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Chimera states in bursting neurons
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We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons
with nonlocal, global, and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the
behavior of the stability function in the incoherent (i.e., disorder), coherent, chimera, and multichimera states.
Surprisingly, we find that chimera and multichimera states occur even using local nearest neighbor interaction
in a network of identical bursting neurons alone. This is in contrast with the existence of chimera states in
populations of nonlocally or globally coupled oscillators. A chemical synaptic coupling function is used which
plays a key role in the emergence of chimera states in bursting neurons. The existence of chimera, multichimera,
coherent, and disordered states is confirmed by means of the recently introduced statistical measures and mean
phase velocity.

DOI: 10.1103/PhysRevE.93.012205

I. INTRODUCTION

Synchronization in networks of neuronal systems has been
an active research area due to its important role in coding and
information processing in biological systems and the brain.
Bursting neurons are characterized by alternates of the activity
of neurons between a quiescent state and fast repetitive spiking
on a slow time scale. There are many processes to produce
bursting behavior in coupled oscillators [1]. Further, different
types of synchrony occur in coupled bursting neurons which
include spike synchronization, bursting synchronization, com-
plete synchronization, and antiphase bursting synchroniza-
tion [2]. In general, burst synchronization occurs at lower
values of coupling strength and for complete synchronization,
which involves both spike and burst synchronizations, one
requiring a higher value of coupling strength. Two different
forms of couplings are mainly used in coupled bursting
neurons, depending on whether the synapse is chemical [3]
or electrical [4]. In the first case, the synaptic coupling is often
approximated by a static sigmoidal nonlinear input-output
function with a threshold and saturation. In the second case, the
electrical coupling is a linear function and is directly dependent
on the difference between the membrane potentials. Complete
synchronization always occurs in globally coupled bursting
neurons under suitable conditions on the coupling strength
when the synaptic coupling is electrical. Using such a global
synaptic coupling, identical oscillators are found to be either
synchronized or oscillate incoherently, but they never exist
simultaneously. Interestingly, we observe the coexistence of
coherent and disordered (incoherent) states under nonlocal,
global, as well as local (nearest neighbor) synaptic couplings
in a network of bursting neurons. Such a coexisting state was
originally named as a chimera state by Abrams and Strogatz [5]
in the context of nonlocally coupled phase oscillators.

Chimera states in identical coupled oscillators have also
been an active area of extensive research in recent years
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in the field of biology, physics, and social sciences [5,6].
Initially the chimera states have been shown to emerge when
a network of identical oscillators is coupled nonlocally, that
is, the coupling strength decays with distance between the
coupled oscillators. Chimera states are interesting because
they occur even when the oscillators are identical and coupled
symmetrically. There are different types of chimera states,
such as amplitude-mediated [7], breathing [8], clustered [9],
and spiral-wave [10] types, etc. Chimera states have also been
experimentally observed in chemical [11], electronic [12],
electrochemical [13], and mechanical [14] systems. Initially it
was assumed that chimera states only exist in phase oscillators
using a nonlocal coupling configuration. But recently it has
been observed that chimera states also occur in systems
exhibiting limit cycles and in chaotic dynamical systems [15].
Very recently, chimera states have also been observed in
globally coupled oscillators [16]. Chimera states are observed
in real-world systems [17], where various dynamical behaviors
are involved. For example, in the case of Parkinson’s disease
due to loss or damaged cells in the brain, synchronized
activity is absent in certain regions of the brain [18].
In the case of epileptic seizures, specific regions of the
brain are highly synchronized and the others part are not
synchronized [19].

One of the most challenging and inspiring problems in
this area is to identify the existence of chimera states in neu-
robiological systems. During the last decade the mechanism
behind mutual synchronization and phase synchronization of
chaotic bursts in neural ensembles has been explained in
detail [2,20,21]. Recently, Kalitzin et al. [22] have observed
collective dynamics of coupled neuronal oscillators which
have multiple oscillatory states. In this paper we report a
surprising finding of chimera and multichimera states in
networks of chaotically bursting Hindmarsh-Rose oscilla-
tors [23] under different couplings, including local ones.
Chimera states emerge in an ensemble of bursting neurons
with at least three types of couplings, namely, nonlocal, global,
and local (nearest neighbor) interactions. Recently, Hizanidis
et al. [24] investigated the existence of chimera states in
a three-dimensional Hindmarsh-Rose neuron model using a
nonlocal electric type of coupling. Previously, chimera states
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were observed by Sakaguchi [25] in coupled Hodgkin-Huxley
neural oscillators with excitatory and inhibitory couplings
where nonlocal coupling is essential for the appearance of
these states. Very recently, Omelchenko et al. [26] dis-
cussed the robustness of chimera states in nonlocally coupled
FitzHugh-Nagumo oscillators with respect to perturbations of
the frequencies of the individual oscillators and the structural
transformations of the network topology. Belykh et al. [20]
discussed the influence of coupling strength and network
topology on synchronization in a pulse-coupled network
of bursting Hindmarsh-Rose neurons, where no chimeralike
behavior has been reported.

