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and nuclei

J. G. G. S. Ramos,1 A. L. R. Barbosa,2 B. V. Carlson,3 T. Frederico,3 and M. S. Hussein3,4

1Departamento de Fı́sica, Universidade Federal da Paraı́ba, 58051-970, João Pessoa, Paraı́ba, Brazil
2Departamento de Fı́sica, Universidade Federal Rural de Pernambuco, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil

3Departamento de Fı́sica, Instituto Tecnológico de Aeronáutica, CTA, São José dos Campos, S.P., Brazil
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We derive analytical expressions for the correlation functions of the electronic conductance fluctuations of an
open quantum dot under several conditions. Both the variation of energy and that of an external parameter, such as
an applied perpendicular or parallel magnetic fields, are considered in the general case of partial openness. These
expressions are then used to obtain the ensemble-averaged density of maxima, a measure recently suggested to
contain invaluable information concerning the correlation widths of chaotic systems. The correlation width is
then calculated for the case of energy variation, and a significant deviation from the Weisskopf estimate is found
in the case of two terminals. The results are extended to more than two terminals. All of our results are analytical.
The use of these results in other fields, such as nuclei, where the system can only be studied through a variation
of the energy, is then discussed.
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I. INTRODUCTION

Chaotic quantum systems [1–3], such as the compound
nucleus [3–5], open quantum dots [6], and graphene flakes
[7–9], exhibit common universal features characterized by
fluctuating observables, such as the electronic conductance
in the latter four references, and the compound nucleus
cross section in the former three references [3–5]. Useful
information about the system in this regime of the dynamics are
obtained through the average of the observables and through
the correlation functions defined as the average of products of
two fluctuating observables at two values of the independent
variable, such as the energy or an external field. The correlation
function is of paramount importance as it measures the degree
of coherence present in the otherwise fully chaotic system.
This measure resides in the correlation width, which specifies
the shape of the correlation function. In the case of energy
variation the shape is Lorentzian, as shown more than half
a century ago by Ericson [10], as long as the resonances
are strongly overlapping or in the opposite limit of isolated,
while in the case of a varying external parameter such as
a magnetic field, the correlation function first obtained by
Efetov is a square Lorentzian [11–13]. In Ref. [13], the effect
of temperature on the conductance correlation function was
investigated.

Several papers have been published over the past 20 years
aiming at a generalization of the correlation function of chaotic
systems with important deviations from the Ericson-Efetov
limits [3,14–20]. This was necessary as more precise and
detailed data have become available and have shown a clear
deviation from the classic Ericson and Efetov limits [17,21–
26].

Notwithstanding the many works published since the 1980s,
dedicated to the study of the correlation function and its
deviation from the Ericson/Efetov limits, we give in this paper
more discussion of this matter based on our application of the
average density of maxima method [27,28], as we believe that
further work is called for.

Before presenting our results, it is important to point
out that the first exact analytical results for the two-point
S-matrix correlation functions from the region of isolated to
the region of strongly overlapping resonances were provided
in the seminal work of Verbaarschot et al. [3] for chaotic
scattering systems with preserved time-reversal symmetry
(TRS) and extended to systems with completely violated TRS
[15]. See also Ref. [17]. For the case of partially broken
time-reversal symmetry exact analytical results are given in
Ref. [20]. Several detailed experimental investigations have
been published [17,21–24]. Furthermore, the deviations of the
cross-section and/or conductance correlation functions from
the Ericson or the Efetov limits, respectively, were investigated
in detail numerically in Ref. [29], and both experimentally and
numerically in Ref. [25].

It is therefore clear that further detailed investigation
of the correlation functions and their deviations from the
above-mentioned two extreme Ericson-Efetov limits and the
resulting correlation widths, is still an important line of
research. In this paper we calculate analytically the correlation
functions for the case of partially open system (with a varying
degree of transmission to the open channels). Three types of
external magnetic fields are considered. The energy correla-
tion function is discussed in details and the corresponding
correlation width is extracted and found to be significantly
different from the Weisskopf estimate. This last result is quite
important as it affects the value of the dwell time in these
systems.

