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We report a new type of dynamical tunneling, which is mediated by a resonant torus, i.e., a nonisolated periodic
orbit. To elucidate the phenomenon, we take an open elliptic cavity and show that a pair of resonances localized
on two classically disconnected tori tunnel through a resonant torus when they interact with each other. This
so-called resonant torus-assisted tunneling is verified by using Husimi functions, corresponding actions, Husimi
function distributions, and the standard deviations of the actions.
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I. INTRODUCTION

The term scar was first coined by Heller in 1984 to explain
the unexpected localization of eigenfunctions on classical
unstable periodic orbits in a stadium-shaped billiard [1].
Since then, numerous studies have been theoretically and
experimentally made and scars found not only in closed
systems such as chaotic billiards [1–6], hydrogen atoms in
a magnetic field [7,8], a cold atom [9], molecular systems
[10–14], and a microwave [15–18] but also in open systems
such as quantum dots [19–21] and optical microcavities
[22–31]. In a quantum-mechanical point of view, a scar is
a quantum-mechanical mixing of a pair of eigenfunctions due
to an avoided level crossing (ALC), which is the phenomenon
of Fermi resonance [14,32–35]. Recently, such abnormal scars
have been found in dielectric microcavities as a quasiscarred
resonance [23,25] and a scar-like one [36]. A quasiscar ap-
pearing in a spiral-shaped microcavity is a linear combination
of a series of resonances [25] and a scar-like resonance is
caused by an avoided resonance crossing (ARC) between two
resonances [34,37], which is an open version of an ALC.

Along with scars, dynamical tunneling [38,39] has been
extensively studied and several variations have been found.
Through the studies, it has been verified that dynamical
tunneling is also a quantum-mechanical mixing of a pair of
eigenfunctions [34,36,37], which is now a phenomenon of
Fermi resonance due to interaction of a pair of eigenfunctions.
For mixing, a pair of eigenfunctions localized on classically
disconnected regions tunnel either through a chaotic region,
which is called chaos-assisted tunneling [40–44], or through
classical resonances, which is called resonance-assisted tun-
neling [42–46].

In interaction of a pair of eigenfunctions, there are two types
of ALCs, the Landau-Zener type [47,48] and the Demkov type
[49]. In the former, an ALC takes place in a narrow range
and the properties of a pair of eigenfunctions are recovered
after the ALC, which is dynamical tunneling. In the latter,
an ALC takes place over a broader range and a pair of scars
are generated, which is scar formation [11]. In the formation
of a scar-like resonance in an elliptic microcavity, an ARC
takes place in a narrow range and the properties of a pair of
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resonances are recovered after an ARC [36]. Notwithstanding
this commonness with dynamical tunneling in characteristics,
a scar-like resonance has been regarded as a kind of scar
[36,37]. Refuting this general understanding, in this paper,
we will prove that a scar-like resonance is not a kind of
scar but a phenomenon of dynamical tunneling assisted by
a resonant torus, i.e., a nonisolated periodic orbit. To study
this new type of dynamical tunneling, i.e., what we call
resonant torus-assisted tunneling, we take an elliptic dielectric
microcavity and show that a pair of remote resonances tunnel
through a resonant torus.

II. ELLIPTIC MICROCAVITY

The shape of an elliptic microcavity is given by

x2 + y2

1 − ε2
= a2, (1)

where a is the radius of the major axis and ε is the eccentricity.
In an ellipse, two foci are at f = ±aε and the radius of
the minor axis is b =

√
a2 − f 2. To prove the resonant

torus-assisted tunneling, we obtain eigenvalue spectra and
resonances depending on ε by solving the Helmholtz equation
by the boundary element method for a refractive index N =
3.3 [50]. As a circular microcavity deforms, complicated
interactions take place. Of these, we choose an arbitrary
Landau-Zener-type ARC and investigate the characteristics
of a pair of resonances during the interaction.

Figure 1 is the phenomenon of the interaction of the
(l,m) = (9,9) and the (7,15) resonance, where l and m are
the hyperbolic and the elliptic quantum number in elliptic
coordinate, respectively. Figures 1(a) and 1(b) are the real
and the imaginary eigenvalues of the two resonances as a
function of ε, respectively, which show an ARC in a narrow
range. Here k is the vacuum wave number and R = √

ab.
In order to show the Landau-Zener-type ARC, intensity plots
of resonances are obtained for three cases of ε around the
ARC. Interacting with each other, the (9,9) and the (7,15)
resonance shown in Figs. 1(c) and 1(d) at ε = 0.6 develop
to a pair of scar-like resonances as shown in Figs. 1(e)
and 1(f) at ε = 0.632, respectively. After the ARC, the original
resonances are recovered exchanging their properties as shown
in Figs. 1(g) and 1(h) at ε = 0.66, respectively. This is an
evidence of the Landau-Zener-type ARC.