As noted above, chimera states have been observed in
Hindmarsh-Rose neurons with an electric type of nonlocal
coupling [24], where the range of coupling and coupling
strengths play key roles. But the existence of a chimera
state in Hindmarsh-Rose neurons with chemical synaptic
coupling under local, global, and nonlocal interactions has
not been reported earlier. In our studies a chemical synaptic
coupling is used which plays a key role in the emergence of
chimera states in bursting neurons for locally and globally
coupled neurons. We also analytically derive the condition for
mutual synchronization in a globally pulse-coupled network
of bursting neurons. In the case of global and local (nearest
neighbor) coupling, the behavior of the stability function in
incoherent, chimera, and multichimera states is also discussed.
In our analysis we have used suitable statistical measures
recently introduced by Gopal et al. [27] as well as the notion
of mean phase velocity proposed by Omelchenko et al. [28] to
confirm the chimera and multichimera states.

The subsequent part of this paper is organized as follows.
Section II is devoted to a brief presentation of Hindmarsh-Rose
model for a bursting neuron. In Sec. III, we numerically
investigate the existence of chimera states using nonlocal
coupling. In Sec. IV, an analytical study of synchronization
in globally coupled neurons is reported. The behavior of
the stability function in chimera states is also discussed.
The existence of a chimera state in local (nearest neighbor)
coupling is described in Sec. V. Section VI provides a
discussion of our results.

II. HINDMARSH-ROSE NEURON MODEL

The Hindmarsh-Rose neuron model [23], which is a well-
known system for its chaotic behavior and different types of
bursting, in its original form is expressed as follows:

ẋ = y + ax2 − x3 − z + I,

ẏ = 1 − dx2 − y, (1)

ż = c(b(x − x0) − z),

where the variable x represents the membrane potential, and
the variables y and z are the transport of ions across the
membrane through the fast and slow channels, respectively.
The fast variable y represents the rate of change of the
fast (e.g., sodium) current. The slow variable z controls
the speed of variation of the slow (e.g., potassium) current.
This speed is controlled by the small parameter c. The
parameter I describes an external current that enters the
neuron, and x0 is a control parameter delaying and advancing

the activation of the slow current in the modeled neuron.
For the sake of simplicity, after the linear transformation or
parametric redefinition [29] x → x,y → 1 − y,z → 1 + I +
z,d → a + α,e → −1 − I − bx0, Eq. (1) can be written in
the form

ẋ = ax2 − x3 − y − z,

ẏ = (a + α)x2 − y, (2)

ż = c(bx − z + e).

This transformed model (2) is a phenomenological model that
can exhibit all common dynamical features found in a number
of biophysical modeling studies of bursting. We consider c a
small positive parameter so that z(t) varies much slower than
x(t) and y(t). Square-wave bursting has been observed for
the following set of parameter values: a = 2.8,α = 1.6,c =
0.001,b = 9, and e = 5 [20]. The system (2) is monostable,
that is, the coexistence of a stable equilibrium point and a limit
cycle has not been observed for this set of parameter values.

III. NONLOCAL INTERACTION

Now we consider a network of identical Hindmarsh-Rose
neurons with nonlocal interaction as follows:

ẋi = ax2
i − x3

i − yi − zi + k

2p
(vs − xi)

j=i+p∑
j=i−p

cij�(xj ),

ẏi = (a + α)x2
i − yi, (3)

żi = c(bxi − zi + e), i = 1,2, . . . Ṅ ,

where N is the total number of elements in the network, p is
the number of coupled nearest neighbors in each direction on
a ring so that the coupling radius r = p

N
, and k is the synaptic

coupling strength. The connectivity matrix C = (cij )n×n is
such that cij = 1 if the ith neuron is connected to the
j th neuron; otherwise cij = 0 and cii = 0. The synapse is
excitatory for the reversal potential vs = 2 > xi(t) for all times
t and xi(t). The synaptic coupling function �(x) is modeled
by the sigmoidal nonlinear input-output function as

�(x) = 1

1 + e−λ(x−�s )
, (4)

where λ determines the slope of the function and �s is the
synaptic threshold. This oft-used coupling form has been
called the fast threshold modulation [3]. We choose the
threshold �s = −0.25 so that every spike in the isolated
neuron burst can reach the threshold. We fixed the value of
λ = 10 throughout the work. From a physicist’s perspective,
Eq. (3) represents a network of N identical pulse-coupled
oscillators with nonlocal attractive interaction. But from a
neuroscientist’s point of view, such a network corresponds
to an interaction between N nonlocally coupled excitatory
neurons with direct excitatory synapses [30].