II. QUANTUM CHAOTIC SCATTERING

Quantum chaotic scattering (QCS) is a widely occurring
phenomenon in physics. It operates in a variety of systems,
such as electronics [6], spintronics [30], biomolecules [31],
disordered mesoscopic nanostructutes [2], and the compound
nucleus [32]. The emergence of the phenomenon is, just
as in other cases of quantum chaos, directly related to
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the intrinsic chaotic dynamics associated with quasibound
states of a quantum system. Random matrix theory (RMT)
supplies the formal S matrix of QCS, as it describes the
intrinsic Hamiltonian that governs the dynamics and the
scattering. The empirical manifestation of QCS is evidenced
by universal fluctuations observed in electronic conductance in
open quantum dots [6], in Graphene flakes [7–9], transmittance
in microwave resonators [17], and in compound nucleus cross
sections [3].

The S matrix describing QCS is given by

S(ε,X) = 1 − 2πiW †(ε − H (X) + iπWW †)−1W, (1)

where H (X) is a random Hamiltonian matrix of dimension
M × M that describes the resonant states in the chaotic system,
which is subject to the influence of an external parameter, X,
which can be an external magnetic field, or a change in the
shape of the mesoscopic system. The number of resonances is
very large (M → ∞). The matrix W of dimension M × (N )
contains the channel-resonance coupling matrix elements.
Using the above S matrix, one is then able to calculate
observables. The ensemble average 〈Scc′ (ε)S�

cc′ (ε′)〉 supplies
the S-matrix autocorrelation function for c �= c′, while for
c = c′ we get 〈Scc〉2 = 1 − Tc, with Tc being the transmission
coefficient into channel c. Thus, we get the average compound
nucleus cross section if Scc′ is constructed to describe nuclear
scattering, while in the case of a quantum dot the S matrix
is used to describe the average electronic conductance. The
ensemble average of a product of four S matrices supplies the
four-point function, 〈Scc′ (ε1)S�

cc′ (ε1)Scc′ (ε2)S�
cc′ (ε2)〉, namely

the cross-section correlation function which is a function
of the difference δε ≡ |ε1 − ε2|. This correlation function is
characterized by the correlation width, of great importance in
the study of chaotic quantum systems.

In application to conductance statistics in quantum dots
with three or more terminals (leads) it is convenient to
represent the S matrix as

S =

⎛
⎜⎝

r11 t12 t13

t ′12 r22 t23

t ′13 t ′23 r33

⎞
⎟⎠, (2)

where tij indicates the probability amplitude of transmis-
sion of the channel(s) contained in the terminal i for the
channel(s) contained in the terminal j and rii denotes
the probability amplitude of reflexions of the channels in the
terminal i.

The calculation of the correlation function using the above
RMT-based S matrix can be done both in the case of a variation
of the energy or in the case of a variation of the external
parameter, X (representing an applied magnetic field, change
in the shape of the quantum dot, etc.) [11–13,18]. Analytical
calculation of the ensemble averages, done using the method
of supersymmetry, has been presented in several publications,
see, e.g., Refs. [3,15,33–35]. The expressions obtained are
rather complicated as they involve, among other things, the
final evaluation of triple integrals. Most applications of the
above S matrix in the calculation of the correlation functions
for chaotic systems, especially for the purpose of the analysis
of the experimental data [19,21,26,33] involve numerical
simulations using a random matrix generator. Recently an

alternative method has been devised to potentially supply
a simpler way to obtain analytical results. This alternative
method is based on the distribution of the S matrix itself,
an idea pioneered by Mello and collaborators [36–38]. See
also Refs. [33,35,39]. The stub model is such an alternative
[40–42].

