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Deterministic particle transport in a ratchet flow
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This study is motivated by the issue of the pumping of particle through a periodic modulated channel. We
focus on a simplified deterministic model of small inertia particles within the Stokes flow framework that we
call “ratchet flow.” A path-following method is employed in the parameter space in order to retrace the scenario
which from bounded periodic solutions leads to particle transport. Depending on whether the magnitude of the
particle drag is moderate or large, two main transport mechanisms are identified in which the role of the parity
symmetry of the flow differs. For large drag, transport is induced by flow asymmetry, while for moderate drag,
since the full transport solution bifurcation structure already exists for symmetric settings, flow asymmetry only
makes the transport effective. We analyzed the scenarios of current reversals for each mechanism as well as the
role of synchronization. In particular we show that, for large drag, the particle drift is similar to phase slip in a
synchronization problem.
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I. INTRODUCTION

Microfluidic devices devoted to particle sorting have been
extensively developed since the late 20th century [1–5] with
applications ranging from biological to chemical and industrial
fields. Particle transport along narrow channels with periodic
properties is a feature of many devices reported in the literature
[6]. Such a system allows a mass dependent sorting process as
demonstrated in the experimental setup in Refs. [7,8]. The
promising results of the experiment presented in Ref. [8]
motivated the present work. In that experiment, a pore lattice,
built in a macroporous silicon wafer, was connected at both
ends to basins. The basins and the pores were filled with liquid
and micrometer-sized particles. Sinusoidal pumping drags the
particles. The experiment showed the existence of an effective
transport in specific ranges of parameter values and in addition
the possibility to invert the transport direction by varying the
pumping frequency. Among the many mechanisms which may
explain these results, Refs. [8,9] interpret the slow particle
drift as a ratchet effect called drift ratchet [9–11]. “Ratchet
effect” refers to the possibility of transporting particles even
if the mean force is zero (zero bias) or, more surprisingly,
in the opposite direction to the bias. In the drift ratchet, the
authors of the cited references propose a minimal model in
which inertia is neglected and the particle advects with the flow
under thermal fluctuations. Such a model of an overdamped
ratchet under Brownian noise has been widely used to explain
transport in many field of physics, and reviews can be found
in Refs. [12] or [10]. However, a recent experiment on particle
transport in pores [13] revealed that thermal fluctuations are
negligible and that the Stokes drag is the dominating force
acting on the particles.

In the present paper, we address a complementary problem:
Is it possible to achieve this kind of transport for larger particles
when noise is neglected and small inertia is taken into account?
We therefore seek deterministic mechanisms responsible for
the transport. Among the deterministic transport mechanisms
of suspended particles with zero-mean force, the Stokes drift
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is an important factor that we found in many frameworks
especially in sediment transport [14], fluid mixing processes
[15], and Langmuir circulation in the ocean [16,17]. However,
the drift is due to a nonzero average of the traveling wave
motion along a Lagrangian trajectory. Therefore, there is fluid
transport. Yet we seek a particle drift without fluid transport.
In this way, the flow needs to be ratchetlike. A common way
to classify ratchets is by the kind of potential and forcing [10].
For example, when the potential depends only on space and
the external force is time periodic, it is called a rocking ratchet,
whereas when the potential depends on space and time, as for
the Stokes drift, it is called a pulsating ratchet. The present
study employs a kind of fluctuating potential ratchet where the
potential is the product of the spatial and temporal variations,
i.e., a standing wave.

The generation of a current in a ratchet can in a sta-
tistical sense be understood in a unified point of view as
an out-of-equilibrium phenomenon within the framework of
a symmetry analysis [18–21]. In one-dimensional systems,
two symmetries have to be broken, one related to spatial
parity symmetry and the other to time-reversal symmetry. For
instance, inertia breaks time-reversal symmetry. The definition
of these symmetries will be detailed in Sec. II. Note that these
symmetry conditions are necessary but not sufficient to induce
transport and even if the latter exists, it provides no information
about the kind of particle dynamics.

The deterministic approach raises questions about the
existence of unbounded particle trajectories which may exist
without net current, since even for the one-dimensional
problem, the dynamics of deterministic inertia ratchets is quite
complex and regions of chaotic behavior are ubiquitous. For
certain parameter values, the chaotic dynamics disappears
suddenly and a regular transport takes place. The transition
was identified as a crisis and as a synchronization phenomenon
in the early 2000s [22,23]. Owing to the L-spatial and
the T -temporal periodicities, the velocity is rational, i.e.,
c = mL/nT , where m and n are integers and the velocity
c remains locked to this value in its existence domain. In the
literature (e.g., Ref. [24]), this is referred to as phase locking
or phase synchronization since the dynamics is synchronized
with the periodic forcing. Such a synchronization is not specific
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to the ratchet problem but is rather a generic phenomenon
of periodically forced nonlinear oscillators [25,26]. Another
noteworthy property of dynamics in ratchet is current reversal
corresponding to a change in the transport direction by varying
a bifurcation parameter such as the pumping frequency. In
the early 2000s different scenarios were reported using time
integration. Mateos [22,27] linked current reversal with chaos-
to-order transition and evoked tangent bifurcation. In contrast,
Barbi and Salerno [23] showed the existence of a current
reversal without chaotic dynamics but rather the coexistence
of different periodic attractors. In Ref. [24] a more general
interpretation of current reversal was presented starting with
the symmetric case. In this case, the existence of one transport
solution implies the existence of the opposite one for a sym-
metric initial condition. If the symmetry is slightly broken, e.g.,
by a constant bias, the stability domains of the two opposite
solutions no longer match. Then, by varying the bifurcation
parameter, a current reversal may be observed. The relevance
of the coexistence of transport solutions in opposite directions
was corroborated more recently [28].

Other groups have pointed out the role of symmetry in
current reversal [21,29,30]. However, its role is fundamentally
different: asymmetry determines the direction of the transport.
The current reversal therefore results from a change of
asymmetry. In this framework, Ref. [31] proved a very generic
result for deterministic or stochastic rocking ratchets, showing
that the transport velocity is a function of phase shift between
the different harmonics of the rocked force. This general result
may explain many current reversals with biharmonic forcing
or asymmetric potential. However, the main assumption is that
the transport velocity depends only on the rocked force and
not on the initial conditions. Therefore, these results cannot be
applied when current multiplicity exists as in Ref. [24].

Although a plethora of studies have focused on inertia
ratchets, little is known about ratchets with weak particle
inertia. Usually the inertia is assumed to be large or at least of
order one [22–24,27]. The case of small inertia is addressed as
the limiting case of an overdamped particle under stochastic
fluctuations [9,32]. One of the goals of the present paper
was to find the order of magnitude of inertia needed to
obtain transport. The second goal concerns the emergence of
unbounded dynamics and transport. The transitions reported
in the literature focus on the synchronization threshold of
transport solutions. However, the transition from bounded to
unbounded dynamics does not seem to be clearly identified.
This question is especially relevant for our case since, for small
enough inertia, the dynamics is bounded. Last, we investigated
whether symmetry may play different roles in the existence
of a transport solution: is it either a spontaneous symmetry
breaking or induced only by asymmetry, as for a mechanical
pawl?

In order to answer these questions, we propose to use
numerical bifurcation analysis (see Ref. [33] for a review)
in addition to direct time simulation. The advantage of this
method is its ability to follow periodic orbits independently
of their stability and to find their domain of existence. Such a
skeleton of the dynamics has proven effective to find the onset
of transport and to understand the transition. The continuation
method is seldom used for the simple ratchet problem, but
paradoxically it is used in a more complex situation with

particle interaction in a narrow channel [6]. In particular,
there the authors highlight the coexistence of several transport
solutions which are hard to detect with direct time integration.

In the present work, we focus on an axisymmetric model
in which a single particle moves along the channel axis
and its motion results only from the competition between
fluid driving and small inertia. This model is called ratchet
flow. The main parameters are the relative drag (inverse of
the inertia), the characteristic flow velocity related to the
pressure difference in the experiment, and the shape of the
flow velocity related to the pore shape (Sec. II). The last
is characterized by the velocity contrast and the asymmetry
parameter which breaks the parity transformation x → −x.
We first analyze the transport solutions due to the spontaneous
symmetry-breaking mechanisms of these solutions (symmetric
case Sec. III A). Second, we treat the case of asymmetry as
a perturbation of the previous case since it appears crucial
to understand the current reversal (Sec. III B). In Sec. IV we
seek another transport solution which only exists because of
the forced parity symmetry breaking. Finally, we interpret
the transitions as synchronization phenomena (Sec. V), and
concluding remarks are addressed in Sec. VI.

II. MODEL AND BASICS

A. Governing equation of the particle

Let us consider a L-periodically modulated channel in-
finitely extended along the line (Ox) through which a viscous
fluid and a suspended particle are sinusoidally pumped. We
call “pore” the channel portion of length L (Fig. 1). Following
the drift ratchet study in Ref. [9], the fluid motion can be
assumed quasistatic. More specifically, for a characteristic
velocity um about 2–10 mm/s, a pumping frequency about
40–100 Hz and characteristic length related to the minimum
pore radius rmin about 1–10 μm (see Fig. 1), the Reynolds
number Re = rminum

ν
varies in the range 2 × 10−3–10−1 and the

product Re St = R2
min

ν T
varies in the range 2.5 × 10−4–10−2 (St

is the Strouhal number). Therefore, the convective and local
accelerations are negligible compared to the viscous stress
leading to the so-called Stokes flow. The validity of the Stokes
approximation �−→v = ∇p was corroborated by using the full
nonlinear Navier-Stokes equation (see Ref. [34]). Then, under
the creeping flow approximation, the time dependence of the
velocity field is governed by the sinusoidal pumping, and it
takes the form v(−→r ,t) = v(�r) sin 2πt. We assume that the
problem is axisymmetric: the particle is centered on the x

axis. Then, the drag force on the particle is along the x only,
and we obtain a one-dimensional dynamics of a particle of

FIG. 1. Sketch of the problem: the particle moves along the x

axis of a L-periodically modulated channel. Each channel element
of length L constitutes a “pore.” The periodic motion of the viscous
fluid drags the particle.
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mass m according to the Newton’s second law

mẍex = R(x,t)ex, (1)

where R is the resultant force when the effect of gravity is
neglected. In a confined domain the pore boundary has a
non-negligible influence and except for a cylindrical domain,
there are no analytical results [35]. Recently, using a boundary
element approach, we computed this force in the Stokes
approximation framework [36,37]. Here we do not focus on
the numerical method, but we relate this force to the particle
velocity and other parameters.

Because pressure and viscous stress depend linearly on the
boundary condition, the particle drag force R can be written
as the sum of two contributions [36]:

R = Fp + Fr. (2)

The first contribution Fp corresponds to the drag force on
a moving particle in a fluid at rest while the second term
Fr is the drag force on a particle at rest in a moving fluid.
Again because of the linearity argument, Fp is proportional
to the particle velocity Vp so we can write Fp = −γVp

with γ > 0 the drag coefficient. Fr is proportional to the
pressure difference amplitude; we therefore introduce the
velocity u0, called the equivalent velocity field, such that
Fr = γ u0 sin(2πt/T ). In the limiting case of a point particle
in an infinite medium u0 corresponds to the velocity of the
fluid without the particle, and then R is the Stokes drag. For
the general case of a fluid confined in a micropore with a
non-negligible particle size, u0 depends on the pore boundary,
and the particle shape as explained in Ref. [37]. Hence, for an
axisymmetric problem the equivalent velocity field u0(x) is a
function of the position x of the particle. Likewise, the drag
coefficient depends on the pore boundary and thus on the x

position [38]. Therefore, the drag force on a particle centered
at x with the velocity Vp = ẋ (the dot designates the time
derivative) is expressed as

R = −γ (x)[ẋ − u0(x) sin(2πt/T )]ex. (3)

The equation (1) of motion of the particle is nonlinear because
of the functions u0(x) and γ (x). The computation of these
coefficients is detailed in Refs. [36,39] for different pore shapes
and particle sizes. It is shown that for rather small particles,
the relative variation of γ (x) is negligible compared to that of
the equivalent velocity u0(x). Thus, in this paper we assume
that γ is constant not only to simplify the problem but also to
point out the case where the nonlinearity is only due to u0(x):
it is called the ratchet flow. If the length is scaled by the pore
length L, the time by the pumping period T and the drag by
m/T , then the dimensionless problem is written

ẍ + γ ẋ = γ u0(x) sin(2πt). (4)

This equation admits a unique solution C2 for a given position
and velocity (xi,vi,ti) at a time ti . In particular, two different
solutions cannot have at a given time the same position and
velocity. Another straightforward result shows that particle
acceleration ẍ and its velocity ẋ remain bounded. Note that
the driving flow [right-hand side in Eq. (4)] corresponds to
a standing wave. The situation is therefore different from the
Stokes drift, which involves a traveling wave of the driving
flow.
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FIG. 2. Examples of the velocity field u0(x) for the symmetric
(left panel) and the asymmetric (right panel) pore profiles. The
plain lines in the bottom panels correspond to the velocity profiles
computed using the algorithm developed in Ref. [36]. The red stars
in the left and right panels are the analytical fields for a = 0.6 of
Eqs. (10) and (5), respectively. The parameter d is the algebraic
difference between x = 0.5 and the velocity minimum. To plot the
analytical profile in the right panel, we use d = −0.07. Note also that
the velocity extrema of the asymmetric case are slightly shifted w.r.t.
the extrema of the pore profiles.