Now, we consider numerically the existence of chimera
states and transitions of chimera and multichimera states
as well as disordered and coherent states in the net-
work of nonlocally coupled Hindmarsh-Rose oscillators. The
network (3) and their variants in the following sections
are integrated using the fifth-order Runge-Kutta-Fehlberg
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FIG. 1. Left panels show snapshots of amplitudes for (a) dis-
ordered state at k = 0.3, (b) chimera state at k = 0.85, and (c)
coherent state at k = 1.4. Right panels (e), (f), and (g) show the
corresponding mean phase velocity ωi,i = 1,2, . . . ,N , for each
neuron. The coupling radius is fixed at r = 0.3, where N = 200.

integration algorithm scheme with integration step length
�t = 0.01. The initial conditions for (3) are chosen as follows:
xi0 = 0.01(i − N

2 ), yi0 = 0.02(i − N
2 ), zi0 = 0.03(i − N

2 ) for
i = 1,2, . . . ,N

2 , and for rest of the oscillators xi0 = 0.1(N
2 −

i), yi0 = 0.12(N
2 − i), zi0 = 0.21(N

2 − i) with added small
random fluctuations. In Fig. 1, we fix the coupling radius as r =
0.3 and vary the synaptic coupling strength k. In the left panel,
the snapshots of the amplitude (membrane potential) for disor-
dered, chimera, and coherent states for k = 0.3,0.85, and 1.4,
respectively, are shown. To confirm chimera or coherent states
in nonlocally coupled neurons, first we calculate the mean
phase velocity recently proposed by Omelchenko et al. [28] of
each neuron as ωi = 2πMi/�T, i = 1,2,3, . . . N , where Mi

is the number of bursts of the ith neuron during a sufficiently
long time interval �T . Figure 1 (right panel) shows the mean
phase velocity of each neuron corresponding to incoherent,
chimera, and coherent states for the synaptic coupling strength
k = 0.3,0.85, and 1.4, respectively. To calculate the mean
phase velocity, the time interval is taken over 4 × 105 time
units after an initial transient of 1 × 105 units.

To clearly distinguish the disordered, chimera, multi-
chimera, and coherent states, we also use the recently
introduced statistical measures by Gopal et al. [27] using
the time series of the network. For this purpose we will
calculate the strength of incoherence (SI) and discontinuity
measure (DM) from a local standard deviation analysis. To
calculate these statistical measures, we first introduce the
transformations w1,i = xi − xi+1, w2,i = yi − yi+1, w3,i =
zi − zi+1, i = 1,2, . . . ,N . (See Ref. [27] for more details.)
Different synchronization states in the network can be quanti-
fied by using the standard deviations given by

σl =
〈√√√√ 1

N

N∑
i=1

[wl,i − 〈wl〉]2

〉
t

, (5)
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FIG. 2. Strength of incoherence SI and discontinuity measure
DM are plotted against synaptic coupling strength k for two values of
coupling radius r . (a, b) and (c, d) correspond to r = 0.3 and r = 0.4,
respectively. Here N = 200,M = 40, and δ = 0.05.

where l = 1,2,3; i = 1,2, . . . ,N , and 〈wl〉 = 1
N

∑N
i=1 wl,i(t),

and 〈· · ·〉t denotes the average over time. For coherent states
the values of σl’s are zero, while they take nonzero values
for both disordered and chimera states. To distinguish chimera
and disordered states, we divide the number of oscillators into
M (even) bins of equal length n = N/M . Then we introduce
local standard deviation which is defined as

σl(m) =
〈√√√√1

n

mn∑
j=n(m−1)+1

[wl,j − 〈wl〉]2

〉
t

, (6)

m = 1,2, . . . ,M . The above quantity σl(m) can be calculated
for every successive n number of oscillators. Then the strength
of incoherence is defined as

SI = 1 −
∑M

m=1 sm

M
, sm = �[δ − σl(m)], (7)

where �(·) is the Heaviside step function and δ is a predefined
threshold. Consequently, the values of SI=1 or SI=0 or
0 < SI < 1 represent disordered, coherent, and chimera or
multichimera states, respectively. Again, in order to distinguish
chimera and multichimera states, we also introduce the
discontinuity measure [27], which is defined as

DM =
∑M

i=1 | si+1 − si |
2

, with sM+1 = s1. (8)

For a chimera state the value of DM = 1, and for a
multichimera state the value of DM is a positive integer greater
than 1.