2470-0045/2016/93(1)/012201(8) 012201-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.012201


CHANG-HWAN YI, HYEON-HYE YU, AND CHIL-MIN KIM PHYSICAL REVIEW E 93, 012201 (2016)

FIG. 1. Avoided resonance crossing, resonances, and Husimi functions depending on ε. (a) and (b) are the real and the imaginary eigenvalues
of the (9,9) and the (7,15) resonance, respectively. (c) and (d) are the intensity plots of the (9,9) and the (7,15) resonance at ε = 0.6 [A and B in
(a) and (b)], respectively. (e) and (f) are scar-like resonances at 0.632 (C and D), respectively. (g) and (h) are recovered resonances exchanging
their property at 0.66 (E and F), respectively. (i) and (j) are the Husmimi functions of the (9,9) and the (7,15) resonance at ε = 0.6, respectively;
(k) and (l) are those at 0.632 (C and D), respectively; and (m) and (n) are those at 0.66 (C and D). The bar in (k) and (l) are the cross section
through one of the zeros of the Husimi functions. S/Smax, p = sin(χ ), and pc are the normalized arc length measured from positive x axis, the
tangential component of a moment for a particle having an incident angle χ with respect to the normal vector at the system boundary, and the
critical angle for a total internal reflection in a dielectric system of a refractive index N = 3.3, respectively.

III. FERMI RESONANCE AND SCAR-LIKE RESONANCE

In the interaction, because the two real eigenvalues are
nearly degenerated, a Hamiltonian H (I ′

1,I
′
2) can be expanded

around the other one H (I1,I2), where Ii and I ′
i are the action

variables and the subscripts 1 and 2 are the degrees of freedom.
Then we can obtain the following condition:

(I1 − I ′
1)ω1 + (I2 − I ′

2)ω2 = 0, (2)

where ωi = ∂H/∂Ii is the frequency associated with the action
Ii . When the winding number ω1/ω2 is rational such that
ω1/ω2 = r/q, where r and q are integers, the orbit is periodic
[51]. By using the condition Ii = (ni + αi/4)h, where αi is
the Maslov index, we can obtain the following relation:

(|�n1|,|�n2|) = (q,r), (3)

where |�n1| = |n1 − n′
1| and |�n2| = |n2 − n′

2| are the quan-
tum number difference on each degree of freedom and
(q,r) denotes the classical periodic orbit [34]. Here we
assume h = 1. In our case, because the quantum number
difference is (|�l|,|�m|) = (2,6), the scar-like resonances
should be localized on the (2 : 6) periodic orbits as we show
the trajectories superimposed on the scar-like resonances.

To show localization of the scar-like resonance on the (2 : 6)
nonisolated periodic orbits, Husimi functions [52] are obtained
for three cases of ε. The Husimi functions of the (9,9) and
the (7,15) resonance shown in Figs. 1(i) and 1(j) at ε = 0.6
show a localization of the resonances on their own tori, which
are disconnected in phase space. As ε increases, while the
two resonances begin to interact with each other, the tori are
fixed at their own position. Figures 1(k) and 1(l) show that
each resonance is split into six clusters at ε = 0.632, which
range over the two tori, while the tori are still disconnected.
At an ARC point, the clusters are localized on the (2 : 6)
resonant torus as indicated by an ellipse in Figs. 1(k) and 1(l) at
ε = 0.632. After the ARC, each resonance is now localized on
the counterpart torus, which is the phenomenon of resonance
exchange shown in Figs. 1(g) and 1(h). In this resonant torus-
assisted tunneling, the (2 : 6) resonant torus is the tunneling
channel for mixing the (9,9) and the (7,15) resonance.