B. Velocity field u0(x)

We propose to construct an analytical velocity field u0(x)
qualitatively similar to the one computed in Ref. [37] and
characterized by three parameters: the mean value um, the
asymmetry noted by d, and the velocity contrast or relative
amplitude a. According to Ref. [37], for the symmetric case,
u0(x) is maximal at the bottleneck while it is minimal at the
largest pore radius. More generally, the number of velocity
extrema are determined by those of the pore radius. Figure 2
shows that u0 has one maximum and one minimum and when
the pore is asymmetric, the velocity minimum is slightly
shifted relatively to the middle position x = 1/2 (Fig. 2). For
the pore profiles of Fig. 2, the u0 field can be approximated
analytically by

u0(x,um,a,d) = um

(
1 + a

{
cos

(
πx̄

d + 1/2

)
1[0;1/2+d](x̄)

+ cos

[
π (x̄ − 1)

d − 1/2

]
1]1/2+d;1](x̄)

})
, (5)

where d is the algebraic shift, which ranges from −1/2 to 1/2,
x̄ = x mod 1, and 1I is the indicator function of the interval
I [1I (x̄) = 1 if x̄ ∈ I , otherwise 1I (x̄) = 0]. This equation
also applies to the symmetric case (d = 0) where u0(x,a,0)
becomes the sinusoidal function

u0(x,um,a,0) = um[1 + a cos(2πx)]. (6)

The advantage of this formulation compared to the usual
biharmonic profile as in Ref. [9] is, first, that it avoids two
maxima of the velocity field which do not occur in our pore
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geometry and, second, that the asymmetry of the velocity
profile can be controlled by tuning the parameter d. This
parameter turns out to be crucial for the transport analyzed in
Sec. IV since its sign determines the transport direction. Even
though d may approach 1/2, the computation of u0 shows that
we cannot reach this limit value. In fact, d is typically about
0.1. Additionally, a large velocity gradient is not consistent
with the Stokes approximation. Concretely, we do not consider
values of d above to 0.4.

Without loss of generality, the study can be restricted to
positive values of d, since we have the following equality:
u0(x,um,a,−d) = u0(−x,um,a,d). Then if a transport solu-
tion exists for d > 0, it exists in the opposite direction for
−d < 0.

C. Continuation method

In addition to time integration, we employ the so-called
continuation or path-following method applied to periodic
solution branches. Their bifurcations and stability will help
to understand a possible transition with the transport solutions
as performed by Ref. [6]. We need to interpret the ODE (4) as
a dynamical system of the variable s(t) = (x(t),v(t)):

ṡ = F (s,t) =
{
v

γ u0(x,um,a,d) sin 2πt − γ v̇
(7)

We used the freeware package AUTO [40] which requires
an autonomous system. Sinusoidal forcing can be done by
adding a nonlinear oscillator with the desired forcing as one
of the solution components [41]. The nonlinear oscillator
has to converge and to be asymptotically stable in order to
avoid numerical problems. Then we add two equations to the
dynamical system Eq. (7):

σ̇ = 2πς + σ (1 − ς2 − σ 2), (8a)

ς̇ = −2πσ + ς (1 − ς2 − σ 2), (8b)

and we replace sin 2πt in Eq. (7) by σ (t) since it converges
asymptotically to sin(2πt + φ) and ς to cos(2πt + φ) with
φ a constant phase [42]. Therefore Eq. (7) coupled with the
two-dimensional autonomous system Eq. (8) have the same
limit cycles. A periodic solution x(t) is a periodic orbit s

in the phase space of the ODE Eq. (8). It is computed by
solving the associated boundary value problem as explained
in Refs. [40,43]. The stability of the solution is determined
using Floquet multipliers. Then, by varying the system
parameters, we are able to track the branches of periodic
orbits and determine their stability. Moreover it is possible to
detect bifurcations, for instance, pitchfork bifurcations, period
doubling, or saddle node, which is also called fold bifurcation
for periodic orbits [44]. They are denoted in the bifurcation
diagrams by the letters “PB,” “PD,” and “LP,” respectively.
Each point on the bifurcation diagrams represents the norm
||.|| of a T -periodic solution s. Its norm is defined as the
L2-norm of the particle velocity:

||s|| =
[

1

T

∫ T

0
v2(t) dt

]1/2

. (9)

Then the norm does not depend on the particle position, and
thus two identical motions shifted by a spatial period have the
same norm.

D. The periodic solutions sm and s0

There are no general analytical results for the nonlinear
equation (4). Nevertheless, for small velocity um, the particle
trajectory during a pumping period is small compared to the
pore length. Under this assumption, the case is analogous to
that of the drift of charged particles under ponderomotive force,
i.e., in a nonuniform oscillating electromagnetic field [45,46]
where particles collect either at minima or maxima of the field.
In our case, we prove in Appendix A the existence of a pair
of saddle limit cycles with period one. The stable solution is
centered at the minimum of the velocity u0, x = 1/2 + d, and
it is denoted sm. The second unstable solution is centered at
the maximum of the velocity, x = 0, and it is denoted s0. The
resulting dynamics is, after a transient drift, a periodic motion
of the sm solution.

E. Symmetry and consequence

The role of symmetry, other than (space and time) shift
symmetry, in the ratchet effect has been discussed in the
literature [20,21]. The existence of a transport solution requires
that the space and time reflection symmetries be broken. The
existence of a nonzero inertia already breaks the time-reversal
symmetry called supersymmetry in Ref. [20]. If the pore
geometry has the parity symmetry x → −x (d = 0), an
effective transport is not possible. However, this fact does
not forbid the existence of transport solutions for a given
initial condition. Any possible transport solution is then
associated to a symmetric copy in the opposite direction.
The motivation for considering a parity symmetric geometry
lies in a better understanding of the different mechanisms
resulting in a ratchet effect. Indeed, we show in Sec. III that
the existence of a transport solution is related to spontaneous
symmetry-breaking bifurcations. Moreover, the asymmetric
case can be interpreted as a perturbation of the symmetric
case what allows to state in Sec. III B that the multiplicity of
solutions for a slightly asymmetric profile is not a coincidence
but is due to the symmetry. An additional consequence is the
existence of current reversal scenarios.

The symmetric case corresponds to the parity symmetry of
the velocity u0, which occurs for d = 0:

u0(−x,um,a,0) = u0(x,um,a,0). (10)

Thus, the evolution problem Eq. (7) is equivariant under the
spatiotemporal parity symmetry S:

F (S(s,t)) = −F (s,t), with S(s,t) = (−s,t + 1/2). (11)

The symmetry S is obtained by a central symmetry in the
(x,v) plane followed by a time shift of a half period. The
equivariance property implies that for any trajectory x(t) of
Eq. (7), the dynamics −x(t + 1/2) is a solution too. Note that
the parity symmetry of u0 [Eq. (10)] implies the existence
of another symmetry S1/2 centered on x = 1/2 instead of 0.
Indeed, S and S1/2 define the same symmetry if we introduce
the relative solution s̄ = (x̄,v) ∈ S1 × R where the relative
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position is defined modulo one: x̄ = x mod 1. In this context,
a solution (s̄,t) is “symmetric” if it is an invariant of S in
S1 × R × R:

S(s̄,t) = (s̄,t) ⇐⇒ ∀t : x̄(t + 1/2) = −x̄(t). (12)

A symmetric solution has the following properties: (1) it is
1-periodic, i.e., synchronized with the pumping, and (2) its
mean position over one period 〈x̄〉 is either 0 or 1/2. The first
property ensues from writing Eq. (12) as x(t + 1/2) = −x(t) +
n, where n ∈ Z. Since x(t) is continuous, then n has to be
constant. Then we have x(t + 1) = −x(t + 1/2) + n too. From
these two equalities, we deduce the periodicity. The second
property results from the time integration over one period of
Eq. (12), and we get 〈x̄〉 ≡ −〈x̄〉mod 1. This equation has
two solutions: 〈x̄〉 = 0 or 1/2. Hence there are two types of
symmetric solutions, one centered at the pore inlet (x̄ = 0),
which corresponds to the velocity maximum, and the second
one at the middle position x̄ = 1/2, which corresponds for the
symmetric case to the velocity minimum. For um � 1, these
two solutions are s0 and sm found previously. Therefore, under
this assumption s0 is a saddle and sm is a node. Note that a
corollary of these results is that an asymmetric solution has a
mean that differs from 0 or 1/2.

In order to obtain transport, one has to break the parity
symmetry S of the dynamics either by spontaneous (Sec. III)
or forced (Sec. IV) symmetry breaking.

III. TRANSPORT VIA SPONTANEOUS
SYMMETRY BREAKING

In this section we focus on transport induced by sponta-
neous symmetry breaking. In other words we seek unbounded
dynamics and transport in the symmetric case. In a second
step, we analyze the effect of a break of the symmetry (d �= 0)
on these dynamics.

A. Symmetric case

We assume that the problem is symmetric, i.e., d = 0, and
thus the system Eq. (7) is equivariant by the central symmetry
S. We depict, first, the bifurcations of periodic branches and
especially their stability domain. Second, we identify the
transitions from bounded dynamics to unbounded dynamics
and from unbounded dynamics to periodic transport. The latter
transport branches can be studied in the comoving frame in the
same manner as for the bounded periodic solution. Finally, we
point out how n-periodic solutions are related to such a periodic
transport.

1. Periodic solutions

From the analytical results (Sec. II D), we identified two
periodic symmetric solutions, s0 and sm, which are displayed
in Fig. 3(a) (γ = 100, um = 1, and a = 0.65). As expected
for small um, the particle converges to the only stable solution
sm centered at x = 1/2. The continuation of these solution
branches with respect to the parameters a or γ does not display
bifurcations and sm remains stable. Thus, all the dynamics is
attracted by the only stable periodic solution sm when um is
small.
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FIG. 3. Time evolutions of 1-periodic solutions (red) s0, (black)
sm, and (green) sa for different values of um with γ = 100, a = 0.65,

and d = 0 (symmetric case). (a) The two 1-periodic solutions (stable)
s0 and (unstable) sm for um = 1. Panels (b) and (c) display solutions
at the pitchfork bifurcations (PBs) in the bifurcation diagram (Fig. 4).
Specifically, in (b) s0 is the profile at um = u(1)

pu and sm is the profile

at um = u
(1)
p	 , and sa is the profile of the solution at um = 5.1 of the

branch sa . In (c), s0 is the profile at um = u
(2)
p	 , and sm is the profile at

um = u(2)
pu.