III. THE STUB MODEL AND CALCULATION OF THE
CORRELATION FUNCTION AND WIDTH

We assume that the particles dynamics is ballistic and
ergodic, and we model the system statistical properties using
the random matrix theory (RMT)-based stub model. Following
Refs. [40,42], for particles with spin, the scattering matrix S
can be represented as a unitary matrix with quaternionic entries
and is parameterized as

S(ε,B) = S̄ + PU[1 − K†R(ε,X )KU]−1P†. (3)

Here, U matrix, M × M , is the scattering matrix counterpart
of an isolated quantum system, while S̄ is the average of
the scattering matrix of the system S, which has dimension
N × N . The M stands for the number of resonances of the
system, while N = N1 + N2 + N3 is the total number of
open channels. The universal regime requires M 	 N . The
K matrix is a projection operator of order (M − N ) × M ,
while P , of order N × M , describes the channels-resonances
couplings. Their explicit forms read Ki,j = δi+N,j , Pi,j =
diag(iδi,j

√
T1,iδi+N1,j

√
T2,iδi+N1+N2,j

√
T3) and S̄i,j =

diag(δi,j

√
1−T1,δi+N1,j

√
1−T2,δi+N1+N2,j

√
1−T3), we are

assuming the equivalent coupling for channels in the same
terminal. The R matrix (representing the external fields) is
the stub model counterpart of order (M − N ) × (M − N )
as described by Ref. [42]. The parameter X represents, e.g.,
the type of external applied magnetic field employed. The
quantities Ti are transmission coefficients of the equivalent
channels in terminal i.

The calculation of the ensemble averages can be done in
a closed form using the stub S matrix above. Details of such
calculations can be found in the original references (see, e.g,
Refs. [18,28]). The ensemble average of the conductance, Q =
tr(t12t

′
12), is easily calculated, [39], following the Ref. [42] of

a chaotic QS. We obtain

〈Q〉 = T1T2

T

[
1 − 2 − β

β

T1T2 + T2T1

T 2

]
, (4)

where Ti = NiTi is the total transmission coefficient for the
terminal i with equivalent channels and T = T1 + T2 + T3,
and the ε-dependence disappear in the ensemble average. In
the case of the compound nucleus, the quantity Q becomes
the cross section and the its ensemble average, similar to
Eq. (4), is known as the Hauser-Feshbach cross section
[43], containing the product of two Ti divided by their sum,
T = T1 + T2 + T3. This is a common feature of the average
fluctuation cross section and also of the average conductance.
The factor [1 − 2−β

β
T1T2+T2T1

T 2 ] represents what is known as
the elastic enhancement factor, which is known exactly both
for orthogonal and unitary symmetry [34,35]. Note that the
number of channels, N , in all the terminals is taken to be large,
N >> 1, and thus we are in the semiclassical regime. Note
further that the symmetry parameter β takes on the value 1 in
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the Gaussian orthogonal ensemble, 2 in the Gaussian unitary
ensemble, and 4 in the Gaussian symplectic ensemble.

As for the correlation functions, the calculation using the
stub model can be carried out as done in Ref. [18]. In the
following we merely write down the correlation functions for a
chaotic quantum dot in the case of only two terminals, specified
by T1 and T2 and and consider T1 = T2 = T , we find for the
energy variation,

C(δE)

1/8β
= 3T (2 − T ) − 2

1 + (δE/�E)2
+ 4[1 + T (T − 2)]

[1 + (δE/�E)2]2
, (5)

where β is a measure of the universality class to which H

pertains. It should be mentioned that magnetoconductance
correlation functions were calculated using the Hamiltonian
approach, Eq. (1), and the study of a relevant asymptotic
expansion in inverse channel number was reported in Ref. [44].

For the variation of the external parameter, we consider
three cases. An external perpendicular magnetic field, B⊥,
and external perpendicular magnetic filed acting on the spin-
orbit interaction, the so-called Rashba-Drasselhaus field, H⊥
[45,46], and a parallel magnetic field, H‖, whose effect has
been studied recently by Zumbúhl et al. [47],

C(δB⊥)

1/8β
= 2T (1 − T )

1 + (δB⊥/�B⊥)2
+ 2 + T (3T − 4)

[1 + (δB⊥/�B⊥ )2]2
, (6)

C(δH⊥)

1/8β
= T (2 − T )