IV. ACTION BEHAVIOR IN TUNNELING

The resonant torus-assisted tunneling can be verified by
using action variables. In elliptic coordinate, two conserved
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quantities, the Hamiltonian (=E) and the product of two
angular momenta about two foci, are given as follows [53,54]:

H = p2
u − p2

v

f 2(cosh2 u − cos2 v)
= E, (4)

L1L2 = p2
u sinh2 u − p2

v sin2 v

cosh2 u − cos2 v
, (5)

where the subscripts u and v are the hyperbolic and the
elliptic axis, respectively, and pu and pv are the hyperbolic
and the elliptic momentum, respectively. Here, the mass is
assumed to be 1/2. From Eqs. (4) and (5), we can obtain
the canonical momenta p2

u = E(f 2 sinh2 u − α) and p2
v =

E(f 2 sin2 v + α), where α ≡ L1L2/E is the modified angular
momentum product.

A. Birkhoff coordinate expression

To express the above variables in terms of Birkhoff
coordinate, the quantity α is transformed as follows [53]:

α = p2(b2 + f 2 sin2 v) − f 2 sin2 v, (6)

where b = a
√

(1 − ε2) and p = pv/
√

p2
u + p2

v is the tangen-
tial component of the momentum of an incident point-like
particle. Because x = f cosh u cos v, y = f sinh u sin v, and√

p2
u + p2

v ≡ 1, the variables in Eq. (6) are given as follows:

p = sin(χ ),

u = tanh−1 (b/a),

v = tan−1

[
y(s) cosh(u)

x(s) sinh(u)

]
,

where s and p are the axes of Birkhoff-coordinate in Poincare
surface of section, and χ is the incident angle of the particle
on the boundary u = tanh−1 b/a.

Then, the action of each variable can be deduced from the
relations Iu = 1

2π

∮
u pudu and Iv = 1

2π

∮
v pvdv as follows:

Iu =
√

E

π

[
a sin φ − a

f
F(φ,κ) − f E(φ,κ)

]
, (7)

Iv = 2
√

E

π

[
α

f
F

(
π

2
,κ

)
+ f E

(
π

2
,κ

)]
, (8)

where sin φ = b/
√

b2 − α, κ =
√

f 2 + α/f , E = (Nk)2, and
the functions F(θ,κ) and E(θ,κ) are the elliptic integral
of the first and the second kind, respectively. Because the
quasiprobability distributions (Husimi function) spread on the
(s,p) phase space, the expectation value of the action I (s,p)
and its standard deviation σ for u and v can be obtained as
follows:

〈Iu,v〉 =
∑
(s,p)

Iu,v(s,p)h(s,p)∑
(s,p) h(s,p)

,

σu,v =
√〈

I 2
u,v

〉 − 〈Iu,v〉2,

where h(s,p) is the Husimi function. Hereafter, the term action
is used for the expectation value of the actions obtained by the
above equation.

Figure 2 shows actions in the region 0.60 < ε < 0.66. In
Fig. 2, the (2 : 6) resonant torus (dot-dashed lines) passes

FIG. 2. Actions as a function of ε for each degree of freedom for
the two interacting modes and the resonant torus. The dotted lines are
the action tori, where the (9,9) and the (7,15) resonance are initially
localized. The solid and the dashed lines are the action of the (9,9)
and the (7,15) resonance, respectively. The dot-dashed lines are the
actions of the (2 : 6) resonant torus. In numerical calculations of Iu,v

in Eqs. (7) and (8), energy is E = 1
2 [(Nk)2

(9,9) + (Nk)2
(7,15)] and α is

obtained by Eq. (6).

between two tori (dotted line), where the two resonances
are localized. The dotted lines are obtained by fitting the
actions of the two resonances before and after interaction.
The figure shows that when the action of the resonant torus
approaches the center of the two tori, that of each resonance
begins to get away from its torus and moves to the counterpart
torus by passing through the resonant torus. Each action
of the (9,9) (solid lines) and the (7,15) resonance (dashed
lines) collides with the resonant torus at about ε ∼ 0.630 and
∼0.632, respectively. This moving is classically forbidden but
quantum-mechanically allowed. This is the very phenomenon
of dynamical tunneling through a resonant torus. The moving
of resonances through the resonant torus is clearly shown in
the Supplemental Material [55].

