufficiently short and we consider the oscillator to have
returned to the limit cycle during the following two or
fewer cycles. Then the phase was determined with the same
procedure as in the previous part, and a fitting was performed
with a fixed slope, i.e., using the same phase velocity ω for
both before and after the perturbation. Therefore, we fitted the
experimental data with two linear equations and determined
φB and φA before and after the perturbation:

φB(t) = ωt + φ0 (before perturbation),
φA(t) = ωt + φ1 (after perturbation). (38)

Then, the phase shift �φ is calculated using

�φ = φ1 − φ0, (39)

and phase response Z is

Z =
{

�φ, (If water is added)
−�φ. (If water is removed). (40)

The phase at which the perturbation is added, φ, is
calculated using (tp − t0) ω, where tp and t0 are the time at
which the perturbation is added and that which corresponds
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FIG. 15. Experimental results for the phase-response curve.
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FIG. 16. Phase response calculated from the experimental results.

to the phase equal to zero in the period just before the
perturbation, respectively.

Figure 16 shows the relationship between Z and φ, namely,
the phase-response curve that was obtained experimentally.
It can be seen that the tendency of the phase-response
curve obtained in experiments is similar to the one obtained
theoretically shown in Fig. 7.

VI. CONCLUSION

In this article, we suggested a method to obtain the
phase response of a density oscillator. The model derived is
considered to reflect the features of the experimental system in
the sense that we can obtain similar synchronization behaviors
in the model and the experiment.

This method is so general that we can apply it to other
oscillator systems. If the relation between an essential physical
value and the phase is known, we can determine the phase
response mathematically from the relation. In the case of a
density oscillator, we assume that the oscillation is driven
by the pressure difference around a bore, and we derive the
relation between the phase and the pressure difference. Even
if the relation between an essential physical value and the
phase is unclear, it might be possible to obtain the relation
phenomenologically using the experimental observation.

In addition, Okuda pointed out a relation between the
clustering mode and the Fourier components of the coupling
function [8]. Therefore, if we can apply the results to the phase
response derived by our method, it might be possible to predict
the clustering mode by only considering the phase response of
a single oscillator based on physics as we did in this article.
Today we have only one example of an application of this
method, so we need to apply it to other systems to develop the
method further.
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