Figure 2 shows the variation of the strength of incoherence
and discontinuity measure for fixed values of coupling radius
r and different values of synaptic coupling strength k. To start
with we choose N = 200 and the total number of bins to
be M = 40, which we find to be optimal. For r = 0.3, the
variation of SI [Fig. 2(a)] and DM [Fig. 2(b)] is shown for
different values of k. To calculate standard deviation σl in
Eq. (5) and local standard deviation σl(m) in Eq. (6), the
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FIG. 3. Two parameter (r,k) phase diagram for N = 200 non-
locally coupled network of identical Hindmarsh-Rose oscillators.
Strength of incoherence is used as a measure for incoherence, co-
herence, and chimera or multichimera states. Red (light black) region
is for coherent, green (light gray) is for chimera or multichimera, and
white is for incoherent states.

time average is taken over t = 4 × 105 time units after an
initial transient of 105 units. The existence of disordered,
chimera, multichimera, and coherent states is represented
by SI and DM. As mentioned above, (SI, DM) = (1, 0)
represents a disordered state, while (SI, DM)=(0, 0) represents
a coherent state. Further, 0 < SI < 1, DM=1 and 0 < SI < 1,
2 � DM � M/2 represent chimera and multichimera states,
respectively [27]. For r = 0.3, at lower values of k, we observe
that all the neurons in the networks are in a disordered state,
represented by the region I = {k : 0 � k � 0.72}. With an
increase in the value of k beyond k = 0.72 we observe chimera
and multichimera states in the region II = {k : 0.72 < k <

1.24}. Chimera states represented by the value of DM = 1
and multichimera states with DM = 2,3,4,5,6 are shown in
Fig. 2(b). In this state, all the neurons, namely, coherent and
disordered groups, are in bursting type. With a further increase
in the coupling strength we observe that all the neurons of the
network are to be in coherent states represented by the region
III = {k : 1.24 � k � 2.0}. For k > 2.0, all the neurons are
always in a coherent state. Similarly, the variations of SI and
DM for different values of the synaptic coupling strength k are
shown in Figs. 2(c) and 2(d), respectively, for r = 0.4. From
Fig. 2, we observe that the extent of region II for chimera
and multichimera states gets decreased with increasing value
of the coupling radius r . Figure 3 shows the two-parameter
(r,k) phase diagram of coherent, chimera or multichimera,
and incoherent states. The range of synaptic coupling strength
k for chimera or multichimera states is large for small values
of coupling radius r , that is, the network is almost locally
coupled. But this region decreases for higher values of r near
to 0.5, that is, when the system is globally coupled. Finally,
we have confirmed the above results for larger sizes of the
network, namely, N = 300 and N = 500 neurons, to make
sure that our results hold for larger networks as well.

IV. GLOBAL INTERACTION

We can convert the nonlocal interaction into a global
interaction by taking the number of nearest neighbors as
p = N−1

2 , where the number of nodes N in the network is an
odd number. Then the network of identical Hindmarsh-Rose
oscillators with global coupling is as follows:

ẋi = ax2
i − x3

i − yi − zi + k

N − 1
(vs − xi)

N∑
j=1

cij�(xj ),

ẏi = (a + α)x2
i − yi, (9)

żi = c(bxi − zi + e), i = 1,2, . . . ,N,

where C = (cij )n×n is the connectivity matrix such that cij = 1
if i �= j and cii = 0.

In order to understand the existence of mutual synchroniza-
tion of the above globally coupled network, we carry out an
analytical investigation based on a linear stability analysis,
closely following the stability analysis for a synchronized
manifold by Belykh et al. [20,31]. For the synchronized state
xi(t) = x(t), yi(t) = y(t), zi(t) = z(t) for all i, and so the
system (9) becomes

ẋ = ax2 − x3 − y − z + Rk

N − 1
(vs − x)�(x),

ẏ = (a + α)x2 − y, (10)

ż = c(bx − z + e),

where R is the row sum of the connectivity matrix C.
Introducing the differences between the neural oscillator
coordinates,

ξij = xj − xi, ηij = yj − yi,

ζij = zj − zi, i, j = 1,2, . . . ,N, (11)

the linearized stability equations for the transverse perturbation
of the synchronization manifold are given by