2 + (δH⊥/�H⊥ )2
+ 4 + T (3T − 4)

(2 + (δH⊥/�H⊥)2)2
. (7)

Finally, for the case of a parallel magnetic field considered
recently in Ref. [47],

C(δH‖)

1/8β
= T (2 − T ) + 2

1 + (δH‖/�H‖)2
. (8)

This last correlation function is new and deserves some
discussion. It does depend on the openness parameter, the
transmission coefficient, T , yet it has a pure Lorentzian shape,
in contrast to the cases of applied perpendicular magnetic
fields, Eqs. (6) and (7). The derivation of the above equations
for the correlation functions relies on the assumption of
equivalent channels in each terminal and large number of these
channels.

It should be mentioned that a thorough study of the
energy dependence and correlation length in quantum chaotic
scattering with many channels was performed in Ref. [35]. A
general relation was established there between fluctuations in
scattering and the distribution of complex energies (poles of
the S matrix). In particular, the correlation length was shown
to be given by the spectral gap in the pole distribution, and
the deviations of the gap from the (semiclassical) Weisskopf
estimate [Eq. (14) of the present work] were analyzed in great
detail there as well.

The important feature that characterizes these correlation
functions is that they all (except the case of H‖) deviate from
pure Lorentzian or square Lorentzian shape, for an arbitrary
value of the openness probability. The application to the case
of the compound nucleus, Eq. (5), allows the investigation
of the statistics of resonances both in the weak (isolated
resonances) and strong (overlapping resonances) absorption
cases, as well as in the intermediate cases. Several quantities

can be obtained from the correlation functions. The average
density of maxima in the fluctuating observable is one of
them. In Ref. [28], this quantity was derived and analyzed
for C(E) and C(X). For completeness we give below the main
results and extend them to other types of applied magnetic
fields:

〈ρz〉 = 1

2π

√
T4

T2

T2 = − d2

d(δz)2
C(δz)

∣∣∣∣
δz=0

T4 = d4

d(δz)4
C(δz)

∣∣∣∣
δz=0

. (9)

Taking for the correlation function the general
form suggested by our results Eqs. (5)–(8), C(z) =
A/(1 + z2) + B/(1 + z2)2, we obtain < ρz >�z =
(
√

3/π )
√

(A + 3B)/(A + 2B).
Thus, for the energy variation,

〈ρE〉 =
√

3

π�E

√
9 T 2 − 18 T + 10

5 T 2 − 10 T + 6
≡

√
3

π�corr
, (10)

which defines �corr [27]. For the case of an external perpen-
dicular magnetic field,

〈ρB⊥〉 =
√

3√
2π�B⊥

√
7 T 2 − 10 T + 6

2 T 2 − 3 T + 2
. (11)

In the case of the Rashba-Dresselhaus field, the correlation
function has the general form C(z) = A′/(2 + z2) + B ′/(2 +
z2)2. The average density of maxima is then < ρz >�z =
(1/π )

√
(3A′ + 5B ′)/(A + 2B). Thus,

〈ρH⊥〉 = 1

π�H⊥

√
6 T 2 − 7 T + 10

5 T 2 − 6 T + 8
. (12)

Interestingly, for the case of a parallel magnetic field, the
result is independent of the openness parameter and is identical
to the Brink-Stephen [27] one,

〈ρH‖ 〉 =
√

3

π�H‖
≈ 0.55

�H‖
. (13)

The important point to emphasize here is that both the
correlation function and the average density of maxima are
characterized, for a fixed value of the openness probability, by
a single quantity, the correlation width. In the energy variation
case, this width is the inverse of the dwell time and is usually
estimated using the Weisskopf expression [48],