B. Husimi function and standard
deviation behavior

The distribution variation of the Husimi functions on each
section also clearly shows tunneling. We take the sections,
which pass through the zeros of the Husimi function [10],
as marked by a bar in Figs. 1(k) and 1(l). Figures 3(a)
and 3(b) are the distribution of the Husimi function of the
(9,9) and the (7,15) resonance on each section depending on
ε. Before an ARC, the two resonances are distributed around
their own tori as shown by the solid lines A and A′ in Figs. 3(a)
and 3(b), respectively. As ε increases, each distribution begins
to move to the counterpart torus as shown by the solid lines
B and B′. Hence, during an ARC, the distribution is divided
into two parts by the resonant torus: one part is on its own
torus and the other on the counterpart torus, respectively.
The position of the resonant torus is where the distribution
is minimized between the two parts. Finally, when ε = 0.66,
each distribution completely moves to the counterpart torus
as shown by the solid lines C and C′. Due to the fact that
the two resonances cannot be mixed through the zeros of
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FIG. 3. Husimi function distributions depending on ε. (a) and
(b) are the distributions at the sections shown in Figs. 1(k) and 1(l),
respectively. A and A′ are at ε = 0.6, B and B′ at 0.628, and C and C′

at 0.66. Thick arrows in (a) and (b) indicate directions of the transition
process.

the Husimi function, the distribution on the counterpart torus
is certainly caused by the tunneling through the tunneling
channels detouring the zeros of the Husimi function.

The standard deviations of the actions of the resonances
as a function of ε are shown in Fig. 4. When dynamical
tunneling takes place, a part of a resonance moves to the
counterpart torus while the remaining part is kept on its own
torus. Hence, the deviation becomes maximized when the
tunneling of each resonance is maximized. Figure 4 shows the
largest standard deviation around the ARC. The maximized
positions are, approximately, ε = 0.630 and 0.632 for the
(7,15) and the (9,9) resonance, respectively. The positions
coincide with where the action of the resonant torus meets that
of each resonance. This result implies that the tunneling of the
(7,15) resonance is maximized earlier than that of the (9,9)
resonance.

V. TUNNELING IN HIGH-ENERGY REGIME

In order to confirm the resonant torus-assisted tunneling
at high-energy regime, we trace the eigenvalues around
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FIG. 4. Standard deviations of the Husimi function as a function
of ε for two interacting resonances on each degree of freedom. The
solid and the dashed lines are the (7,15) and the (9,9) resonance,
respectively.
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FIG. 5. Real and imaginary part of eigenvalues around Re(kR)≈
60 from ε = 0.625 to ε = 0.6575. Interaction pairs are marked by
labeled circles of A, B, C, D, E, F, and G. Interacting pairs in regions
A and B satisfy the (2, 6) Fermi resonance. C, D, and E satisfy the
Fermi resonance 2(2, 6), and F and G satisfy the Fermi resonance
3(2, 6), respectively. The pairs in regions E and G are weak couplings
and the others are strong couplings.

Re(kR) ≈ 60 for the eccentricity from ε = 0.6250 to ε =
0.6575. In Fig. 5, we can see several interaction pairs as labeled
by A, B, C, D, E, F, G, and H.

A. Two-level non-hermitian approximation

When two eigenvalues interact with each other in an open
nonequilibrium systems, the interaction can be expressed in the
form of a 2 × 2 non-Hermitian matrix composed of a perturbed
Hamiltonian as follows [56,57]:

H = H0 + λH1

=
(

E1 0
0 E2

)
+ εU (θ1)

(
ω1 0
0 ω2

)
U †(θ1)

+ iεU (θ2)

(
σ1 0
0 σ2

)
U †(θ2)

=
(

H11 H12

H21 H22

)
, (9)

where

U (θ ) =
(

cos θ − sin θ

sin θ cos θ

)
,

and the eigenvalues of H are

β± = H11 + H22 ±
√

(H11 − H22)2 + 4H12H21

2
. (10)

As is well known, the systems expressed by the above
matrix exhibit three kinds of interactions: a strong, a weak, and
an external coupling. The first case shows an avoided crossing
in a real part of energy while an imaginary part of energy
shows a crossing. The second case shows opposite behaviors
to the first. In the last case of interaction, the imaginary part
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FIG. 6. Real and imaginary part of eigenvalues obtained by the
numerical method and the model Hamiltonian of Eq. (9). In (a) and
(b), filled squares and filled circles correspond to the thin solid
lines of the resonance (36, 66) and the thick solid lines of the
resonance (40, 54) in region C of Fig. 5, respectively. Solid lines
β± in (a) and (b) are the real and imaginary part of eigenvalues
in Eq. (10). The fitting eigenvalues are obtained using variables
E1 = 60.11 − i0.0445, E2 = 60.12 − i0.045, θ1 = 0.09, θ2 = 0.74,
ω1 = 5.56, ω2 = −0.98, σ1 = −0.62, and σ2 = 0.68.

of the energy shows a repulsion, resulting in one short and
one long-lived resonance, while the real part of energy shows
either crossings or avoided crossings. Hence, a direct measure
of a tunneling rate using the gap of the avoided crossing
is not tractable. The only applicable approach is to fit the
parameter-dependent resonances using the eigenvalues of the
model Hamiltonian, which is expressed by Eqs. (9) and (10).