Larger characteristic flow velocity um has to be explored.
So um is set presently to be the bifurcation parameter while
the other parameters are fixed, a = 0.65 and γ = 100. The
related bifurcation diagram displays a snaking shape of the
branches s0 and sm, which regularly cross each other (Fig. 4).
Let us describe quantitatively the solution branches. When
both branches are close to each other, they exchange their
stability. The sm solution loses its stability at u

(1)
p	 = 4.84

while s0 becomes stable at u(1)
pu = 5.27 (Fig. 4). A similar

stability exchange occurs for um about 9. According to the
time evolution plots in Figs. 3(b) and 3(c) of the different
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FIG. 4. Bifurcation diagram of period-one orbit branches as a
function of the velocity contrast a: (red line) s0, (black line) sm, and
(green line) sa . Plain (dashed) lines indicate stable (unstable) solution
branches. Dots indicate pitchfork bifurcation points (PBs). Solution
profiles located at the four pitchfork bifurcations and the sa profile
indicated by the circle in the inset are shown in Figs. 3(b) and 3(c).
Parameters are γ = 100, a = 0.65, and d = 0 (symmetric case).
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solutions, their stability seems follow the present rule: if the
peak of the trajectory reaches the region of the u0 minimum
(i.e., at x̄ = 1/2), then the solution is stable, whereas if the
trajectory reaches the u0 maximum (x̄ = 0), then the solution is
unstable. Therefore the stability changes when the oscillation
amplitude increases roughly by a pore length, showing the
relevance of the mean velocity um for the stability of the
solutions. The stability exchange implies the emergence of
a new branch which breaks the S reflection symmetry via a
pitchfork bifurcation (PB in Fig. 4). The bifurcated asymmetric
branch is called sa [see Fig. 3(b)]. Indeed, there are two sub-
branches sa+ and sa− , with solutions centered in the intervals
]0,1/2[ and ]1/2,1[ respectively. Because they are related to
symmetry, sa+(t + 1/2) = S[sa−(t)], they do not appear twice
in the bifurcation diagram (Fig. 4). When the sm solution loses
its stability at u

(1)
p	 the sa branch emerges supercritically and

connects the branch s0 at u(1)
pu, which gains stability. The mean

positions of the s+
a and s−

a solutions move from 1/2 to 1 and to
0, respectively. A similar scenario appears between the critical
values u

(2)
p	 and u(2)

pu (Fig. 4). As the branches sa are stable,
there is always a stable periodic solution. The time integration
of Eq. (4) corroborates that dynamics is attracted by one of
these 1-periodic solutions.

For smaller drag the sa branch can be unstable. In Fig. 5
we plot a similar bifurcation diagram to that in Fig. 4 with
the same parameter values except γ , which is equal to 10
instead of 100. The bifurcation diagram displays a snakelike
structure of the symmetric branches as previously. Such a
structure is commonly encountered in the literature, e.g., the
solution branches of droplets on a striped substrate [47,48] or
the localized state branches that are solutions of the Swift-
Hohenberg equation [49]. Moreover, the overall bifurcation
diagram with the sa branch in Fig. 5 is very reminiscent of

the tilted snakes-and-ladders structure encountered, e.g., in
the conserved Swift-Hohenberg equation [50] in which the
asymmetric branch sa is the rungs of the ladder and the snaking
branches are the two symmetric branches. The common thread
of all these diagrams is the spatial symmetry of the problem:
shift and parity symmetries.

Each sa branch lets appear two period-doubling bifurcations
denoted u1	 for the lower bifurcation and u1u for the upper bi-
furcation of the sa branch in Fig. 5(b). Such a period-doubling
bifurcation is generic for nonlinear oscillators with dissipation
and additional time-dependent force [51]. Furthermore it can
occur only with the asymmetric branch sa as is proven in
Ref. [52] for bifurcation problems with the S symmetry.
A sequence of period-doubling bifurcations is observed and
leads to a temporally chaotic flow. The first period-doubling
cascade starts at u1	 and the 2n-periodic branch emerges at the
bifurcation point un	 [see Fig. 5(b)]. These points accumulate
approximately at uL  8.23 [Fig. 5(b)]. The present cascade
has a behavior similar to that of one-dimensional maps where
the ratio of distances between two consecutive bifurcations is
the universal Feigenbaum constant δ  4.669 [53,54]. Beyond
this threshold a strange attractor is observed as expected. In the
same manner, by decreasing um, the second period-doubling
cascade occurs from u1u [Fig. 5(b)]. The end of this cascade
is hidden by the stable branch sm, which emerges from the
fold bifurcation at uf s [see Fig. 5(a)]. According to the self-
similarity Feigenbaum law, the end of the cascade is estimated
to be close to u1u and smaller than uf s . Thus, chaotic dynamics
is observed for u < uf s . In both cases the numerical simulation
shows that the chaotic particle trajectory remains bounded in
the vicinity of the thresholds. Other period-doubling cascades
exist in the interval [uL,uf s]. Without detailing this complex
scenario, we describe the first bifurcated branches which will
be useful to understand the periodic transport.

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

um

||s
||

uf s

u1 u1u

s0

sm

sa

sa
PB

PD

PD
PB

LP(a)

8 9 10 11
4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

um

||s
||

u1 u2 u1uu2u

uf uu

uf suL

(B1)

(B2)

(B3)

PB

PD

PB

PD

LP,PD

LP,PD
(b)

FIG. 5. (a) Bifurcation diagrams showing the periodic branches as a function of the characteristic velocity um for a = 0.65 and γ = 10.
(b) Magnification for um ranging in [7; 12]. The color code for 1-periodic solutions is as in Fig. 4. The (dark blue) 2- and (magenta) 4-periodic
branches emerge from the (green line) sa branch. Dots indicate the different bifurcations: Pitchfork bifurcation (PB), period doubling (PD), fold
bifurcation (LP). In panel (b) the vertical line at uL corresponds to the end of the period-doubling cascade starting from u1	 with the emergence
of chaotic dynamics. The circles on the (B1), (B2), and (B3) branches correspond to solutions displayed in Figs. 6 and 15. The critical values
at the turning points are uf 	 = 8.53431,uf u = 10.6433.
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FIG. 6. Time evolutions of period-two orbits for two values of um

displayed by four circles in Fig. 5: (a) um = 8.65, (b) um = 10.62. The
plain red lines correspond to solutions on the branch (B2), whereas
the dashed black lines correspond to (a) the circle on the (B1) branch
and (b) the circle on the (B3) branch.

Having two saddle nodes uf 	 and uf u, the period-two
branch defines three subbranches [Fig. 5(b)] which connect
(B1) the period-doubling point u1	 to the first saddle node
uf u, (B2) the two saddle nodes, and (B3) the uf 	 point to the
upper period-doubling bifurcation u1u. Figure 6 shows that
the trajectory of (B2) during the first period (t ∈ [0; 1]) may
differ strongly from the trajectory during the second period
(t ∈ [1; 2]), in particular the local maximum of the particle
trajectory during the first period is significantly smaller than
that of the trajectory during the second period. In contrast, for
the same parameter values, the local maxima of the trajectories
of (B1) and (B3) are only slightly different between the two
periods (dashed line in Fig. 6). We will show in Sec. III A 4
that the existence of the (B2) branch plays a key role in
the emergence of periodic transport. Note that the 2-periodic
branch is not unstable on the whole range [uL; uf s]. At the
saddle-node bifurcation the solution regains stability, but in the
neighborhood a 4-periodic branch emerges, and the period-two
branch is unstable again. The relative difference between the
saddle node, and these period-doubling bifurcations are less
than 10−6 where stability “islands” appear. This scenario is
also repeated by the 4-periodic branches [magenta in Fig. 5(b)]
and the 8-periodic branches (not shown); thus each branch
has stability islands in the neighborhood of the saddle nodes.
Noteworthy, the turning points of the 2-, 4-, and 8-periodic
branches occur at almost the same values. The direct time
integration shows that it is certainly true for all the period-
doubled solutions. Therefore, apart from stability “islands,”
the 2n-periodic orbits (n > 1) are unstable.

In this instability region, unbounded dynamics has been
found. In the next section we study the transition from bounded
to unbounded dynamics.

2. Unbounded attractor emergence

Near the period-doubling cascade a bounded strange at-
tractor emerges. Because of the shift symmetry, a series of
attractors shifted by one pore length exists. The simulation
shows that they are globally invariant w.r.t. the central symme-
try S. In other words, if (x̄,v) is a point of the attractor, then
(−x,−v) belongs to the same attractor. However, generically
x̄(t + 1/2) �= −x̄(t), and then the time periodicity is destroyed
while the parity symmetry (x̄,v) → (−x,−v) remains. This
partial “symmetry restoring” is certainly due to a merging
crisis between two copies of the asymmetric attractors as
described in Ref. [55]. If we plot the Poincaré section of
this strange attractor, we observe that its amplitude in the
x direction is inferior to the pore length. Increasing the
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FIG. 7. Poincaré section xn = x(n),vn = v(n) where n ∈ N, near
the onset of unbounded dynamics for um = 8.519 (other parameters:
γ = 10, a = 0.65, and d = 0). (black line) The strange attractor
between the dashed vertical lines is included in a pore length.
(Colors) The shifted contiguous attractors are very close. Note that
the Poincaré section does not reveal the central symmetry S of the
strange attractor since the symmetric point appears for a temporal
shift of a half period.

mean velocity um the attractor expands until two contiguous
attractors are close to each other (Fig. 7). At a critical value
uuB  8.5198 the attractors merge as for a merging crisis in
systems with symmetry [55]. It follows that the dynamics is
no longer bounded, and an intermittent dynamics takes place:
the trajectories remain a long time near the “ghost” bounded
attractor and switch rapidly to a contiguous attractor (Fig. 8).
There is no net preference for a transition to the left or to the
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FIG. 8. Stroboscopic particle dynamics xn = x(n) at discrete time
tn = n near the merging crisis for two different values of um slightly
superior to uuB . Dynamics displays long chaotic bounded dynamics
interrupted by jumps which shift the dynamics by one pore length. The
velocity profile u0(x) is symmetric [Eq. (10)], γ = 100 and a = 0.65.
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FIG. 9. Dynamics near the onset of periodic transport at um = ut
f 	. Shown is the (a) stroboscopic particle positions xn and the (b) relative

stroboscopic particle positions x̄n = xn mod 1. The dynamics in panel (a) is reminiscent of a random walk without preferential direction.
However, the plateaux of panel (b) indicate a nearly periodic transport at the velocity c equal to +1 or −1. The duration of this regular transport
is large (about a few hundred periods) compared to the chaotic dynamics (a few periods). Parameters: um = 8.64835,a = 0.65,γ = 10,d = 0.

right due to the symmetry of the bounded attractors involved
in the transition. The duration of bounded dynamics epochs is
irregular. Nevertheless, the mean duration decreases when um

moves away from the critical value.
On increasing the bifurcation parameter further, the trans-

port epochs are longer than the bounded ones. Figure 9(a)
presents alternating transport to the left and right with
negligible epochs of bounded dynamics as in Fig. 8. Indeed,
the transport events are nearly periodic as Fig. 9(b) shows.
The duration of this regular dynamics increases when um

approaches uT
f 	  8.64836, which corresponds to the onset

of the periodic transport solution studied in the next section.
Starting from uf u, a similar scenario occurs when decreasing
um (Fig. 5): at um  10.65, a transition from bounded
chaotic to unbounded chaotic dynamics takes place, and it
is followed by a regular transport at um = uT

f u = 10.6169.
The bifurcation scenario starting from the periodic symmetric

solutions and leading to synchronized transport is sketched in
Fig. 10.

3. Periodic transport solutions

We study the regular transport emerging from the fold
bifurcations uT

f 	 and uT
f u. This transport is periodic in a

comoving frame with the velocity c = +1: After one tem-
poral period, the particle moves one spatial period forward
(Fig. 11). Thus the position x+

T (t) of the transport solution
s+
T is the sum of a period-one solution x+

p (t) and a uniform
translation:

x+
T (t) = x+

p (t) + t. (13)

This transport solution is called periodic transport solution.
Because of the S-equivariance (11) of the problem, the
existence of a transport solution s+

T in the direction of the
increasing x (also called to the right) implies the existence of a

FIG. 10. Generic bifurcation scenarios encountered for moderate γ  10. (Top) Bifurcation scenario starting from symmetric 1-periodic
solutions and leading to transport periodic solutions. More specifically: (i) Spatial and temporal symmetry breaking lead to the existence of
strange attractors. (ii) A crisis allows for the birth of an unbounded intermittent dynamics. (iii) Finally the 1-periodic transport emerges at a
saddle node. (Bottom) The 1-periodic transport solution loses its stability via a similar scenario of the bounded dynamics. However, until a
widening crisis, the transport velocity remains locked to c = ±1. Beyond this crisis the velocity is no longer locked. An effective transport
appears only for the asymmetric case. Increasing the bifurcation parameter further, we get again a synchronized transport by a similar reversed
scenario.
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FIG. 11. Time evolution of the (plain) stable and (dotted) unstable
transport solution s+

T at um = 9 (circles in the bifurcation diagram
Fig. 12). After a temporal period, the particle advances by exactly
one pore length.

symmetric transport solution (s−
T ,t + 1/2) = S(s+

T ,t) for which
the position x−

T verifies the following relations:

x−
T (t) = −x+

T (t + 1/2) (14)

= −x+
p (t + 1/2) − 1/2 − t (15)

= x−
p (t) − t. (16)

Then s−
T is a period-one transport solution but in the opposite

direction, i.e., to the left. For the symmetric case, one does
not need to study the opposite transport solution, and the sign
direction in the notation of the solution sT is dropped.

