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Energy shell structure in a dielectric elliptic microcavity
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An energy shell structure depending on eccentricity is analyzed in a dielectric elliptic microcavity. Through the
analysis, it is explicated that the energy shell structure is governed by classical constant actions of periodic orbits.
For clarification, the relation between dominances of the periodic orbits and bifurcation behaviors are obtained
and the length spectra based on eigenvalues computed by a numerical method are compared with the exact
lengths of the periodic orbits obtained by analytic calculations. By matching effective wave numbers obtained
from the periodic orbit lengths to exact wave numbers of stationary states in closed and open cavities, we find
deviations provoked from the openness. We show that these deviations are caused by additional phase factors in
the Einstein-Brillouin-Keller quantization.
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I. INTRODUCTION

Unidirectionally emitting high-Q dielectric microcavities
are considered as one of the most promising candidates
for a light source in optoelectric circuits [1,2]. Up to now,
various cavity shapes have been reported for the achievement
of those microcavities [3,4]. However, both the properties
of high Q and directionality cannot be accomplished at
once without understanding the mode structure depending
on deformation, because while modes in symmetric cavities
cannot exhibit directionality, those in asymmetric cavities
hardly have high-Q factors [5,6]. In addition, since the mor-
phological characteristics of modes are dynamically changed
depending on deformation due to interactions of the modes
[7,8], optimization of the parameter value satisfying the two
properties is not a trivial task. Therefore, it is indeed a crucial
gateway not to deviate from investigating the mode structures
depending on the parameters, i.e., the energy level structures.

The energy level structures have been studied in various
fields, such as metallic clusters [9], nuclei [10,11], atoms
[12], quantum dots [13–15], molecules [16], and billiards
[10,11,14,15,17,18]. The term “energy shell structure,” which
depicts the energy level structure in such systems as enumer-
ated above, comes from the fact that the individual energy
levels do not exhibit equidistant spacings, but rather gather
together in a bunch, clustering with approximately the same
distances. In these studies, the actions of periodic orbits
perform a crucial role in calculating the density of states
[18–20]. The principle goal in this calculation is to understand
the energy shell structures by using semiclassical methods.
Because the density of states has a monotonically increasing
smooth part (Thomas-Fermi approximation or Weyl’s law)
and an oscillating part [14,18,21], practically, the studies aim
to obtain the oscillating part of the density of states under
static conditions (i.e., under the conditions that no parametric
variation is conducted). On the other hand, in the study
of the dynamical properties of the energy level states, the
actions are conceived to be the invariant variables which are
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preserved under slow parametric variations [22–28]. The two
concepts, energy shell structure and constant action, can be
bound together through the Einstein-Brillouin-Keller (EBK)
quantization, which is the action quantization [29,30].

In this paper, we will investigate parameter dependent
eigenvalues in dielectric elliptic microcavities, open systems,
in order to reveal how the constant actions, i.e., the adiabatic
invariants, of the periodic orbits can govern the variations
of the eigenvalues depending on eccentricity. Because the
eigenvalues of the open systems are complex values, the energy
shell structure is detuned from those of the closed ones. When
we apply additional phase factors to the EBK quantization,
these detunings, i.e., deviations from the closed systems, are
compensated and agree well with adiabatic invariant curves
(constant action curves).

The energy shell structure of the elliptic dielectric mi-
crocavity is analyzed first by the Fourier transform of a
density of states, which is referred to as the length spectrum
[10,31,32]. In the analysis, the correspondence between the
adiabatic invariants and the energy shell structures is confirmed
by matching the lengths of dominant short periodic orbits
[10,15] to the length spectrum. A direct demonstration of the
correspondence between the effective wave numbers that are
proportional to the inverse length of the periodic orbits and the
energy shell structures is given at the end of the paper. Also,
we elucidate the causes of deviations between the billiard
and dielectric systems with respect to the shell structures.
While the densities of states in both systems have the same
free spectral ranges [33] for the dominant dense lines in the
spectra, the shell structure of the dielectric cavity does not
coincide with the adiabatic invariant lines of the periodic orbits.
Hence, we perform corrections of these deviations by inserting
additional phase factors, induced by the Fresnel law, to the
EBK quantization in obtaining the effective wave numbers.