ξ̇ij = (2ax − 3x2)ξij − ηij − ζij − Rk�(x)

N − 1
ξij

+ k

N − 1
(vs − x)�

′
x(x)

[
Rξij +

N∑
h=1

(cjhξjh − cihξih)

]
,

η̇ij = 2(a + α)xξij − ηij , (12)

ζ̇ij = c(bξij − ζij ),

where x(t) is the synchronous solution defined by the sys-
tem (10) and �

′
x(x) is the partial derivative of �(x) with respect

to x. The term
∑N

h=1(cjhξjh − cihξih) is the same as in the
case of linear coupling [20,32]. The derivatives are calculated
at ξ = 0,η = 0,ζ = 0. Then the stability equations become

ξ̇ = (2ax − 3x2)ξ − η − ζ − �(x)ξ,

η̇ = 2(a + α)xξ − η, (13)

ζ̇ = c(bξ − ζ ),

where �(x) = Rk�(x)
N−1 − k

N−1 (vs − x)�′
x(x)(R + λ2),and λ2 is

the largest real part of the eigenvalues of the coupling matrix
M = C − RI . It is well known that the matrix M has one zero
eigenvalue λ1 and all the other eigenvalues have nonpositive

012205-4



CHIMERA STATES IN BURSTING NEURONS PHYSICAL REVIEW E 93, 012205 (2016)

1 101 201 301

−2

0

2

4

6

i

x i , 
w

1,
i

(a) 

1 101 201 301
−2

0

2

4

i
x i , 

w
1,

i

(b) 

1 101 201 301

0

0.5

1

1.5

2
(c) 

i

x i , 
w

1,
i

1 101 201 301

0

0.5

1

i

x i , 
w

1,
i

(d) 

500 3000
−2.5

2

time

x
500 3000

−2.5

2

time

x

500 3000
−2.5

2

time
x

500 3000
−1.5

2

time

x

FIG. 4. Snapshots of a system of globally coupled Hindmarsh-
Rose neurons for different values of the synaptic coupling strength k

in terms of the variables xi (black color) and the transformed variables
w1,i = xi − xi+1 (red color): (a) incoherent state, k = 1.0; (b) chimera
state (with two synchronized or desynchronized groups), which can
be reindexed into single group each, k = 1.2; (c) chimera state (with
single synchronized group), k = 1.28; and (d) coherent state, k = 1.3.
The inset figures are the corresponding time series (blue color). The
number of oscillators is N = 301.

real parts [20]. If the coupling is mutual, then the coupling
matrix M is symmetric and all the eigenvalues are real. For
simplicity, let us suppose that the largest eigenvalue λ2 of the
coupling matrix M is simple. Equation (13) is then an analog
of the master stability equation [32].

Numerical results of the global synaptically coupled
Hindmarsh-Rose neurons are presented in Fig. 4 for N = 301.
The initial conditions are chosen as follows: xi0 = 0.01(i −
N−1

2 ), yi0 = 0.02(i − N−1
2 ), zi0 = 0.03(i − N−1

2 ) for i =
1,2, . . . ,N−1

2 and xi0 = 0.1(N−1
2 − i), yi0 = 0.12(N−1

2 −
i), zi0 = 0.21(N−1

2 − i) for i = N−1
2 + 1, . . . ,N with added

small random fluctuations. The snapshot of the state variables
xi and the new transformed variables w1,i = xi − xi+1 are
shown by black and red color dotted points, respectively. At a
lower value of the synaptic coupling strength k = 1.0, all the
neurons are in a disordered state [Fig. 4(a)] and their behavior
is all of square-wave bursting in nature. At a higher value of
k = 1.2, a typical pattern of the chimera state with two groups
of synchronized or desynchronized oscillators, which of course
can always be brought into separate single group of synchro-
nized or desynchronized oscillators by appropriate reindexing
of the oscillators (due to the global nature of the coupling), is
observed between the neurons [Fig. 4(b)]. The behavior of a
neuron in the coherent group and a neuron in the disordered
group have the same time series form, that is, the coexistence
of square-wave and plateau bursting is observed in all the
neurons. The typical time series of xi (blue color line) is
shown in the inset of Fig. 4(b). The values of the transformed
variables w1,i for the coherent groups are near zero, whereas
for the disordered neurons they are randomly distributed in
[-2, 2]. With a further increase in the value of the synaptic
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FIG. 5. Mean phase velocities ωi of globally coupled neurons
corresponding to Fig. 4: (a) disordered state at k = 1.0, (b) chimera
state (with two synchronized or desynchronized groups) at k = 1.2,
(c) chimera state (with single synchronized group) at k = 1.28, and
(d) coherent state at k = 1.3. Other parameters are the same as in
Fig. 4.