The continuation method is carried out within the periodic
part xp of the transport solution, i.e., the transport solution xT

in the comoving frame. If xT is a solution of the ODE (4), then
xp is a solution of the new ODE:

ẍp + γ ẋp = γ [u0(xp + ct) sin(2πt) − c], (17)

where c = ±1 depends on the transport direction sc
T . The

presence of the constant bias −c on the right side of Eq. (17)
recalls the tilting force in ratchet problems [10]. This force
tends to move the particle to the left if c > 0. However, here we
seek periodic solutions in the comoving frame, thus one aims
at stopping the “natural” transport. In the comoving frame,
this problem is analogous to the absolute negative mobility in
tilted inertial ratchets (see, e.g., Ref. [56]).

The continuation of the periodic xp solution, with um the
bifurcation parameter, shows the existence of two branches
(T1) and (T2) connecting the two folds uT

f 	 and uT
f u (Fig. 12).

Then for each direction two transport solutions coexist in
the same range. (T1) is always unstable while (T2) is stable
at the emergence of the saddle nodes. This branch loses its
stability via period doubling defining three stability ranges
of (T2). The first range of stability starts from the lower fold
and ends at the period-doubling bifurcation uT 1

1	 = 8.68, the
second one is delimited by two period-doubling bifurcations at
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(T2)

(T1)
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FIG. 12. Bifurcation diagram of the periodic dynamics xp

[Eq. (17)] associated to the synchronized transport solutions sT with
drift velocity c = ±1. The 1-periodic transport branches are delimited
by two saddle nodes uT

f 	 = 8.6483 and uT
f u = 10.6169. Solution

profiles at the locations indicated by circles are depicted in Fig. 11.
Dots indicate period-doubling bifurcations, and fine blue lines are
2-periodic transport solutions. Unstable branches are indicated by
a dashed line. The remaining parameters are as in Fig. 5 (γ = 10,
a = 0.65).

uT 1
1u = 8.97 and uT 2

1	 = 9.37, and the third range is very narrow
in the vicinity of the upper fold uf u (not visible in Fig. 12).
Both 2-periodic branches emerge from the period-doubling
bifurcations (blue curves in Fig. 12). A similar route to chaos
arises from the four period-doubling cascades. Namely, the
cascade follows a geometric series and leads to a chaotic
dynamics of xp, which is bounded in to the comoving frame.
Consequently, ranging from the stable periodic transport to
the “bounded” strange attractor, the dynamics x(t) is a stable
transport with the mean velocity ±1. We say that the velocity
is locked or the transport is synchronized. Thus the dynamics
can be chaotic and the transport velocity still locked. This
synchronized transport is destroyed via a crisis. After the crisis,
the attractor becomes unbounded in the comoving frame. As
the extended attractor is symmetric in the laboratory frame,
we believe that it appears through a merging crisis between
attractors with opposite transport directions. The resulting
dynamics presents alternations between transport to the left
and to the right, and the transport velocity is no longer locked.
We define the transport velocity c(t) at the time t as

c(t) = x(t)

t
, (18)

and c its limit if it exists. After the crisis, the particle trajectory
visits alternately opposite ghost attractors with the velocity
c = +1 or −1. An example is given in Fig. 13. During a few
tens of periods the dynamics is close to the transport solution
with c = 1 or −1, and the change of direction needs only one
or two time periods. The discrete dynamics at every discrete
time n is similar to a random walk [Fig. 13(a)]. The mean
transport velocity remains close to zero as shown in Fig. 13(b).
Therefore, the mean drift velocity drops from |c| = 1 to
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FIG. 13. (a) Particle dynamics in the unlocked velocity region of Fig. 12 for um = 8.8 for two different initial conditions. The trajectories
are reminiscent of a random walk. The remaining parameters are the same as in Fig. 12 (γ = 10, a = 0.65). (b) Drift velocity c(t) of the
dynamics of panel (a). The velocity fluctuates around zero.

c  0. Figure 10 depicts the bifurcation scenario involving
the periodic transport solutions.

We end the study of this branch by displaying the existence
domain of the periodic solution in the parameter plane (um,γ )
(Fig. 14). Transport does not exist for γ larger than 13
whatever the value of um. Thus, this transport exists only for
moderate drag. For a decreasing drag, the existence domain
is larger, yet the stability domain becomes thinner. This
stability domain is very reminiscent of the existence domain
of transport for an undamped ratchet problem in Ref. [24]. The
path-following method allows us to find the instability domain
and to distinguish the transitions as saddle node and period
doubling. We further discuss, in Sec. V, the added value of
such a bifurcation diagram.
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FIG. 14. Existence domain of the synchronized transport velocity
with c = ±1 in the parameter plane (um,γ ). This domain is bounded
by the fold bifurcation (bold line). The fine lines represent the
transition between the stable and unstable solutions which is a
period-doubling bifurcation.

4. Role of the n-multiplying periodic solutions in the transport

The scenario sketched in Fig. 10 shows that there is no direct
bifurcation between periodic orbits and the transport solution.
However, a necessary condition is the route to chaos via
period doubling. In this subsection, we show that a quantitative
property of the period-doubled solution can be a good indicator
of the emergence of periodic transport.

In order to understand the possible link between the
2-periodic branch and the periodic transport solution, we
represent in Fig. 15(a) the time evolution of the transport
solution at its emergence uT

f u (Fig. 12) with 2-periodic
solutions for the same parameters. At um = uT

f u among the
three period-doubled branches in the bifurcation diagram
Fig. 5(b), one chooses the (B2) branch because it has the largest
difference between the two maxima as showed previously in
Sec. III A 1. This solution, noted x

(0)
2 , is displayed by a circle in

the bifurcation diagram [Fig. 5(b)], and it is located close to the
turning point of (B2). Moreover, in Fig. 15(a) we also show
the copies of x

(0)
2 , noted x

(n)
2 , and obtained by a space and

a time period shift such as x
(n)
2 (t) = x

(0)
2 (t + n) + n, n ∈ N.

These solutions exist due to the discrete spatial and temporal
shift symmetries. Figure 15 reveals that the trajectories of
two consecutive orbits x

(n)
2 (t) and x

(n+1)
2 (t) are close for t

around 0.4 + 2n,n ∈ Z. At this time, the velocity [the slope of
x

(n)
2 (t)] is maximal, and the particle position is about x̄  0.6.

Because the slopes of the two curves are almost equal, the
two trajectories are close to each other in the phase space.
If the period-two solution is not stable, the trajectory of the
transport solution in the vicinity of x

(0)
2 may escape and switch

to x
(1)
2 at t about 0.4 as shown in Fig. 15: The synchronized

transport solution xT is close to x
(0)
2 for t between [0; 0.4]

and then moves progressively away from x
(0)
2 (t) and becomes

closer to x
(1)
2 (t). Because of the spatiotemporal shift symmetry,

this scenario occurs also in the same manner in the following
pores, resulting in a synchronized transport with exactly c = 1.
Note that the opposite transport (s−

T ,t + 1/2) = S(s+
T ,t) may
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FIG. 15. (a) Time evolutions of (dots) the synchronized transport solution (c = 1) and (plain and dashed lines) of the period-two solution
x

(0)
2 and its copies at um = uT

f u of the (B2) branch in Fig. 12. The plain lines correspond to the orbits x
(2p)
2 (t): copies of x

(0)
2 (t) shifted by 2p

spatial periods. The dashed lines correspond to the orbits x
(2p+1)
2 (t): copies of x

(0)
2 (t) spatially and temporal shifted by 2p + 1 periods. During

one period the transport solution is “guided” by the 2-periodic solution. Parameters γ = 10, a = 0.65, and um = uT
f u. (b) Temporal evolution

of the 3-periodic solutions and the c = 1/2 transport solution. The plain and dashed black lines are period-three solutions translated in space
and in time such as xdash(t) = xplain(t + 2) + 1. As in Fig. 15 the transport solution is guided during two periods by the 3-periodic solution.
Parameters: um = 9, γ = 13.153, and a = 0.65.

be explained by a similar mechanism of slip between periodic
orbits using the symmetric period-doubled solutions S(s2,t).

The role of the (B2) branch is enhanced by the fact that
its existence domain ([uf 	; uf u] in Fig. 5) corresponds almost
exactly to that of the transport branch ([ut

f 	; ut
f u] in Fig. 12).

Indeed, contrary to (B2), the (B1) and (B3) branches present
weak variations of the maximum during two temporal periods
(see black dashed line in Fig. 6). As a result, the difference
between the shifted trajectories constructed as previously
remains about one, and transport is not expected.

Such a relationship between transport emergence and
period-multiplying solution may be generalized for discrete
velocity cq = 1/q,q ∈ Z.

This rational velocity means that the particle needs q

periods to advance exactly one period. For instance, a similar
link can be found between the transport solution with c = 1/2
and the three-periodic solution. In the time series [Fig. 15(b)]
we represent a transport solution and an array of unstable
3-periodic solutions, which are shifted by one spatial period
and two temporal periods, the solutions x(t + 2p) + p, p ∈ Z.
Again, we can point out the key role of periodic solutions,
the period-three solution. Transport solutions remain in the
vicinity of the periodic solution during two periods and then
switch to another orbit when two consecutive orbits are
very close [Fig. 15(b)]. Then the transport solution moves
forward exactly one pore length during two temporal periods:
xT (t + 2p) = xT (t) + p. Similarly to the case |c| = 1, the
transport solution emerges or ends at a tangent bifurcation.
Moreover, this transport coexists with the period-three orbit
and ceases when the periodic orbits are rather widely spaced.

B. Effective transport for the asymmetric case (d �= 0)

If the parity symmetry of the flow is broken, i.e., d �= 0, all
asymmetric branches as sa , period-doubled branches and the

transport solutions found for the symmetric geometry should
generically exist for d small enough because of the continuity
arguments. Thus by varying d, we examine the persistence of
the transport solutions at moderate drag (γ ∼ 10).

1. Influence of the asymmetry d on periodic solutions

We begin by studying the influence of the asymmetry d on
the periodic branches as well as periodic transport solutions
found in the symmetric case. The path following of these
branches is performed by taking d as bifurcation parameter and
fixing a, um, and γ to values which belong to the bifurcation
diagram Fig. 5(b).

As shown in Appendix A, s0 and sm still exist in the
asymmetric case as long as um is small. For parameters
fixed in the neighborhood of um = 9, a = 0.65, and γ = 10,
the continuation of period-one solutions including sa shows
that these branches exist for all values of d. Moreover,
no bifurcation occurs when d varies, and then they remain
unstable. Regarding the asymmetric branches, they split into
two distinct branches when d �= 0. Thus, in the bifurcation
diagram [Fig. 16] the three (B1,2 and 3) branches of the period-
two solutions split into six branches when d �= 0 and they
remain unstable. One branch of B1 and one of B2 end at the
saddle node d = d

p2
f > 0.4. We do not study in detail the

consequence of this bifurcation since such a large asymmetry
d is not relevant for our model (see Sec. II B). Therefore,
in the asymmetric case with a fixed d < d

p2
f , the bifurcation

diagram of the periodic solutions w.r.t. um is similar to that in
the symmetric case presented in Fig. 5.