�E ≈ �W = 	

2π

∑
c

Tc, (14)

where, 	 is the average spacing between the resonances in the
chaotic system, and the sum extends over all the open channels
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FIG. 1. (a) A typical Lorentzian behavior of the correlation function and the correlation width �corr associated with a transport observable
between terminals 1 and 2 influenced by another nonlinear terminal 3, as the inset indicates. (b) A deviation from the Weisskopf correlation
width in the semiclassical regime as affected by the presence of other terminals lumped into an effective lead designated by 3, Eq. (18).
The different lines correspond to different values of the effective transmission through this third terminal, and they show how the correlation
function varies with ε/�corr in the interval [0.99, 1.01], a region of an almost linearity. By changing the value of T3, one sees a gradual decrease
of the correlation function indicating a changing of of the ratio D = �corr/�W as a function of T3. (c) The ratio D = �corr/�W as a function
of T3 exhibiting the attainment of the Weisskopf length only for a completely open (T3 = 1) or completely closed (T3 = 0) extra terminals
lumped into an effective one. See text for details. The continuous line is the analytical result and the dots are the results of the numerical
Hamiltonian simulation using the S matrix of Eq. (1). (d) The correlation function vs. ε/�corr in the interval [0.2, 0.4] and exhibits the deviation
of the correlation width from the classic Weisskopf estimate both analytically (full curves) and numerically (dashed curves). The “numerical”
calculation was obtained as in (c). See text for more details.

reached through the transmission coefficient, Tc. Deviation
from the Weisskopf estimate was calculated in Ref. [26] using
the S matrix of Eq. (1). With the help of a random matrix gen-
erator, these authors calculated numerically the transmittance
correlation function and tested their results using experimental
data obtained with microwave resonators. They obtained the
correlation width, �corr, as the width at half maximum of the
correlation function. They further found for the ratio D =
�corr/�W versus

∑
c Tc, values that reach up to 1.1. In our work

here, we can read out the change in the correlation width as
Eq. (10),

D = �corr

�W

=
√

5 T 2 − 10 T + 6

9 T 2 − 18 T + 10
. (15)

For almost closed system, T � 1, the deviation reaches the
value D = √

3/5 = 0.78. Of course in the other limit of a
completely open quantum dot, T ≈ 1, the ratio D attains the
value of unity as expected.

It is interesting to generalize our result to the case of two
terminals in the presence of other terminals lumped together
as an effective terminal characterized by T3 and study the
variation of the correlation width as a function of T3. Thus, we
extend the stub method for the new calculation of the general
correlation function, including the quantum interference terms.
Using the same stub S matrix described above, together
with the typical large number of diagrams for the correlation
function [40], we calculate the averages of products of two
observables, Q(E)Q(E′), in the limit T1 = T2 = N , and N1 =
N2 = N3 = N . Note that in this case of more than two termi-
nals, the result we have obtained are valid for T1 = T2 = 1,

012210-4



CORRELATION FUNCTIONS AND CORRELATION WIDTHS . . . PHYSICAL REVIEW E 93, 012210 (2016)

-100 -50 0 50 100

corr

1

2

3

Q

FIG. 2. Typical fluctuations, obtained through numerical simula-
tions, in a transport observable Q as a function of ε/�corr for N = 50
open channels coupled to 5 × 103 resonances, for a single realization
of H in Eq. (1). The top curve indicates a single measure in the
absence of the extra effective terminal and the bottom one shows
the effect of the extra effective terminal with T3 = 0.3. These curves
serve as numerical “data.”

to get

C(δE)

1/β
=

[
A1(T3) − 8N2T 2

3 (1 − T3)2
]

N4(2 + T3)6
[
1 + (δE/�W )2

]
+ δ2β

T3A2(T3)

N3(2 + T3)6
[
1 + (δE/�W )2

]
+ 8T 2

3 (1 − 2T3 + T 2
3 )

(2 + T3)6
[
1 + (δE/�W )2

]2 , (16)

and

A1(T3)

N4
≡ A1(T3) = T 4

3 + 2(2p + T3)(2 + T3)T 3
3

+ [
2T 2

3 − 4(2 + T3)2T3 + 16(2 + T3)2]T 2
3

+ 2(2p + T3)
[ − 4T 2

3 (2 + T3) + 12(2 + T3)2
]
T3

+ 8(2 + T3)4

A2(T3)

N3
≡ A2(T3) = T3(2 + T3)2[2(2 + T3) + 1]. (17)