coupling strength to k = 1.28, a chimera state with single
coherent and incoherent group each is observed in which the
left group of neurons is in coherence, where the transformed
variables take values close to zero and the right one is an
incoherent one [Fig. 4(c)]. All the coherent and disordered
neurons exhibit a similar behavior, that is, a mixture of
square-wave and plateau bursting states shown in the inset
of Fig. 4(c) by the blue colored line. At a further higher value
of the synaptic coupling strength at k = 1.3, all the neurons
are found to be in a coherent or completely synchronized state
[Fig. 4(d)]. In this case all the neurons are in plateau bursting
states. In globally coupled neurons, the region of chimera states
is very small compared to nonlocal coupling, as already shown
in Fig. 3 for r = 0.5 and N = 200.

To confirm chimera states in globally coupled neurons,
we calculate the mean phase velocity ωi(i = 1,2,3, . . . ,N )
of each neuron. Figure 5 shows the mean phase velocity
of each neuron corresponding to incoherent, chimera (with
two synchronized or desynchronized groups), chimera (with
a single synchronized group), and coherent states. We have
numerically integrated the dynamical equations (9) of the
globally coupled neurons and the initial conditions used are
the same as above. The time interval is taken over t = 5 × 105

time units after an initial transient of 105 units. We obtained
similar results for an even larger number of neurons, namely,
N = 401 and 501, which confirms our above conclusions.

The stability function for mutual synchronization is �(x) =
Rk�(x)
N−1 − k

N−1 (vs − x)�′
x(x)(R + λ2), with R = N − 1 and

λ2 = −N . It is strongly dependent on the membrane potential
x(t). The synaptic coupling strength k is the upper bound
of �(x) for x(t) � �s and rapidly decreases to zero if
x(t) < �s . The global coupling yields a nullcline of x as z =
f (x) = −αx2 − x3 + Rk

N−1 (vs − x)�(x). The behavior of the
stability function �(x) and nullcline z = f (x) at incoherent,
chimera (with two synchronized or desynchronized groups),
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FIG. 6. Variation of stability function �(x) (green or light gray
color), nullcline z = f (x) (dashed red or black color), and phase
trajectory projected in the x − z plane (solid blue or black color)
are shown for (a) disordered state at k = 1.0, (b) multichimera state
at k = 1.2, (c) chimera state at k = 1.28, and (d) coherent state at
k = 1.3.

chimera (with single synchronized group), and coherent states
is shown in Figs. 6(a)–6(d). It is important to note that
at lower values of synaptic coupling strength, square-wave
bursting is observed which turns into plateau bursting states
for higher values of k when coherent states occur in the
globally coupled excitatory network (9). This happens when
the synaptic coupling strength is large enough to change
the square-wave to plateau bursting through a homoclinic
bifurcation. By changing the synaptic coupling strength, the
system (9) undergoes transition from disordered to coherent
states corresponding to the transition from a square-wave to
plateau bursting state via the disappearance of the homoclinic
bifurcation. During the transition regime chimera states are
observed. In the chimera states a combined bursting of square
wave and plateau is observed.

V. LOCAL INTERACTION

Next we consider a network of identical Hindmarsh-Rose
oscillators with local (nearest neighbor) interaction, that is,
p = 1 in the nonlocal interaction (3), as follows:

ẋi = ax2
i − x3

i − yi − zi + k

2
(vs − xi)[�(xi−1) + �(xi+1)],

ẏi = (a + α)x2
i − yi, (14)

żi = c(bxi − zi + e), i = 1,2, . . . ,N,

with periodic boundary conditions (x0 = xN,xN+1 = x1). As
before, here k is the synaptic coupling strength.

A sequence of interesting behaviors occurs numerically by
changing the synaptic coupling strength k. We used the same
initial conditions as was used in the case of nonlocally coupled
systems earlier in Sec. III. Figure 7 shows the snapshots of
the collective behavior of neurons for different values of the
coupling strength k. We observe that at lower values of the
coupling strength, all the neurons are in disordered states.

FIG. 7. Snapshots of amplitude (left panel) for (a) disordered
state at k = 0.4, (b) multichimera state at k = 1.2, (c) chimera state
at k = 1.36, and (d) coherent state at k = 3.6. (e)–(h) Spatiotemporal
color coded maps for (a)–(d), respectively.