In the same vein, each transport branch splits into two
distinct branches s+

T and s−
T , the solutions of Eq. (17) with

c = +1 and c = −1, respectively. The bifurcation diagram
Fig. 17 shows that each transport solution, s+

T and s−
T ,

annihilates in a saddle-node bifurcation. The saddle nodes
occur at different values (Fig. 17): d−

f = 0.302 (transport to
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FIG. 16. Continuation of the 2-periodic branches starting from
the (B1), (B2), and (B3) branches of the bifurcation diagram Fig. 5(b)
for um = 9. Shown is the norm ||s|| as a function of the asymmetry
parameter d . Each of the three sa branches splits into two branches
when d �= 0. They are all unstable. Two branches meet at the saddle
node noted d
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f  d
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of Fig. 17) indicate specific solutions discussed in the beginning of
Sec. III B. The remaining parameters are as in Fig. 5.

the left) and d+
f = 0.433 (transport to the right). No bifurcation

takes place on the s−
T branches. In contrast, the s+

T branch
presents routes to chaos and crises when d varies (Fig. 17) via
a scenario similar to the symmetric case (Fig. 10): the crisis
marks the end of stable synchronized transport. Nevertheless,
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FIG. 17. Bifurcation diagram of the periodic transport solutions
as a function of the asymmetry d . Starting solutions at d = 0
correspond to circles at um = 9 of the bifurcation diagram in Fig. 12.
The red branch corresponds to s+

T , the transport to the right, while
the black branch corresponds to s−

T , the transport to the left. The
blue line displays the period-two transport solution of s+

T . Solid
(dashed) lines indicate stable (unstable) solutions, and dots designate
period-doubling bifurcations. Circles at d = 0.1 are the starting
solutions of the bifurcation diagram (Fig. 18).

the dynamics beyond the crisis can lead to a net drift because
of the asymmetry. Let us describe the possible dynamics from
the symmetric case d = 0 till the fold d+

f :
(1) From 0 to the crisis at d+

L  0.0657, stable transports
with c = 1 and c = −1 coexist with different basins of
attraction.

(2) The crisis marks the end of the strange attractor
associated to the right transport. It is an attractor destruction
crisis [55]. As mentioned in that reference, for d > d+

L a
transient chaotic dynamics occurs in the vicinity of d+

L before
it converges to the periodic left transport, the unique attractor
till the fold bifurcation d−

f . Then in the interval [d+
L ; d−

f ], a net
transport with c = −1 is observed.

(3) In the narrow range [d−
f ,d+

U ], only the periodic
branches with c = +1 exist, but they are unstable. A chaotic
dynamics takes place with a nonlocked velocity, which varies
continuously from −1 to 1. The dynamics involves switches
between transports in opposite directions. Approaching d+

U the
phases of the transport to the right are longer. The transition
crossing d+

U by decreasing d can be interpreted as a widening
crisis: the chaotic attractor in the comoving frame c = +1
extends suddenly allowing transport episodes to the left.
This situation is similar to the locked and unlocked velocity
transition for the symmetric case. Nevertheless, a nonvanishing
drift velocity seems to appear in the asymmetric case. Near the
saddle node d−

f , the dynamics will be detailed in the following
subsection where the same kind of transition arises.

(4) For d larger than d+
U the transport to the right (chaotic

or periodic) is an attractor of all the dynamics till d+
f .

The continuous transition from c = +1 (d > d+
U ) to c =

−1 (d = d−
f ) by decreasing d, illustrates a current reversal

scenario widely described in the literature on deterministic
inertia ratchets, e.g., Refs. [22,24,27,57]. The reversal arises
by way of a crisis (d+

U ) destroying the transport solution and
followed by the birth of the opposite transport solution at a
tangent bifurcation (d−

f ). Note, however, that the occurrence of
the saddle-node bifurcation of the left transport in the chaotic
region of the right transport is only a coincidence. Indeed, there
are other possible scenarios as we show in the next bifurcation
diagram (Fig. 18).

2. Current reversal

In this section, we focus on the current reversal due to the
variation of the drag γ and not due to a change in the pore
geometry, which can be achieved by modifying the pumping
frequency. Then the parameter d is fixed, and the drag γ is
considered as the bifurcation parameter. We start from the
transport solution found at d = 0.1 in Fig. 17. Each branch,
s+
T and s−

T , presents a scenario identical to that displayed in
Fig. 10. They emerge or end at a lower fold tangent bifurcation
noted γ ±

f 	 or at an upper fold tangent bifurcation noted γ ±
f u

where ± designates the transport direction [Fig. 18]. In its
existence domain, crises involving synchronized transports
occur; they are noted γ ±

L and γ ±
U in Fig. 18. Owing to the fact

that the existence domains of the opposite transport solutions
and the bifurcation scenarios (Fig. 10) do not match, there
are intervals of γ where there is only one stable transport
solution. Four bands are displayed in Fig. 18 corresponding to
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FIG. 18. Bifurcation diagram of the periodic transport solutions
to the right (s+

T black line) and to the left (s−
T red line). Shown is the

norm ||s|| as a function of the drag coefficient γ for the asymmetric
case d = 0.1. At γ = 10 the solutions are the circles displayed in
Fig. 17. The color, stability, and bifurcation codes as in Fig. 17.
Both transport solutions have a similar bifurcation scenario as for the
symmetric case (Fig. 10), especially the emergence of the branches at
saddle nodes (γ −

f 	, γ
+
f 	, γ

−
f u, γ

+
f u) and windows of unlocked transport

velocity via crisis. The crises corresponding to the onset of unlocked
velocity are indicated by the vertical lines γ +

U ,γ −
U , γ +

L , and γ −
L . The red

and gray areas correspond to ranges of stable synchronized transport
with c = 1 and c = −1, respectively. The gray area near γf 	 is inflated
in order to be visible. The current reversal occurs between these
four regions. The vertical line at γ = γc is the onset of unbounded
dynamics. Parameters: a = 0.65, um = 9, d = 0.1.

these stable transports with c = 1 or −1. It follows that three
scenarios of current reversal exist. They are by decreasing γ :

(1) In the range [γ −
f u; γ +

f u], the dynamics is attracted by
the unique stable transport to the right, while in the interval
[γ −

U ; γ +
U ], the transport c = −1 is the unique attractor. Thus,

the current reversal occurs in the bistability range [γ +
U ; γ −

f u].
Depending on the initial conditions the dynamics is attracted
by one of these two stable solutions. If one takes the mean
velocity over the initial conditions as in Ref. [22], then
the mean drift velocity varies continuously from 1 to −1
when γ decreases from γ +

f u to γ +
R . Such a transport reversal

was already interpreted as a consequence of bistability in
Refs. [23,24].

(2) The second current reversal transition takes place be-
tween the two crises γ −

U and γ +
L . The crisis at γ −

U corresponds
to a widening crisis as is the case for the crisis at d+

U in
bifurcation diagram Fig. 17. Beyond and close to the crisis
(γ < γ −

U ), the dynamics is intermittent: The particle trajectory
spends long stretches near the synchronized left transport,
intermingled with bursts in the new region of the widened
attractor. The dynamics during the burst reveals a slow drift
to the right. Thus the absolute drift velocity decreases. Away
from this crisis, the drift to the right is longer and the time
integration provides trajectories alternately close to that of
the transport solutions [Fig. 19(a)]. Moreover, the switch
between the directions lasts less than one period; i.e., one
does not observe the events of bounded motions. Because of
the asymmetry, the duration in the vicinity of each transport
direction is not necessarily equal and the simulation shows a
convergence to a limit velocity c [Fig. 19(b)]. Thus, the drift
velocity varies continuously from −1 to 1 when γ −

U varies to
γ +

L where a reverse widening crisis occurs.
(3) For γ � γ +

f 	 = 7.927, the right transport with c = 1
ceases to exist. Time integration with parameters close to the
threshold shows epochs of near periodic transport with c = +1
interspersed by a chaotic dynamics with a small negative drift.
The duration of chaotic events remains long even for γ very
close to the onset. For instance, for a relative distance from
the onset γ +

f 	 about 10−9 the duration of chaotic dynamics
events is longer than for the regular, nearly periodic, transport
[Fig. 20(a)]. The resulting dynamics is a slow drift about c 
0.1 [see Fig. 20(b)]. Therefore, crossing the critical value, the
mean value jumps from +1 to a small value. On decreasing
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FIG. 19. (a) Stroboscopic particle position x(n) at discrete times for γ = 8.8 with the parameters of the bifurcation diagram in Fig. 18
(um = 9,a = 0.65,d = 0.1). The dynamics displays a net drift to the left. The inset shows that the drift results from a competition between
transport in opposite directions. (b) Time evolution of the transport velocity c(t) for four different initial values. The drift velocity fluctuates
around −0.163.
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FIG. 20. (a) Relative particle position x̄n = x̄(n) for parameters near the onset of periodic transport γ +
f 	 (Fig. 18): γ = 7.9261516, um = 9,

a = 0.65, and d = 0.1. The horizontal lines at x ∼ 0.13 in the blank spaces indicate epochs of near periodic transport. (b) Drift velocity c(n)
of dynamics obtained for γ ranging from 7.92615100 to 7.92615167  γ +

f 	 [other parameters being the same as in panel (a)]. The black curve
converging to c = 1 corresponds to the dynamics at the onset γ +

f 	. The other curves (in color) range from 7.92615150 to 7.92615166 and
fluctuate around 0.1.

the bifurcation parameter further, the transport events to the
right vanish. Only transport events to the left remain, and they
alternate with bound dynamics remains (Fig. 21). The current
reversal finishes at γ −

L onset of a widening crisis as it occurs
for γ +

L .
To conclude, the asymmetry shifts the existence and stabil-

ity domains of the opposite transport solutions which coexist
in the symmetric case. Therefore the transport reversal is an
associated phenomenon to synchronized transport provided
with a small asymmetry. That is why this phenomenon is
reported in many papers involving synchronized transport

solutions. Note that it is difficult to find the ends of the current
reversals in the narrow ranges [γ −

f 	,γ
−
L ] and [γ +

f 	,γ
+
L ] without

knowledge of the periodic solution branches. The bifurcation
diagram of the periodic transport branch is therefore a powerful
tool to detect the current reversal scenarios.

3. Transitions between transport and bounded dynamics

As for the symmetric case, the scenario from periodic
transport to periodic orbit involves two transitions [Fig. 10]:
(1) saddle node from periodic transport to chaotic transport

FIG. 21. (a) Time evolution of the particle position for γ = 7.5 in the region of unlocked velocity of the bifurcation diagram Fig. 18
(um = 9,a = 0.65,d = 0.1). We observe long periods of oscillations in one pore followed by transport episodes leading to a slow drift to the
left. (b) Time evolution of the transport velocity c(t) for four different initial values.
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FIG. 22. Stroboscopic particle position at discrete times n in the comoving frame (c = +1) for two different values of γ close to the saddle
node γ +

f u (see Fig. 18). The dynamics displays an irregular staircase. Statistically the plateau length increases and diverges when γ approaches
the tangent bifurcation. Remaining parameters are as in Fig. 18.

and (2) a crisis from unbounded chaotic dynamics to bounded
chaotic dynamics. Before we detail these transitions, note
that we found a similar relationship to that described in
Sec. III A 4 between 2-periodic solutions and the periodic
transport. Indeed, the plot (not shown) of the time evolution
of the transport solutions at each onset d−

f and d+
f together

with the period-two solutions (dots in Fig. 16) displays the
same qualitative behavior as in Fig. 15: the transport trajectory
is close to a period-two orbit during one temporal period and
switches to the next spatially shifted orbit during the following
temporal period. Moreover it is noteworthy that the domain of
existence of the transport solution to the right almost matches
that of the period-two branch: d+

f  d
p2
f . Therefore, the fact

that shifted orbits are close to each other still appears in the
asymmetric case as an indicator of the possible emergence of
periodic transport.