Figure 6 is one example of the fitting for the interaction
around region C in Fig. 5. The fitting eigenvalues are obtained
using variables E1 = 60.11 − i0.0445, E2 = 60.12 − i0.045,
θ1 = 0.09, θ2 = 0.74, ω1 = 5.56, ω2 = −0.98, σ1 = −0.62,
and σ2 = 0.68. These are determined by using the approxi-
mated linear slopes of eigenvalues obtained by the numerical
method. The tunneling strength can be identified by the mixing
angles θ1 and θ2. In this case, off-diagonal elements Hij at
ε ≈ 0.6267 are obtained to be H12 = 0.000974 − i0.00107 =
H21. The coupling strength of the resonant torus-assisted
tunneling is determined by the boundary conditions which
give complex values. Detailed discussions of the tunneling
strength depending on k (or effective 1/�) and an interplaying
of a resonant torus and the boundary conditions will be shown
elsewhere.

B. Nonisolated avoided crossings

Figure 5 shows several kinds of interacting pairs. The
pairs in regions A and B exhibit interactions over a wide
range of eccentricity and show strong-external coupling. An
analysis of these interactions is not easy since the interactions
are not isolated (i.e., since multiple interactions take place
simultaneously). For example, in region A, while the thick
solid line interacts with the thin dotted dashed line, the thin
double dotted dashed line interacts with the dotted dash line at
ε ≈ 0.635 simultaneously. Also, in region B, while the thick

FIG. 7. Intensity plots of interaction pairs satisfying the
M(2,6) = 1(2,6) Fermi resonance. (a) and (c) are (2, 6) scar-like
resonances in region A of Fig. 5 at ε = 0.634 whose quantum numbers
are (36, 66) and (38, 60) at ε = 0.628. (b) and (d) are those in region
B of Fig. 5 at ε = 0.648 whose quantum numbers are (34, 72) and
(36, 66) at ε = 0.643. N (2 : 6) = 1(2 : 6) periodic orbit family are
superimposed on these resonances (thin solid lines).

solid line interacts with the thin solid line, the gray thin line
interacts with the thin solid line at ε ≈ 0.646 simultaneously.
Actually, many other small interactions take place during
this wide-ranged interaction. However, because these small
interactions do not distort the structures we are interested in
and only appear in short-ranged local regions, we exclude them
and concentrate on interactions satisfying the (2, 6) Fermi
resonance.

The pairs in regions A and B satisfy the Fermi resonance
(2, 6). For the pair in region A, a quantum number of the
thick solid line and the dotted dashed line are (36, 66) and (38,
60), whose eigenfunctions are shown in Figs. 7(a) and 7(c),
respectively. For the pair in region B, a quantum number of
the thick solid line and the thin solid line are (34, 72) and (36,
66), whose eigenfunctions are shown in Figs. 7(b) and 7(d),
respectively. The analysis of the actions and their standard
deviations is not presented here, because of the complicating
interactions, as stated above, which can mislead the genuine
properties of these interactions.

C. Multiplicity of periodic orbits

More interesting phenomena arise in the other regions. The
pairs in regions C, D, and E are governed by the quantum
number difference (|�l|,|�m|) = (4,12). This state can be
divided by a factor 2 and this factor is interpreted as a
multiplicity M of the primitive periodic orbit (2 : 6), so
that (4,12) = 2(2,6) = M(2,6). In Figs. 8(a)–8(c), we can
distinguish three independent periodic orbits that exceed a
multiplicity M = 2. However, because the fish-shape orbits
in these figures are topologically degenerated in phase space
(the number of the points corresponding to the orbit on phase
space are only 6, which is related to time-reversal propagation
of the orbit), two fish-shape orbits should be counted to be one.
On the other hand, because other orbits exhibit no degeneracy
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FIG. 8. Intensity plots of interaction pairs satisfying M(2,6) =
2(2,6) Fermi resonance. (a) and (d) are 2(2, 6) scar-like resonances
in region C of Fig. 5 at ε = 0.6267 whose quantum numbers are (36,
66) and (40, 54) at ε = 0.625. (b) and (e) are those in region D of Fig.
5 at ε = 0.6413 whose quantum numbers are (34, 72) and (38, 60) at
ε = 0.6399. (c) and (f) are those in region E of Fig. 5 at ε = 0.6563
whose quantum numbers are (32, 78) and (36, 66) at ε = 0.6547.
N (2 : 6) = 2(2 : 6) periodic orbit family are superimposed on these
resonances (thin solid lines).