This is shown in Fig. 7(a) for k = 0.4. With increasing value
of k and beyond a critical value, we observe a multichimera
state in Fig. 7(b) for k = 1.2. With further increase of k,
this multichimera state is transformed into a chimera state
in Fig. 7(c) for k = 1.36. For a further increase in the coupling
strength to k = 3.6, all the neurons are in a coherent state
[Fig. 7(d)].

To further clarify the collective behavior, we plot the
spatiotemporal nature of all the nodes xi(t) in the right panel
of Fig. 7. Color coding of Figs. 7(e), 7(f), 7(g), and 7(h) clearly
shows the presence of disordered, multichimera, chimera, and
coherent states for four distinct values of the synaptic coupling
strength k = 0.4,1.2,1.36, and 3.6, respectively. Snapshots of
the locally coupled neurons (14) for different values of the
synaptic coupling strength in terms of the new state variables
w1,i = xi − xi+1 are shown in Fig. 8. From this figure it is
seen that initially at a lower value of the synaptic coupling
strength, k = 0.4, all the neurons are in a disordered state
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FIG. 8. Snapshots of the transformed variables w1,i correspond-
ing to Fig. 7: (a) disordered state, k = 0.4; (b) multichimera state,
k = 1.2; (c) chimera state, k = 1.36; and (d) coherent state, k = 3.6.
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FIG. 9. Values of mean phase velocity ωi for each neuron cor-
responding to Fig. 7: (a) disordered state, k = 0.4; (b) multichimera
state, k = 1.2; (c) chimera state, k = 1.36; and (d) coherent state,
k = 3.6. Other value of parameters are same as Fig. 7.

and the values of w1,i are randomly distributed over [-2, 2]
in Fig. 8(a). Upon increasing the synaptic coupling strength
to k = 1.2 [Fig. 8(b)] and k = 1.36 [Fig. 8(c)], the values of
w1,i for the coherent group of neurons are near zero but the
disordered groups of neurons are randomly distributed over
[-2, 2]. On further increasing the coupling strength to k = 3.6
[Fig. 8(d)], all the neurons are in a coherent state and the values
of w1,i are near zero for all times.

To confirm disordered, multichimera, chimera, and coher-
ent states, we first calculated the mean phase velocity ωi for
each neuron, which is shown in Fig. 9. The mean phase velocity
ωi for each neuron in disordered, multichimera, chimera,
and coherent states for k = 0.4, 1.2, 1.36, and 3.6 is shown
in Figs. 9(a)–9(d), respectively. The values of mean phase
velocity ωi in Fig. 9(d) for each neuron are near zero for the
coherent state (k = 3.6). In the coherent state the behavior
of all the neurons is close to the steady state of the locally
coupled system ẋ = ax2 − x3 − y − z + k(vs − x)�(x), ẏ =
(a + α)x2 − y, ż = c(bx − z + e).

In order to distinguish multichimera and chimera states
clearly, we use the strength of incoherence and discontinuity
measure for different values of synaptic coupling strength k.
In Figs. 10(a) and 10(b) we demonstrate the behaviors of
the strength of incoherence and discontinuity measure as a
function of the synaptic coupling strength k, which clearly
confirms the presence of chimera and multichimera states in
the case of local interaction also. This appears to be quite
surprising in the sense that chimera states have normally been
identified only in the case of nonlocally or globally coupled
arrays. The existence of chimera states using local coupling
has been observed for larger numbers of neurons also, namely,
N = (300,500).

We also note that for local interaction in Eq. (3), cij = 1
for either j = i + 1 or j = i − 1 so that (14) is valid in this
case. For all other values of j , cij = 0 and cii = 0. The value
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FIG. 10. Variation of (a) strength of incoherence (SI) and (b)
discontinuity measure (DM) for different values of synaptic coupling
strength k for locally coupled Hindmarsh-Rose neurons. Here N =
200,M = 40, and δ = 0.05. The time average t = 5000 is considered
after an initial transient of 105 time units to calculate σl and σl(m) in
Eqs. (5) and (6).

of eigenvalue λ2 for a ring of 2K nearest neighbor mutually
coupled neurons is λ2 = −4

∑K
l=1 sin2 lπ

N
[33]. In the case of

local (nearest neighbor) interaction [Eq. (14)], K = 1 and so
the value of λ2 is λ2 = −4sin2( π

N
) with N = 200.