(1) We study, first, the transition starting from the critical
value γ +

f u corresponding to the upper limit of the periodic
transport domain. The time integration of the solution in the
comoving frame x(t) − t for γ > γ +

f u, shows long plateaux
corresponding to a transport with velocities very close to plus
one [Fig. 22(a)]. These epochs of transport are interrupted
by short irregular dynamics. The resulting discrete dynamics
xn resembles a descending staircase with irregular steps
[Fig. 22(a)]. The fact that the staircase is always descending
implies that the transport c = 1 is the maximum velocity.
Contrary to the symmetric case, there is a net transport to
the right, and the transport events to the left are short. The
lengths of the plateaux become statistically longer as one
approaches the fold bifurcation. It is possible to roughly
define a mean velocity [Fig. 22(b)]. By “roughly,” we mean
that c(t) fluctuates around a mean value. Increasing further
γ (away from the onset), the transport events are shorter,
thus the mean velocity decreases continuously. Figure 22(b)
shows that the relative velocity 1 − c follows a power law
with an exponent 0.39. Increasing γ further, the plateaux

are shorter and the drift velocity decreases. However, we are
not able to detect the transition from intermittent transport to
bounded dynamics because of the presence of a synchronized
transport with c = +1/3 which attracts all the dynamics for γ

about 14.2.
The intermittent behavior near the lower boundary γ −

f 	

of the existence domain of periodic transport resembles the
transition at γ +

f 	 discussed in the current reversal scenarios.
More precisely, for a relative variation of γ from γ −

f 	 inferior
to 10−7, we obtain a similar figure to Fig. 20: the plateaux
of regular dynamics are about 300 periods, while the chaotic
dynamics is about 3 × 104. Closer to the onset, the plateau
length increases, but the duration of the chaotic dynamics
remains larger. When the stable solution exists, i.e., γ > γ

f 	
− ,

a long chaotic transition arises before it converges to the
stable left transport. These results suggest the presence of
a nonattracting chaotic invariant set, i.e., a repeller, in the
neighborhood of the fold bifurcation. Thus, because of the
possible attracting manifold of the repeller, the dynamics
explore the neighborhood of this repeller before approaching
the ghost periodic transport solution and so on. From the
perspective of transport, as during the long chaotic events the
drift is small, this results in a slow transport to the left still
close to the onset. Therefore, on passing the onset, the velocity
varies dramatically from c = −1 to a small negative value.
This behavior is analogous as it happens at the γ +

f 	 transition.
(2) Decreasing γ further, the transition to the bounded
dynamics is found at γ  7.172. The simulation close to
this point displays a vanishing drift (Fig. 23). As in the
symmetric case (see Fig. 8) long epochs of bound dynamics are
interspersed by short drifts due to a crisis between consecutive
attractors. The bounded dynamics is like a quasiperiodic
motion with period two as suggests the double plateau in
Fig. 23(b). This bounded attractor is obviously not symmetric
and the crisis becomes a widening crisis instead of a merging
crisis as in Sec. III A 2. Hence, the dynamics of the widened
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FIG. 23. (a) Particle position at discrete times n close to the threshold of unbounded dynamics at γc  7.1726 (Fig. 18). (b) Magnification
of the rectangle in panel (a). The plateaux are nearly 2-periodic, while the short transport events display a chaotic behavior. The drift velocity
vanishes rapidly on approaching the threshold. Remaining parameters as in Fig. 18.

attractor causes drift events only to the left, leading to a net
transport.

In conclusion, the emergence of the transport is due to a
crisis of the consecutive shifted attractors on the one hand, and
on the other hand, the periodic transport appears at a saddle
node and corresponds to the largest drift velocity.

IV. TRANSPORT VIA FORCED SYMMETRY-BREAKING

The asymmetric case provides a transport mechanism for
particles with large drag. As shown in Sec. III A 1, when the
drag is about 100 the dynamics is attracted by a 1-periodic
solution in a symmetric geometry. In contrast, by varying the
asymmetry d, we find that this solution may disappear and
transport emerges even if the drag γ is large. Then, contrary to
the previous section the transport is induced by the asymmetry.
We detail below the kind of transport found.

The bifurcation diagram (Fig. 24) of the period-one
solutions in the symmetric case is expanded by using the
velocity contrast a [see Eq. (10)] as a bifurcation parameter
and fixing the drag and the characteristic velocity: γ = 100
and um = 9. The period-one solutions s0 and sm exchange
their stability via two pitchfork bifurcations and are connected
by the asymmetric sa branch (Fig. 24) as in Fig. 4. The sa

branch exists in the ranges surrounding a = 0.65 ([am; aM ]
inset of Fig. 24) and a = 0.9. Now, let us study the existence
of these solutions for an asymmetric velocity profile, i.e., when
d varies. It is found that if a is smaller than the critical value
ac = 0.507, then both branches s0 and sm still exist for all
values of d and their stability does not change. When a is
superior to ac, the two branches annihilate in a fold bifurcation
at df < 1/2 (Fig. 25). Note that a saddle-node bifurcation
between s0 and sm involving the coalescence of their mean
positions is not possible within the symmetric case since they
have distinct mean positions. The time integration of Eq. (4)
with d > df and close to df displays a slow drift to the left. The
drift is intermittent: the particle remains during many periods
in the vicinity of the vanished periodic solution and then drifts

to the next pore. The stroboscopic time evolution of the particle
position at every period displays a regular descending staircase
for different values of d; the plateaux correspond to oscillations
close to the threshold (Fig. 26). The plateaux become longer
when d approaches df . The computation of the drift velocity
c as a function of d − df indicates a power law dependence:
c ∼ (d − df )1/2 (Fig. 27). This power law is consistent with the
type-I intermittent bifurcation [58,59]. To corroborate that, the
return map (x̄n,x̄n+1) of the discrete positions xn of the particle
position at every period t = n is plotted in Fig. 27. The return
map displays a smooth curve tangent to the bisectrix as is
observed near the threshold of type-I intermittency for the
one-dimensional problem xn+1 = f (xn). A priori, our problem
is two-dimensional and the iteration map should depend on
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FIG. 24. Bifurcation diagram showing the norm ||s|| of the
one-periodic orbits s0, sm, and sa for the symmetric velocity profile
as a function of the velocity contrast a. The pitchfork bifurcations
are indicated by dotted lines. Plain [dashed] lines indicate stable
(unstable) solutions. Parameters γ = 100, um = 9, and d = 0.
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FIG. 25. Continuation of the branches s0, sm, and sa starting from the symmetric case (Fig. 24) by varying the d parameter and for different
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df 2. Color code as in Fig. 24. Remaining parameters are γ = 100, um = 9.
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percentage of the relative d variation (d − df )/df , is indicated below each plot. (Right) a = 0.65 and d = 0.0494 superior to the onset df 1 in
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FIG. 27. Return map of the particle position xn at discrete times n of the dynamics close to the intermittent bifurcation df for (a) a = 0.6
and (b) a = 0.65. The “+” symbol indicates the fixed point at df . For panel (b) there are two fixed points according to Fig. 25(c). The inset of
panel (a) shows that the curve passes very close to this point, but it does not cross the bisectrix. Remaining parameters as in Fig. 26.

the velocity vn too. But the one-dimensional aspect of the
dynamics is a consequence of the large drag. According to
Eq. (4):

xn+1 − xn =
∫ 1

0
u0[x(t)] sin 2πt dt − 1

γ
(vn+1 − vn) (19)

Because 1/γ is small and the particle velocity v is bounded,
the last term of the right-hand side is negligible:

xn+1 − xn 
∫ 1

0
u0[x(t)] sin 2πt dt = g(xn). (20)

The regular particle drift contrasts with the usual intermittent
dynamics as in the previous Sec. III B (Figs. 22 and 23). It
could be related to periodic shadowing orbits [60]; i.e., the
trajectory stays “close” to an unstable periodic transport of
large period. But to find such a periodic solution is a very
difficult task [61]. Therefore, to explain the drift regularity, we
propose to study the approximated one-dimensional discrete
dynamical system (20) where (1) g is 1-periodic, small, and
strictly negative and (2) |g′| is not large compared to one.
Indeed, the spatial periodicity implies the periodicity of g

[Eq. (20)] and the quasiadvective motion for large drag implies
that the drift xn+1 − xn = g(xn) is small. Furthermore, due to
the fact that the flow velocity gradient ∂u0

∂x
is not large then,

according to Eq. (20), the derivate g′ acquires this property
too. Finally, the assumption g < 0 is related to the fact that
there is no periodic solution beyond the fold bifurcation and
thus g cannot change its sign. For this particular example, the
drift is negative then g is strictly negative.

Under these assumptions, we prove that a particle needs N

or N − 1 temporal periods to pass through one pore, where
N does not depend on the initial condition (see Appendix B).
This explains the regularity of the staircase in Fig. 26 and the
attraction property of the whole dynamics since it is true for any
initial condition. The simulation fairly corroborates this result.
For instance, let us consider the case a = 0.6 where df is equal
to 0.1797384. For d = 0.18000, the number of periods is 378
or 379 while for d = 0.17975 it is 1692 or 1693. However,
very close to the critical point this rule is no longer valid:

When d = df + 10−7, the number of temporal periods varies
between N − 250 and N + 250 with N  18000. This can be
explained by the two-dimensional aspect of the dynamics. In
fact, if |d − df | is small, the step length vanishes, and then the
dropped term (vn+1 − vn)/γ in Eq. (20) is no longer negligible.
Nevertheless, the mean value of N is large compared to its
fluctuations, and the drift therefore still appears regular.

Let us briefly describe the other transport transitions for
other values of the contrast a, in particular when the sa

branch is present [Figs. 25(b)–25(d)]. Starting from d = 0,
this branch splits into two branches s+

a and s−
a , which connect

the branches s0 and sm at two turning points df 1 and df 2,
respectively. For a close to am, the critical value df2 is close to
zero [Fig. 25(b)], and it increases with a while df 1 decreases
until it vanishes for a = aM [Fig. 25(d)]. Beyond the value aM ,
just one saddle-node bifurcation remains, and its critical value
increases with a (see Fig. 25 at a = 0.68 and a = 0.8). When
both saddle nodes are present, in the interval d ∈ [0; df 2],
there is a bistability between s+

a and s−
a . For d between the

two critical values df 2 and df 1, the dynamics converges to
the remaining stable branch sa . Finally, beyond the largest
value of the saddle node the intermittent transport emerges.
The transport has the same properties as previously, but a
noteworthy behavior arises when the critical values are almost
equal for a = 0.65 (df 1  df 2  0.05) [Fig. 25(c)]. Indeed,
the Poincaré map of the dynamics displays a regular staircase
with two different plateaux corresponding to the two periodic
solutions that disappeared at the saddle-node bifurcations.

The numerical simulations show that the intermittent drift
attracts all the dynamics, and it is still stable even for d far
from the onset. In addition, the transport does not change its
direction and so the drift velocity c remains negative. The
drift velocity |c(d)| is always an increasing function of d,
hence the asymmetry parameter is also quantitatively relevant
for the transport. The maximum drift velocity is not larger
than 0.1; e.g., for a = 0.65, um = 9, and d = 0.4, one obtains
c = −0.0654, which is still small compared to that of the
synchronized transport. It is noteworthy that the drift remains
for large drag, at least for γ = 500 as shown by the loci of
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FIG. 28. Loci of intermittent bifurcation in the plane (γ,df ) for
different values of the parameters a and um. The upper domain
bounded by each curve is the intermittent transport domain while
in the lower domain the dynamics converges to a 1-periodic solution.
The circles indicate corners of the curves discussed in the text.

bifurcation points in the (γ,df ) plane (Fig. 28). Hence, this
transport may be relevant for microparticles. Beyond 500, the
critical asymmetry parameter df (γ ) is larger than 0.4, so this
result is less relevant for our model. Owing to the intersection
of loci of the two fold bifurcations displayed in Fig. 25(c),
the curves corresponding to a = 0.65 and a = 0.7 have sharp
corners α and β, respectively, which are the intersections of
two loci of saddle nodes. Note that this intermittent transport
does not exist for γ smaller than 50; thus in contrast to
the synchronized transport, this transport occurs for large
drag. A transport solution is also found in the same direction
for smaller characteristic velocities. However, its existence
domain shrinks: if um = 5 the range of intermittent bifurcation
is γ ∈ [80; 120] if we consider only d < 0.4 (Fig. 28). For
γ = 120 the critical asymmetry parameter d is larger than 0.4,
thus lager γ values are not relevant.

The intermittent transport is always in the negative direction
for d > 0, and then, according to Sec. II B, the transport is in
the positive direction for d < 0. Therefore, the asymmetric
shape of the pore profile induces the ratchet effect and
determines its direction as for the mechanical pawl.

This slow drift is reminiscent of the description of the drift
ratchet experiment and the result of the drift ratchet model. We
therefore call this transport mechanism the deterministic drift
ratchet.

V. INTERPRETATION OF TRANSPORT TRANSITIONS

In the following, we relate the transitions responsible for
transport to the ratchet problem discussed in the literature and
to the more general framework of dynamical systems.

A. Transition of the deterministic drift ratchet

The stroboscopic particle motion presented in Figs. 26 is
very reminiscent of the phase slip addressed by Pikovsky et al.

FIG. 29. Poincaré section on the S1 circle of the particle position
2πxn during the transition of the deterministic drift ratchet. (a) Full
(empty) circles designate the 1-periodic stable (unstable) solution for
d < df . Arrows on the circle indicate the direction of the heteroclinic
connections between periodic solutions. The dynamics converges to
the stable periodic solution. (b) At the onset d = df , unstable and
stable mean positions coincide and only a homoclinic connection
remains. (c) When d > df the periodic solutions vanish and the
dynamics leads to a rotation which corresponds to the particle drift.