Equation (16) shows convincingly that the correlation func-
tion as a function of the Weisskopf width is not a Lorentzian.
Therefore, �W is no longer the transport correlation width.
Figure 1(b) shows the modification of the Weisskopf width as
a function of the T3. On the another hand, the amplitude of
the universal fluctuations (variance) var[Q] = C(0) = 1/β is
maintained unchanged regardless of the additional terminals.
Equation (16) can be written in a Lorentzian form. After some
algebra we find the following:

C(δE)

1/β
= 1

1 + (δE/�corr)2
, �corr ≡ �WD, (18)

with

D ≡
√

64T 4
3 (1 − T3)4 + [A1(T3) + δ2βT3A2(T3)]2

A1(T3) + δ2βT3A2(T3)

− 8T 2
3 (1 − T3)2

A1(T3) + δ2βT3A2(T3)
, (19)

which is highly nonliner as a function of T3. The forms
of Eqs. (18) and (19) show analytically the effect of the
presence of more terminals on the correlation properties of
the other two terminals. It simulates absorption of the flux in
the two-terminal subsystem. The nonlinear effect disappears
in the limits T3 = 1 (ideal) and T3 → 0 (opaque) for which
D → 1, and the correlation length approaches the Weisskopf
length, as Fig. 1(c) shows clearly. These results were verified
by numerical simulations with random matrix generator using
the S matrix of Eq. (1).

For the purpose of verifying our analytical results, we
compare them to those obtained using the RMT-based S

matrix used in Ref. [3]. Thus, we have performed a numerical
simulation using the Hamiltonian model of Eq. (1) with a
configuration of 50 open channels and 5 × 103 resonances in
an energy range 	ε/� ∈ [−100,100]. As shown in Fig. 2, the
transport observable Q is numerically obtained for the same
scattering QS. For such single QS the Q is largely affected
in the presence of the extra nonlinear terminals in two forms.
First, the reference line of the fluctuations is lowered (from
the top to the bottom plots of Fig. 2), as can be expected using
Eq. (4). This implies that the average value of Q is reduced by
the addition of a third terminal. Second, the number of maxima,
calculated by merely counting them from the figures, increases
from 110 to 111 in the same energy interval [	ε/� = 200],
when a third terminal is added, reasonably confirming our
analytical findings. Due to the very complicated numerical
simulations when three leads are involved, as is the case here,
we have made only one run. We are quite aware of the need to
make several runs in order to get good statistics. However, we
feel that we can still make a reasonable statement concerning
our analytical results versus the random S-matrix simulation
described above.

Thus, we find good agreement between our analytical
calculation and the numerical one. In a way we are also
confirming the results of Ref. [26] obtained for transmittance
in a microwave cavity. See also Refs. [15,17,20–24,33].

IV. CONCLUSIONS

In this paper, we analytically calculate the correlation
functions for chaotic systems using the quantum chaotic
scattering theory. We show that in the case of energy variation
and in the variation of an external magnetic field, these
functions deviate significantly from the expected Lorentzian
and square Lorentzian shapes and thus confirm earlier findings.
The parameter that measures this deviation in our calculation
is identified as the transmission coefficient, which acts as
the “openness” probability. We further identify the deviation
of the correlation width from the Weisskopf width for an
arbitrary observable of the quantum transport. The stub
calculation of the ensemble average of the products of four

012210-5



RAMOS, BARBOSA, CARLSON, FREDERICO, AND HUSSEIN PHYSICAL REVIEW E 93, 012210 (2016)

scattering matrices allows finding this deviation, of the order
of 1.0%, and reveals the effects of adding more terminals
(leads) on the chaotic quantum transport. The consequences
of our results include the increase of the dwell time of an
arbitrary chaotic scattering system. The results are general and
applicable to any scattering amplitudes between two terminals.
Therefore, the deviation of the correlation width from the
Weisskopf estimate can occur in spin and/or charge channels
for electronic nanostructures, the transmittance of antennas,

sublattices and/or subvalleys channels for graphene flakes
[49], etc.
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