II. ACTIONS OF PERIODIC ORBIT
IN ELLIPTIC COORDINATE

The boundary of an elliptic cavity is given as follows,

x2 + y2

1 − ε2
= a2, (1)
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where a is the semimajor radius and ε is eccentricity given such
that ε =

√
1 − b2/a2. In an ellipse, two foci are defined such

that f = ±aε and the semiminor radius is b =
√

a2 − f 2.
In obtaining the energy shell structure, i.e., the energy level
structure, the cavity area is preserved as eccentricity increases
such that πab = π . Depending on eccentricity, the eigenvalues
of the Helmholtz equation are obtained by using the standard
numerical method [34], or more originally [35].

In order to explore the energy shell structure of an elliptic
cavity, first, the actions of periodic orbits are deduced. Among
many current approaches, our discussions are based mainly on
those of Ref. [36]. It is known that the shorter periodic orbits
dominantly contribute to the shell structure [10]. To obtain
the actions, the periodic orbit in the Cartesian coordinate is
transformed into that in an elliptic coordinate by using the
following relations,

x = f cosh u cos v, y = f sinh u sin v, (2)

where the symbols u and v are the hyperbolic and the elliptic
axes, respectively. In an elliptic coordinate, we can obtain two
conserved quantities, the Hamiltonian and the product of two
angular momenta with respect to the two foci, as follows,

H = p2
u − p2

v

f 2(cosh2 u − cos2 v)
, (3)

L1L2 = p2
u sinh2 u − p2

v sin2 v

cosh2 u − cos2 v
, (4)

where pu and pv are the momenta on the hyperbolic and the
elliptic axes, respectively. Here, the mass is assumed to be
1/2 for the sake of convenience. Because the Hamiltonian,
i.e., the energy E, and the product of two angular momenta
L1L2 with respect to the two foci are the conserved quantities
in an elliptic shaped Hamiltonian system, by defining the
quantity α = L1L2/E, we can obtain the canonical momenta
expediently as follows:

p2
u = E(f 2 sinh2 u − α), p2

v = E(f 2 sin2 v + α). (5)

From the momenta, we can obtain the actions with respect to
the hyperbolic (u) and the elliptic (v) degrees of freedom as
follows:

Iu = 1

2π

∮
pudu =

√
E

π

∫ ue

us

du

√
f 2 sinh2 u − α, (6)

Iv = 1

2π

∮
pvdv = 2

√
E

π

∫ ve

vs

dv
√

f 2 sin2 v + α. (7)

In Eqs. (6) and (7), the upper and the lower limits of
the integrals are deduced by the value α [36], which divides
the motion characteristics of orbits into a whispering gallery
type (WG type) and a libration motion type (LM type).
When −f 2 < α < 0, the motion is of a LM type and when
0 < α < b2, it is of a WG type.

Because the actions for the periodic orbits are proportional
to the total length of orbits such that 2πI = ∮

pdq = �klPO =
2π�(N + μ/4), a length l

n,m
PO of periodic obit is defined as

follows,

l
n,m
PO = 2π√

E
(nIu + mIv), (8)

where n and m are the cycling numbers of each action variable
Iu and Iv , respectively, and N , μ, and

√
E are an integer, the

Maslov index, and �k, respectively. For the cycling numbers,
in Eq. (8) above, n is the number of reflections on the system
boundary, and m is the number of rotations and librations
for the WG type and the LM type, respectively. The periodic
conditions which are obtained by the winding number n

m
are

given as follows,

F
(

sin−1

√
b2 − α

b2
,κ

)
= 2m

n
F

(
π

2
,κ

)
, α > 0, (9)

F
(

sin−1

√
b2

b2 − α
,
1

κ

)
= 2m

n
F

(
π

2
,
1

κ

)
, α < 0, (10)

and thus we can obtain the following results:

l
n,m
PO = 2na

b

√
b2 − α − 2nf

κ
Z

(
2mF

(
π
2 ,κ

)
n

)
, α > 0,

l
n,m
PO = 2nab√

b2 − α
− 2nfZ

(
2mF

(
π
2 , 1

κ

)
n

)
, α < 0.