[26,62] and characterized by epochs of nearly constant phase
intermingled with 2π slips (see, e.g., Fig. 2 of Ref. [62]).
Such a behavior is known as a loss of synchronization and
can be found for many oscillators with a small forcing
amplitude such as the Rössler oscillator [63]. However, this
synchronization transition refers to the effect of a small
external periodic force on a self-sustained oscillator or on a
rotator [64]. The micropumping problem does not correspond
to this framework: the periodic force is not small and without
periodic pumping there is no motion; finally we do not consider
a bias that could have played the role of the rotator [56]. Even
so, the one-dimensional model Eq. (20) of the particle position
is similar to the phase dynamics. Introducing the mean value of
the function g, noted −ν, and taking into account the properties
of g, Eq. (20) reads

xn+1 = xn − ν + εq(xn), (21)

where ε = 1/γ , q is 1-periodic, and ν is positive. Note that ν is
the distance from the curve of the return map to the bisectrix;
it therefore measures the distance to the threshold d − dc.
By substituting 2πxn by the phase φn, Eq. (21) becomes the
phase dynamics approximation for synchronization of periodic
oscillators by a weak periodic external action and with weak
nonlinear oscillations [62]. Note that if q(φ) = sin(φ) then
it is the well-known Adler equation [65]. In the following,
we recall the properties of the phase dynamics presented in
Ref. [26], which are clearly similar to the particle dynamics
of Sec. IV. If the phase φ is represented by an angle in the
phase plane, then the dynamics occurs on a circle, called
the circle map. This circle is shown for the 2πxn dynamics
for different steps of the drift transition in Fig. 29. On the
circle, two regimes of the phase dynamics are possible, namely
periodic or quasiperiodic. The periodic state corresponds to
the existence of a pair of saddle fixed points on the circle
map [Fig. 29(a)]. Note that more than two periodic solutions
may exist but they always appear in pairs of saddle points
[see Fig. 25(c)]. The loss of periodicity (desynchronization)
arises from the saddle-node bifurcation [Fig. 29(b)]. Then the
dynamics is characterized by a single parameter called the
rotation number or beat frequency, which is equivalent to
the particle drift velocity [Fig. 29(c)]. It is known that the
rotation number does not depend on the initial position (see
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Ref. [66]) as we prove in the Appendix B for our particular
case. Finally near the threshold, the rotation number has a
square-root dependence

√
ν − νc. The difference ν − νc is

often called the frequency detuning [67]. In conclusion, the
particle drift of small inertia is equivalent to the phase drift of
an oscillator with weak forcing and the detuning parameter is
the asymmetry d.

The slow intermittent particle transport of Sec. IV has
been reported in a (stochastic) rocking ratchet for over-
damped particles [32]. A bias plays the role of the depinning
force leading to a particle transport with the same kind
of quasiperiodic dynamics. In the deterministic case, the
depinning transition is generally related to a global bifurcation
as observed for the transport of attracting colloidal particles
in Ref. [6] or for the depinning of drops on substrates with
a periodic array of defects [47,68]. In the latter case, one of
the depinning transitions is a SNIPer bifurcation (saddle-node
infinite period), which involves at a saddle node a homoclinic
loop as in our case [Fig. 29(b)]. It follows the same power law
for the transport velocity near the onset. However, the resulting
dynamics is periodic for the drop depinning while it is only
quasiperiodic in our case. For the deterministic drift ratchet,
it is due to the existence of two frequencies generically not
commensurable in the dynamics: the pumping frequency and
the rotation number.

B. Transitions at moderate drag

For moderate drag, the emergence of the periodic transport
solution at a saddle node is also related to synchronization.
Far enough away from the onset, there is a pair of saddles of
periodic solution, and as previously the unstable manifold is
connected to the stable periodic solution, which constitutes the
invariant curve [Fig. 29(a)]. However, approaching the saddle-
node bifurcation, the dynamics can no longer be reduced to the
S1 circle map. Instead, the dynamics (x̄n,vn) ∈ S1 × R tends
asymptotically to an invariant annulus map if we represent the
dynamics in polar coordinates (ρ,θ ) such that ρn = vn + 3um

and θn = 2πxn. The bounded character of ρn ensues from
the fact that the particle velocity is bounded by the fluid
velocity. Such a map is similar to periodic oscillators with
a moderate forcing where the amplitude of the oscillation
corresponds to ρn and the phase to θn. In this framework,
there are two scenarios of invariant curve destruction during
the desynchronization summarized in Ref. [26] and described
in greater detail in Refs. [69,70]. In the first scenario, the
curve is no longer C1 in the vicinity of the stable fixed point
because of folds. In the second scenario, the unstable manifold
also presents a fold, but additionally, it crosses the stable
manifold, creating an homoclinic structure [55] and implying
the existence of a nonattracting chaotic set usually called a
repeller. In both scenarios beyond the saddle-node bifurcation
the intermittency occurs as for weak driving. However, the
lengths of the plateaux are no longer regular and are not
determined solely by the rotation number. That is what we
have observed near the onsets of synchronized transport. The
figures show clearly that the velocity fluctuates and that it is
not possible to define a clear limit independent of the initial
condition. The second scenario seems to correspond to the
dynamics near the transitions γ +

f 	 and γ −
f 	. In particular, it

corroborates the existence of a repeller near the threshold
and explains the persistency of long chaotic dynamics even
close to the saddle node (see Fig. 20). The second scenario
quantitatively differs from the first scenario by a jump of the
drift velocity during the transition.

Inside the existence domain, the periodic doubling cascade
of the periodic transport can be interpreted as a destruction
of the invariant curve in the generic problem of a driven
oscillator too. Because the eigenvalues are complex, the period
doubling of the stable fixed point breaks the circle map. The
period-doubling cascade leads to a strange attractor appearing
in the vicinity of the initial stable fixed point. The rotation still
exists and remains the same till the crisis unlocks the transport
velocity as we have shown.

The link between synchronization and periodic transport,
for underdamped ratchets, was already interpreted as phase
locking in the early 2000s [22] and explains why the drift
velocity is commensurable [56]. In recent years, a prolifer-
ation of research focused on phase synchronization in the
framework of coupled chaotic ratchets [71–74]. Nonetheless,
the issue of the emergence of transport has been poorly
addressed. In Ref. [23], the authors associated the existence
of transport to the synchronization transition: “We showed
that the occurrence of a net motion in the system is always
related to phase locked dynamics” (see the conclusion of
Ref. [23]). Our analysis shows that there is a small gap
between the onset of the (phase unlocked) transport and the
phase locked transport. According to the numerical simulation,
synchronization optimizes only the drift velocity. The onset
of unbounded dynamics is associated to a merging crisis
(symmetric case) or a widening crisis (asymmetric case),
which are well-known in chaos theory, especially as an
intermittency mechanism [75,76]. However, to our knowledge,
this onset has not been identified or mentioned in the ratchet
framework. Moreover, even though the emergence of periodic
transport at a saddle node was well established in Ref. [24],
it is difficult to be detected using time integration only since
this transition boundary may involve long chaotic transients
as we observed close to the onsets γ −

f 	 and γ +
f 	. Moreover,

the stability range near the saddle node is often pointlike as
shown by the bifurcation diagrams Figs. 12 and 18 and notably
the existence domain (Fig. 14). Such stability domains with
fine filaments are present in Fig. 1 of Ref. [24], but the study
focused on the interior of the existence domain where the
stability range is bounded by crises due to a doubling period
route to chaos of the synchronized transport. Therefore the
existence onset identified only via time integration may be
confused with one of these crises inside the existence domain.

VI. CONCLUSION

In this paper we have examined a nonlinear ODE as a model
for the dynamics of particles confined in a periodic channel
and dragged in a creeping flow. The particle drag force varies
temporally and spatially as a standing wave. These variations
constitute what we called the ratchet flow. Assuming the
problem is axisymmetric, we obtain a second order differential
equation. The equation differs slightly from the ratchet models
usually employed in the literature. However, it possesses the
main characteristics, namely, the time and spatial shift periods.
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According to Figs 14 and 28, particle transport exists for
two orders of magnitude of the γ drag: around 10 and more
surprisingly around 100 through 500. In each of these ranges
a specific bifurcation scenario occurs leading to transport,
notably the role of the parity symmetry S differs. (1) When γ

is about 10 (Sec. III), spontaneous symmetry breaking leads to
an unbounded dynamics and possible unidirectional transport
even in the symmetric case. Obviously, we need asymmetry
to obtain a net current in the statistical sense. (2) In contrast,
the deterministic drift ratchet (γ ∼ 100) in Sec. IV is induced
by the asymmetry, i.e., by a forced symmetry breaking. It
is remarkable that even if the flow is slightly asymmetric
(d ∼ 0.05), this transition may occur.

We retrace the two bifurcation scenarios starting from the
1-periodic solutions s0 and sm. Let us recall the main steps for
each scenario:

(1) For a moderate drag of about 10, the emergence of
transport is a consequence of spontaneous symmetry breaking,
crisis and synchronization phenomena and the asymmetry
can be interpreted as a perturbation of the symmetric case.
So we considered the symmetric pore distribution leading to
a problem invariant by the S symmetry for which s0 and
sm are symmetric solutions. By increasing the characteristic
velocity um, the amplitude of oscillation increases and a
pitchfork bifurcation leads to the asymmetric sa branch.
The latter evolves a periodic doubling cascade inducing a
bounded chaotic dynamics. By varying slightly the bifurcation
parameter, the strange attractor collides via crisis with its
neighbors which are copies shifted by one pore length.
Then, the spatial shift symmetry is a necessary ingredient
of the unbounded dynamics. In the vicinity of this crisis a
saddle-node bifurcation marks the existence of a periodic and
stable transport even in the symmetric case. This bifurcation
can be interpreted as a synchronization phenomenon as for
a self-sustained oscillator with moderate periodic driving
(Sec. V). The two main kinds of intermittency observed near
the saddle node are part of the two universal synchronization
transitions described in Ref. [26]. Periodic transport exists
in a range bounded by the saddle nodes. Because of the
S symmetry, opposite transport solutions coexist. Inside its
existence domain, a period-doubling phenomenon followed by
a crisis occurs. Thereafter, the transport velocity is no longer
locked and a chaotic and unbounded dynamics occurs.

The break of parity symmetry when d �= 0 has two
main consequences. First, the unbounded chaotic dynamics
occurring after the crisis now displays a net current. Thus, the
transport appears at the crisis of bounded strange attractors
and not at the synchronization transition as suggested in
the literature (see, e.g., Ref. [23]). Second, the existence
domains of periodic transport are shifted and current reversals
arise between two stability windows of opposite transports.
Therefore, current reversal is a generic phenomenon of the
slightly asymmetric ratchet problem involving synchronized
transport. As explained in Sec. V, such a description of the
transitions from periodic solution to synchronized transport
has not yet been clearly discussed in the literature. The
emergence of synchronized dynamics is not the threshold of
the transport but rather corresponds to a transport optimisation
since it is the maximum drift velocity.

(2) For the deterministic drift ratchet, the inertia of the
particle is too small (γ about 100) to allow a period-
doubling phenomenon and chaotic dynamics. However, the
periodic solutions s0, sm, or sa may collapse at a saddle-node
bifurcation. This transition occurs only in the asymmetric case,
since in the symmetric case the solutions have different mean
positions. Beyond this saddle node a slow drift is shown by
time integration. It increases with the asymmetry d but remains
smaller than 0.1: drift by one pore length needs at least 10
temporal periods. This transition is analogous to a depinning
transition with a bias. In particular, the drift velocity vanishes
as the square root of the threshold distance as for the SNIPer
transition. The originality here is that there is no bias, only the
flow asymmetry d plays this role. In a more general framework,
the particle drift is similar to the phase slip that occurs via a loss
of synchronization of a self-sustained oscillator with a weak
periodic driving. It follows that the slow drift is quasiperiodic
and that the drift velocity is unique. Moreover the sign of d

determines the transport direction, and then a current reversal
occurs by changing its sign. This kind of transport and current
reversal induced by asymmetry is similar to the results of
Refs. [21,30] for a rocking ratchet with biharmonic temporal
forcing. The parameter d plays the role of the phase difference
in the temporal forcing. However, the drift velocity does
not display the sinusoidal-like function or the more general
function proposed in Ref. [31]. The different nature of the
asymmetry (spatial in our case) and the particular form of
u0 which contains an infinity of harmonics may explain this
difference. Anyway, this previous article cannot explain the
transport mechanism and its emergence.