Now, considering the master stability function [32] for the
local synaptically coupled network (14), the stability function
is �(x) = Rk�(x) − k(vs − x)�

′
x(x)(2 + λ2) with R = 2. For

local excitatory coupling the nullcline of x is z = f (x) =
−αx2 − x3 + Rk

2 (vs − x)�(x).
The function �(x) corresponds to the contribution of the

synaptic coupling for the stability of the synchronization
manifold. In fact, in the case of global coupling the stability
function �(x) varies between zero and synaptic coupling
strength k for all x(t). On the other hand, for local coupling
�(x) � 0 for all values of the membrane potential x(t) � �s ,
while it has an upper bound k for x(t) > �s [20,31]. The first
term of �(x) contains the Heaviside-type synaptic function
�(x) and it becomes significant when x(t) � �s . The second
term of �(x) is decisive for the values of x near the threshold
�s , as the derivative �x has a rapidly decaying tail. Practically
the cells are uncoupled when the value of x(t) is below the
threshold �s .

At a lower value of the synaptic coupling strength
k = 0.4, �(x) has a negative drop near x = �s = −0.25
[Fig. 11(a)], which signifies the incoherent state of the bursting
neuron. The corresponding time series of the bursting neuron
is shown in the inset of Fig. 11(a). With a further increase of
coupling at k = 1.2, the value of �(x) is negative and has a
sharp drop near x = �s . The neurons are in a multichimera
state. The coherent and disordered neurons are in a plateau
bursting state in Fig. 11(b), which is in contrast to the chimera
states studied earlier in the literature in chaotic systems, where
the coherent states are in periodic states or remain close to
steady states, and disordered states are in chaotic states [34].
But in a chimera or multichimera state in the present case all
the coherent as well as the disordered neurons are in plateau
bursting states.

012205-7



BIDESH K. BERA, DIBAKAR GHOSH, AND M. LAKSHMANAN PHYSICAL REVIEW E 93, 012205 (2016)

−2 −0.25 2
−2.3

0.0

−0.85

−1.6

0.85
(a) 

Θ
s
            x

z

−2 −0.25 2
−1.5

−0.5

0

1.5

2.5

Θ
s
              x

z

(b) 

1000 3000
−2

2

time

x

1000 3000
−2

2

time

x

FIG. 11. The function �(x) (green or light gray color line),
nullcline f (x) (dashed red or black color line), and corresponding
projected phase trajectories in the x − z plane (solid blue or black
color line). (a) Incoherent bursting for k = 0.4 and (b) multichimera
state for k = 1.2. The behavior of the neuron (black color line) at
k = 0.4 and k = 1.2 is shown in the inset figures of (a) and (b),
respectively.

VI. CONCLUSION

In conclusion, we have analyzed the role of the chemical
synaptic coupling function in inducing chimera and multi-
chimera states of bursting neurons using nonlocal, global, and
local (nearest neighbor) interaction of neurons. Surprisingly,
we find that chimera or multichimera states occur even in
the presence of local interaction alone, whereas previous
studies [5,6] of chimera or multichimera states exist using
either nonlocal or global interaction only. Interestingly, we
identified three types of chimera states using different types
of coupling configurations. In the first type, in the case of
nonlocal coupling, in chimera or multichimera states, coherent

and disordered neurons are all of bursting type. In the second
type, we find that in the chimera or multichimera state using
global synaptic coupling both groups, namely, the coherent
or disordered groups, are in a combination of square-wave
and plateau bursting states. That is, at some times they are
square-wave bursting in nature and at other times they are in
a plateau bursting state [as shown in Figs. 4(b) and 4(c)]. In
the third type of chimera state using local synaptic coupling,
we identified that both groups in chimera and/or multichimera
states are in plateau bursting states [Fig. 11(b)]. Using suitable
statistical measures, disordered, multichimera, chimera, or
coherent states are confirmed. The existence of chimera
and coherent states is also confirmed by using mean phase
velocities [28]. To conclude, we wish to point out that this work
promises to identity the existence of chimera states in various
types of coupling topologies in bursting cells. Some types of
chimera states might be helpful for information processing in
the case of neurological diseases. The existence of chimera
states in a two-dimensional grid of oscillators is more realistic
in neurobiology. In our manuscript we observed chimera states
using nonlocal, global, and local types of interactions. Since
interaction in a two-dimensional grid of oscillators is also of
these types, we believe that chimera states can also emerge in
these cases too. We are presently exploring this phenomenon
and hope to report the results in the near future.

Finally, it will also be of interest to extend our work
to identify chimera or multichimera states in other systems
using nonlinear local coupling. Moreover, the question of
introducing a time delay in the nonlinear local coupling for
the existence of chimera states [35] is also an important task
for future studies.
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