Here, Z(u) = E(φ,κ) − F(φ,κ) E(π/2,κ)
F(π/2,κ) , F(φ,κ), and E(φ,κ)

are the Jacobi zeta function, the elliptic integral of the first
kind, and the elliptic integral of the second kind, respectively.
The parameter κ is given by κ = f/

√
f 2 − α.

By using the above equations, now we can obtain the length
of the classical periodic orbits. Figure 1 is 1/l

n,m
PO depending

on the eccentricity, which shows the bifurcations of periodic
orbits. The bifurcation of periodic orbits in an elliptic cavity is
well addressed in Ref. [32]. As a circular cavity deforms into an
elliptic cavity, two kinds of distinct bouncing-ball-type orbits
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FIG. 1. Bifurcation diagram depending on eccentricity. The
dashed lines are 1/l

n,m
PO of the short diametric orbits, which have

a repetition multiplicity r , i.e., r(1 : 2). The dotted dashed lines are
those of the long diametric orbits. ε1, ε2, ε3, and ε4 are the bifurcation
points of the periodic orbits such that (m : n) = (1 : 4), (1 : 6), (1 : 8),
and (1 : 10), respectively. The points are ε1 ≈ 0.707, ε2 ≈ 0.866,
ε3 ≈ 0.924, and ε4 ≈ 0.952. The thick solid lines are bifurcated
periodic orbits. The thin lines are the whispering-gallery-type periodic
orbits.
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begin to appear. The bouncing-ball-type orbits of (1 : 2)stab and
(1 : 2)unst are the orbits bouncing twice at the system boundary
along the minor axis (stable) and the major axis (unstable) for
one period, respectively. These primary orbits are maintained
independent of eccentricity. The 2(1 : 2)stab and 2(1 : 2)unst

are the orbits bouncing the minor and the major axes four
times for a period, respectively. Between the two orbits, only
the 2(1 : 2)stab orbit (LM type) generates a bowtie-type (1 : 4)
orbit at the bifurcation point ε1 ≈ 0.707, as marked by a dashed
blue and a solid red line in the figure. The 3(1 : 2)stab and the
3(1 : 2)unst are the orbits bouncing the minor and the major axes
six times for a period, respectively, and only the 3(1 : 2)stab

orbit generates a candy-shaped (1 : 6) orbit (see Fig. 4) at the
bifurcation point ε2 ≈ 0.866. Similarly, various orbits (LM
type) are generated by bifurcations. Each bifurcation point is
as follows [32,36]:

ε = cos
mπ

n
. (11)

According to the above equation, each of the LM-type
periodic orbits have their own bifurcation point. Examples are
illustrated in Fig. 1 as marked by a solid circle for the (1 : 4)
periodic orbit, a solid square for (1 : 6), a solid diamond for
(1 : 8), and a solid triangle for (1 : 10), respectively.

III. LENGTH SPECTRUM AND ORBIT LENGTH

Next, in order to compare the length spectrum in the open
elliptic cavity and the lengths of periodic orbits, a length spec-
trum is obtained which is based on the complex eigenvalues
calculated by the boundary element method (BEM) [34]. The

lengths of the periodic orbits are given by Eq. (8). The resonant
wave numbers, i.e., the complex eigenvalues, are obtained by
solving the Helmholtz equation in the range NekR � 49 when
the effective refractive index Ne is 3.3. From the solutions,
we can obtain a so-called length spectrum, the analogy of the
“inverse quantum chaology” extended to the integrable system
[31]. Among many previous approaches, we take the formula
used in Ref. [32], which is given as follows,

d(l) =
∫

dk exp [−ikl]g(e) exp

[
−

(
k√
2kc

)2]

=
∑

i

1

Aki

exp

[
− iki l −

(
ki√
2kc

)2]
, (12)

where g(e) is the density of states and kc = kmax/
√

2. Here,
kmax is the maximum eigenvalue among the calculated eigen-
values. In the above equation, a Gaussian root mean square
is used in order to smoothly reduce a high frequency effect.
In numerical computations, the constant factor A is set to be
unity without any loss of generality.