The numerical bifurcation analysis has shed new light
on the classical single particle ratchet problem. The role of
symmetry enables us not only to classify the types of transport
mechanisms but also the two kinds of current reversal. For
nearly overdamped particles, the drift ratchet is due to the flow
asymmetry, and then asymmetry forces the direction, i.e., in
our case the sign of the d parameter. For smaller drag, the
current reversal is due to the coexistence of opposite solutions
in a symmetric case and any small break of this symmetry
provides current reversal scenarios by varying one of the prob-
lem parameters such as the frequency or the amplitude of the
forcing. We have clarified the role of the synchronization phe-
nomenon in the ratchet effect. For an asymmetric flow profile
(ratchet), synchronization is not responsible for the effective
transport. Either it only optimizes the transport (Sec. III B) or
on the contrary the loss of synchronization allows the transport
(Sec. IV).

We also believe that in order to better understand the role of
a weak noise on the dynamics, knowledge of the bifurcation di-
agrams is crucial. Indeed, the transports found are reminiscent
of the dynamics of noisy ratchets as in Ref. [77]. The vicinity
of the shifted period-two orbits described in Sec. III A 4 may
be a possible explanation for the triggering of the onset of
transport found in this paper. For large drag, the dynamics is
also similar to the noisy overdamped case [32,78]. Therefore,
the small particle acceleration seems to play a similar role to
that of a small Brownian noise. Recently, in Ref. [79], it was
shown how noise may trigger the phase slip, i.e., the drift in our
context.
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One perspective of this study concerns the improvement of
the model for an arbitrary particle radius which is especially
relevant for drag coefficients γ of about 10. In Refs. [36,37],
it is shown that variations in the drag coefficient γ (x) can
be non-negligible when the particle radius is comparable
to the minimum radius of the channel. A ratchet due to
drag coefficient variations is known as a friction ratchet
[10,80]. In a current project we therefore aim at performing
a similar bifurcation analysis by combining flow and friction
ratchets.
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APPENDIX A: SMALL AMPLITUDE DRIVING

Assuming that the amplitude of the fluid is small com-
pared to the pore length, we prove that the drift converges
to a stable solution. Similar results are obtained by pon-
deromotive force; here, however, the particle drag is not
negligible contrary to these studies. Let us now detail the
proof.

The small amplitude assumption implies that the mean
velocity um is small, i.e., um � 1, which constitutes the small
parameter in the following developments. We decompose the
particle trajectory

x(t) = xp(t) + xd (t) (A1)

as the sum of a 1-periodic function xp (short time variation)
and of a slow drift xd . More precisely, we set the ansatz:
xp = O(um), ẋd = O(u2

m), and ẍd = O(u2
m). Hence, during

one period, we may assume xd (t) constant, and we have the
following approximation:

xd (t) = xd (t0) + O
(
u2

m

)  x0
d , (A2)

u0(x(t)) = u0(xp(t) + xd (t))

= u0d + u′
0d xp + O

(
u3

m

)
(A3)

with u0d = u0[xd (t0)] and u′
0d = u′

0(xd ) = du0
dx

[xd (t0)]. By
replacing x(t) by its decomposition Eq. (A1) in the governing
equation Eq. (4):

ẍd + ẍp + γ ẋd + γ ẋp

= γ (u0d + u′
0d xp) sin 2πt + O

(
u3

m

)
. (A4)

We study this equation by focusing on two different scales:
the short time where xd is constant and the long time scale
by taking the mean value over one period, noted 〈·〉. Thus, we
obtain two equations:

ẍp + γ ẋp = γ u0d sin 2πt + O
(
u2

m

)
, (A5)

〈ẍd〉 + γ 〈ẋd〉 = γ u′
0d < xp(t) sin 2πt > +O

(
u3

m

)
. (A6)

The short time Eq. (A5) can be solved at leading order

xp(t) = − ud

2π

[
1 +

(
2π

γ

)2]−1/2

sin(2πt + ϕ) + O
(
u2

m

)
(A7)

with the phase ϕ ∈]0,π/2[ such that tan ϕ = γ /(2π ). Replac-
ing this solution in Eq. (A6), the governing equation of the
slow drift is at leading order

ẍd + γ ẋd = −γαu0(xd )u′
0(xd ), (A8)

with α = 1
4π

(1 + (2π/γ )2)−1/2 cos ϕ > 0 and xd is identified
with its mean value. The drift vanishes when u′

0 = 0, i.e.,
at the extrema of the velocity field. A standard stability
analysis shows that at a local minimum of u0, the equi-
librium is stable while at a maximum it is a saddle, in
particular, it is unstable. In conclusion, for sufficiently small
driving, we expect the particles to collect at the velocity
minima.

APPENDIX B: REGULAR INTERMITTENT
TRANSPORT

The intermittent transport for large drag γ displays a
very regular aspect. Let us prove that the two-dimensional
map xn+1 = f (xn) = xn + g(xn) with the four assumptions
(1) g is 1-periodic, (2) g is small, (3) |g′| is not large
(<1), and (4) g is strictly negative can explain this behavior.
The two-dimensional aspect of the dynamics is discussed
later.

We construct the map xn starting from x0. Because
g is strictly negative, xn is strictly decreasing. We
call N the smallest iteration number such that xN �
x0 − 1 (Fig. 30). Assumption 3 implies that f is a
strictly increasing function. Then x0 − 1 < xN−1 implies that
x1 − 1 < xN .

Now consider the map yn starting from y0 in the interval
]x1; x0]. We seek the minimal iteration number M such
that yM < x0 − 1. Because f is strictly decreasing, then
xn+1 < yn � xn for all n. For instance, xN < yN−1 � xN−1.
The range [xN,xN−1] contains the point y0 − 1 [Fig. 30], and
there are two cases depending on whether yN−1 is inferior
to y0 − 1 or not. If yN−1 � y0 − 1, then M = N − 1 is the
iteration number. Otherwise x1 − 1 < yN � xN � y0 − 1 and
then M = N (case considered in Fig. 30).

Therefore the map yn modulo 1 passes in the interval ]x1,y0]
every N − 1 or N iterations. Because y0 is unspecified all
dynamics have this quasiperiodic behavior. Furthermore, if y0

is near the tangent bifurcation, then ]x1,y0] is small and then
the dynamics appears regular.

The previous proof does not hold if one considers the two-
dimensional discrete dynamical system taking velocity into

x0x0 − 1
x1 − 1

xN xN−1 x1
yN yN−1

y0

FIG. 30. Scheme of the (xn) and (yn) maps. The hatched segment
is the range of possible values of yN−1. If x0 − 1 < yN−1 as in this
scheme then x1 − 1 < yN < xN .
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account. According to the numerical simulations, it acts as a
small perturbation to the previous process. Approaching the
bifurcation point, the intervals [xn,xn+1] vanish. Even a small
perturbation of this map may then have a great influence on

the number of iterations. This is what was observed when d is
very close to df . However, the variation of iterations is smaller
compared to the mean iteration number and the regular aspect
remains.
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(2011).
[14] P. Blondeaux, G. Vittori, A. Bruschi, F. Lalli, and V. Pesarino,

J. Fluid Mech. 697, 115 (2012).
[15] F. Mugele, A. Staicu, R. Bakker, and D. van den Ende, Lab Chip

11, 2011 (2011).
[16] J. A. Y. C. McWilliams, P. P. Sullivan, and C.-H. Moeng, J. Fluid

Mech. 334, 1 (1997).
[17] F. Santamaria, G. Boffetta, M. M. Afonso, A. Mazzino, M.

Onorato, and D. Pugliese, Europhys. Lett. 102, 14003 (2013).
[18] S. Flach, O. Yevtushenko, and Y. Zolotaryuk, Phys. Rev. Lett.

84, 2358 (2000).
[19] O. Yevtushenko, S. Flach, Y. Zolotaryuk, and A. A.

Ovchinnikov, Europhys. Lett. 54, 141 (2001).
[20] P. Reimann, Phys. Rev. Lett. 86, 4992 (2001).
[21] D. Cubero, V. Lebedev, and F. Renzoni, Phys. Rev. E 82, 041116

(2010).
[22] J. L. Mateos, Phys. Rev. Lett. 84, 258 (2000).
[23] M. Barbi and M. Salerno, Phys. Rev. E 62, 1988 (2000).
[24] D. Speer, R. Eichhorn, and P. Reimann, Phys. Rev. E 76, 051110

(2007).
[25] P. S. Landa, Nonlinear Oscillations and Waves in Dynamical

Systems (Kluwer Academic Publishers, Dordrecht, 1996).
[26] A. Pitkovsky, M. Rosenblum, and J. Kurths, Synchronization. A

Universal Concept in Nonlinear Sciences (Cambridge Univer-
sity Press, Cambridge, 2001).

[27] J. L. Mateos, Physica D 168-169, 205 (2002).
[28] L. Du and D. Mei, Phys. Rev. E 85, 011148 (2012).
[29] N. R. Quintero, J. A. Cuesta, and R. Alvarez-Nodarse,

Phys. Rev. E 81, 030102 (2010).

[30] A. Wickenbrock, D. Cubero, N. A. Abdul Wahab, P.
Phoonthong, and F. Renzoni, Phys. Rev. E 84, 021127 (2011).

[31] J. A. Cuesta, N. R. Quintero, and R. Alvarez-Nodarse,
Phys. Rev. X 3, 041014 (2013).

[32] K. Lee, J. Korean Phys. Soc. 60, 1845 (2012).
[33] H. A. Dijkstra1, F. W. Wubs, A. K. Cliffe, E. Doedel, I. F.

Dragomirescu, B. Eckhardt, A. Y. Gelfgat, A. L. Hazel, V.
Lucarini, A. G. Salinger, E. T. Phipps, J. Sanchez-Umbria,
H. Schuttelaars, L. S. Tuckerman, and U. Thiele, Commun.
Comput. Phys. 15, 1 (2014).

[34] H.-J. Bungartz, M. Mehl, T. Neckel, and T. Weinzierl, Comput.
Mech. 46, 103 (2010).

[35] J. Happel and B. Bryne, Ind. Eng. Chem. 56, 1181 (1954).
[36] M. Makhoul, P. Beltrame, and M. Joelson, in Topical Problems

of Fluid Mechanics, edited by D. Simurda and T. Bodnar (CTU,
Prague Fac. Mech. Eng., 2015), pp. 137–144.

[37] M. Makhoul, P. Beltrame, and M. Joelson, Intl. J. Mech. 9, 260
(2015).

[38] H. Brenner, J. Fluid Mech. 18, 144 (1964).
[39] M. Makhoul, P. Beltrame, and M. Joelson, in Advances in Math-

ematics and Statistical Sciences, edited by N. E. Mastorakis, A.
Ding, and M. V. Shitikova (WSEAS Press, Dubai, United Arab
Emirates, 2015), pp. 40–47.

[40] E. Doedel, R. Paffenroth, A. Champneys, T. Fairgrieve, Y.
Kuznetsov, B. Sandstede, and X. Wang, AUTO 2000: Con-
tinuation and Bifurcation Software for Ordinary Differential
Equations (with HomCont), Tech. Rep. (Caltech, Pasadena,
2001).

[41] E. J. Doedl, Numerical Continuation Methods for Dynamical
Systems, edited by B. Krauskopf, H. M. Osinga, and J. Galán-
Vioque (Springer, Netherlands, 2007), pp. 1–49.

[42] J. C. Alexander, E. J. Doedel, and H. J. Othmer, SIAM J. Appl.
Math. 50, 1373 (1990).

[43] E. Doedel, W. Govaerts, and Y. Kuznetsov, SIAM J. Numer.
Anal. 41, 401 (2003).

[44] Y. A. Kuznetsov, in Elements of Applied Bifurcation Theory,
edited by S. S. Antman, J. E. Marsden, and L. Sirovich, Applied
Mathematical Sciences, Vol. 112 (Springer, New York, 2004),
pp. 77–115.

[45] P. L. Similon and A. N. Kaufman, Phys. Rev. Lett. 53, 1061
(1984).

[46] B. W. J. McNeil and N. R. Thompson, Nat. Photon. 4, 814
(2010).

[47] U. Thiele and E. Knobloch, New J. Phys. 8, 313 (2006).
[48] P. Beltrame and U. Thiele, SIAM J. Appl. Dyn. Syst. 9, 484

(2010).
[49] J. Burke and E. Knobloch, Phys. Lett. A 360, 681 (2007).
[50] U. Thiele, A. J. Archer, M. J. Robbins, H. Gomez, and

E. Knobloch, Phys. Rev. E 87, 042915 (2013).
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