Using Eq. (12), we obtain the length spectrum in the
parameter range 0 < ε < 0.95. Figure 2 shows the length
spectrum and the lengths of periodic orbits in the range
0.5 < ε < 0.95. In Fig. 2(b), we can recognize the structure
of the length spectrum in an open elliptic microcavity. In
order to clarify the structure, we prepare periodic orbit lengths
obtained from Eq. (8) depending on eccentricity, as illustrated
in Fig. 2(a). To compare the two structures, the length spectrum
at ε = 0.8 is superimposed on Fig. 2(a) as an example. In the
figure, the peaks of the length spectrum at ε = 0.8 coincide

FIG. 2. Lengths of periodic orbits and amplitude of the length spectrum. (a) Orbit lengths obtained from Eqs. (2) and (3). (b) Amplitude
of the length spectrum obtained from wave numbers. The white color is the maximum amplitude and the black is the minimum. The vertical
axis is the dimensionless length of the periodic orbits and the horizontal axis is eccentricity. In (a), the left even numbers are the bouncing
numbers on the boundary for a period and the right integer numbers are the rotation (libration) numbers of the orbits. The superimposed vertical
one-dimensional (1D) graph in (a) is the selected length spectrum at ε = 0.8. Points (i) and (ii) are marked for the examples of periodic orbits,
which are the (1 : 4) and the (3 : 10) orbits. In (a), the solid red lines are the lengths of the bifurcated LM-type orbits, the dashed blue lines are
the lengths of the stable bouncing-ball-type orbits, the dotted dashed green lines are the lengths of the unstable bouncing-ball-type orbits, and
the thin dotted black lines are the lengths of the WG-type orbits.
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FIG. 3. Selected orbits and their wave functions. (a) and (c) are the
(1 : 4) periodic orbit and the wave function localized on the periodic
orbit, respectively. (b) and (d) are the (3 : 10) periodic orbit and the
wave function localized on the orbit, respectively.

well with the lengths of the periodic orbits. This means that the
background classical periodic orbits in the system substantially
effect the quantum mechanical shell structures.

The (1 : 4) and the (3 : 10) periodic orbits at points (i) and
(ii) in Fig. 2 are shown in Figs. 3(a) and 3(b), respectively. The
wave functions localized on the (1 : 4) and the (3 : 10) periodic
orbits are illustrated in Figs. 3(c) and 3(d), respectively. The
wave functions shown in Figs. 3(c) and 3(d) are “scarlike”
resonances.

The periodic orbit at point (i) is defined as follows: The red
line is bifurcated from a short diametric orbit reflecting four
times at around ε ≈ 0.707 and its asymptotic line follows a
long diametric orbit librating one time in the high deformation
limit as ε → 1. Hence, this orbit is the (1 : 4) periodic orbit.

In the same manner, point (ii) can be labeled by the (3 : 10)
periodic orbit. This interesting feature, which is related to
the bifurcation point and the asymptotic reunification to the
other orbits, is analogous to the behaviors of bridge orbits in
the nuclei system [10]. An analysis of this observation will
be shown in future publications. Similarly, we can expect
other bifurcated periodic orbits to appear in the wave-function
morphology. As already stated above, all the LM-type periodic
orbits have their own bifurcation points and can show up in an
open system while the billiard cannot produce these orbits in
the wave-function morphology.

Several wave functions localized on the periodic orbits,
which are bifurcated from the bouncing-ball-type periodic
orbits, are illustrated in Fig. 4. Figure 4(a) is the bouncing-

ball-type wave function. The wave function shown in Fig. 4(b)
is localized on the (1 : 4) periodic orbit, which is bifurcated
from the 2(1 : 2) periodic orbit. Similarly, the wave functions
shown in Figs. 4(c)–4(e) are localized on the (1 : 6), (1 : 8),
and (1 : 10) periodic orbits, which are bifurcated from the
3(1 : 2), 4(1 : 2), and 5(1 : 2) periodic orbits. This means that
a (1 : 2t) periodic orbit is bifurcated from an t(1 : 2) periodic
orbit, where t is an integer.

IV. ENERGY SHELL STRUCTURE

On the basis described above, now we study the energy
shell structure of a dielectric elliptic microcavity. As we have
shown an obvious correspondence between the eigenvalue
based length spectrum and the classical periodic orbit length,
we can expect a relation between the energy shell structure of
a dielectric elliptic microcavity and the orbit lengths, although
there is a substantial difference between an elliptic billiard and
an open elliptic microcavity.

In an elliptic billiard, the energy shell structure is obtained
by using BEM with the Dirichlet boundary condition. In a
dielectric elliptic microcavity, the eigenvalues are obtained
by using BEM with the transverse magnetic (TM) boundary
condition, and the periodic orbits are quantized through
the EBK quantization rule [10,32,37,38]. In a dielectric
elliptic microcavity, mode coupling phenomena occur due to
interactions between a pair of wave functions, which result
in wave functions localized on periodic orbits. This is a kind
of scarring phenomenon referred to as a scarlike resonance
[39–42].

Figures 5(a) and 5(b) are the energy shell structures of
an elliptic billiard and an open elliptic cavity in the region
0.5 < ε < 0.95 and 34 < kR < 46 for an elliptic billiard and
in the region 0.5 < ε < 0.95 and 34 < Re(NekR) < 46 for a
dielectric elliptic microcavity, respectively. The structures ex-
hibit irregular densities depending on eccentricity, as depicted
in Fig. 5. In both figures, we can recognize several sequences
of equidistantly spaced line structures, which are distinctive
in their high density. The equidistant spacing, i.e., the free
spectral range of these structures, is responsible for the peaks
of the length spectrum as discussed above, since the Fourier
transform, in obtaining the length spectrum, demonstrates a
period of equidistant lines [43,44]. Hence, we can conjecture
that these lines should correspond to periodic orbit lengths,
which are proportional to the actions.

FIG. 4. Sequentially bifurcated wave functions localized on periodic orbits. The first column in the upper left is the example wave function
corresponding to the short diametric orbit and others are bifurcated orbits from the repeating short diametric orbit.
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FIG. 5. Effective wave numbers obtained from constant actions,
which are superimposed on the exact wave numbers. (a) is the billiard
system and (b) is the dielectric system. Red, blue, green, and purple
lines are the (1 : 4), (1 : 6), and (2 : 6) LM-type periodic orbits, and
the (1 : 3) WG-type periodic orbit, which are ranged from N = 37
to 38, from 45 to 46, from 58 to 59, and from 33 to 34, respectively.
Here, N is the quantum number.

By using the EBK quantization rule, the periodic orbit is
quantized as follows [10,32,37,38],

(kR)eff ≡ 2π (N + μ/4)

lPO
R, (13)

where μ is the Maslov index, which should be constructed
depending on the characteristics of a periodic orbit. We
obtain the effective wave numbers from a constant action
I = 2π (N + μ/4) given by adequate integers N,μ and an
estimated orbit length lPO based upon the length spectrum in
Fig. 2. The results are superimposed on both figures. As is
shown in Fig. 5(a), in the case of a billiard, although there is
no wave function localized on the periodic orbits, the dense
lines agree well with the constant action curves.

In the case of the dielectric elliptic microcavity, however,
the constant action curves (dashed lines) do not coincide
with the exact eigenvalues obtained numerically, as shown
in Fig. 5(b). This discrepancy is caused by the open property
of the dielectric system which allows only quasibound states
(i.e., the wave functions are not correctly positioned inside
the system; instead, they are partially ranged on the system
boundary with respect to both in and outside the system). This
problem was already mentioned and discussed in Ref. [45],
but the result was not illustrated explicitly. Furthermore,
discussions in Ref. [45] were not focused on the parameter

dependent behaviors of the resonances. Therefore, now we
will make up this discrepancy with explicit illustrations.

As stated above, the dielectric system does not allow
vanishing wave functions on the system boundary because of
openness; rather, it obeys the Fresnel reflection rules governed
by the incident angle χi . The reflection coefficient can be
the complex value when the incident angle is greater than
the critical angle for total internal reflection. Therefore, when
the reflection coefficient becomes the complex value, the
reflection coefficient gives a phase shift to the reflected waves
[33,46], and when this phase shift is taken into account, the
complete form of the effective wave number for the dielectric
system can be constructed,

(NekR)eff ≡ 2π (N + μ/4 + φadd)

lPO
R, (14)

where

φadd = Re

⎡
⎣−i

n∑
j=1

ln

(Ne cos χi − cos χt

Ne cos χi + cos χt

)
j

⎤
⎦, (15)

sin χt = Ne sin χi,

χi = sin−1

(√
α + f 2 sin2 v

b2 + f 2 sin2 v

)
. (16)

In Eq. (15), the sum is performed along the bouncing points
of the periodic orbit from 1 to n. Since the periodic orbits in the
ellipse exhibit a resonant torus, constituted by one parameter,
i.e., α, a nonisolated periodic orbit family, the contribution of
each periodic orbit should be averaged. For this purpose, we
take 100 periodic orbits for each family, following Eq. (16).
The results are truly satisfactory, as illustrated in Fig. 5(b) by
thick solid lines, which are in a great coincidence with the
dense lines of the background eigenvalue structures.

V. DISCUSSIONS AND CONCLUSION

The main idea of the analysis using Eq. (14) is based on
an additional phase factor due to reflections on the interface
between two materials, which have different refractive indices.
Thus we believe that this idea also can be applicable to various
integrable shapes of the microcavity, such as a rectangular
and a triangular shape. However, out of concern for cavities
having nonsmooth boundary curves, it is conjectured that we
should pay much more careful attention to obtaining the phase
factors when we deal with cavities exhibiting sharp corners,
such as a rectangular cavity. In the case of the refractive index,
it is reasonable to expect that Eq. (14) can hold for various
refractive index cases, such as a polymer system (N = 1.5).
We have also checked the case of refractive index N = 2.0
(not shown here) and have confirmed a consistency.

In the case of transverse electric (TE) polarization, though,
the Brewster angle can significantly affect the additional phase
factor, the trend of the real parts of complex eigenvalues that
are not very different from those of TM polarization. Hence, we
can expect a similar quantization rule for the TE polarization
case. With respect to the imaginary parts of the resonances, it
is hard to obtain an extended EBK quantization because we
should attack this task along with couplings, interactions, and
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a tunneling frameworks (avoided crossing behaviors of the
imaginary parts of the resonances are much more complicated
than those of the real one). Nevertheless, there were some
trials [33,47] to obtain the quantization rule of the imaginary
part of the resonances for some cavities, even though they
were deduced without any kinds of interaction schemes. In
future work, we will also try to resolve the problems of the
quantization of resonances concerning the imaginary parts of
the resonances.

In conclusion, we explicitly demonstrate that the constant
action curves of the periodic orbits, which have been alter-
natively focused on as invariant quantities under adiabatic
parametric variations, make significant contributions to the
shell structures in the dielectric elliptic systems, by comparing
the periodic orbit lengths and the length spectrum which is
obtained by the Fourier transform of the density of states. The
characteristics of the bifurcated periodic orbits are illustrated
in order to clarify their roles in the shell structures depending
on the parameter. The phase shift correction of the effective

wave numbers is also discussed, addressing the problem of the
dielectric system. In the correction procedures, it is shown
that an additional phase factor arises due to the complex
reflectance. The resonant tori corresponding to periodic orbits
partially gain this additional phase factor when the tori are
located above the critical angle on the phase space. We believe
that our results will provide a key to resolving the problems
remaining in the field of quantum chaos and dissipating
systems, which are fields undergoing intense study in the
search for quantum signatures of classical chaos.
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