in phase space, we count it as a complete one orbit. As a
result, all pairs of scar-like resonances in Fig. 8 are defined
to be (2, 6) having a multiplicity M = 2. Simply, the orbit
counting number N corresponding to the multiplicity M of
Fermi resonance can be expressed in a following relation:

N ≡
∑

j

( 2
gj

∑n
1 δ[r ′(s,p) − r(s,p)]

2n

)
, (11)

where gj , n, and r(s,p) are the degenerate factor, the bouncing
number, and the position on phase space of j th periodic
orbit, respectively. The degenerate factor gj and factors 2
in Eq. (11) are related to time-reversal propagation of the
orbit. For example, since the fish-shape orbit travels along the
same points on phase space, gj becomes 2 in time-reversed
directions, while other orbits travel along different points in
time-reversed directions on phase space for a period so that
gj = 1.

The first, the second, and the third column in Fig. 9 are
actions and standard deviations of the interaction pairs in
regions C, D, and E depending on eccentricity, respectively.
The solid lines at each column are the (40, 54), the (38, 60),
and the (36, 66) resonance, respectively. The dashed lines
at each column are the (36, 66), the (34, 72), and the (32,
78) resonance, respectively. Dot dashed lines are the (2:6)
resonant torus in each region. The first and the second row
are the actions on each degree of freedom. The third and the
fourth row are standard deviations on each degree of freedom.
In the left two columns, the actions cross while the third one
exhibits noncrossing behaviors. This is clearly comprehensible
when we consider the properties of the weak coupling in the
open systems. As mentioned before, when the weak coupling
takes place, the real part of the eigenvalue crosses and the
properties of the states are not exchanged while the strong
coupling exchanges the properties of the states exhibiting an
avoided crossing in the real part of eigenvalues.

Similarly, by using Eq. (11), M = 3 interaction pairs in
regions F and G in Fig. 5 are confirmed as shown in Fig. 10.
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FIG. 9. Actions Ii and their standard deviations σi depending on
eccentricity. The first, the second, and the third column are actions
and standard deviations of the interaction pairs in regions C, D, and
E depending on eccentricity, respectively. The solid lines at each
column are the (40, 54), the (38, 60), and the (36, 66) resonance,
respectively. The dashed lines at each column are the (36, 66), the
(34, 72), and the (32, 78) resonance, respectively. Dot dashed lines
are the (2:6) resonant torus in each region. The first and the second
row are the actions on each degree of freedom. The third and the
fourth row are standard deviations on each degree of freedom.

The pair in regions F and G exhibit Fermi resonance rela-
tions |(34,72) − (40,54)| = 3(2,6) and |(32,78) − (38,60)| =
3(2,6), respectively. Figure 11 shows actions and standard
deviations of the actions of the pairs in regions F and the G
depending on eccentricity. Again, the strong and the weak
coupling properties are observed in the behaviors of actions
and standard deviations.

By examining the behaviors of actions and standard
deviations of all these interaction pairs, we summarize several

FIG. 10. Intensity plots of interaction pairs satisfying M(2,6) =
3(2,6) Fermi resonance. (a) and (c) are 3(2, 6) scar-like resonances
in region F of Fig. 5 at ε = 0.6342 whose quantum numbers are (34,
72) and (40, 54) at ε = 0.6331. (b) and (d) are those in region G
of Fig. 5 at ε = 0.6492 whose quantum numbers are (32, 78) and
(38, 60) at ε = 0.6478. N (2 : 6) = 3(2 : 6) periodic orbit family are
superimposed on these resonances (thin solid lines).
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FIG. 11. Actions Ii and their standard deviations σi depending on
eccentricity. The first and the second column are actions and standard
deviations of the interaction pairs in regions F and G depending on
eccentricity, respectively. The solid lines at each column are the (40,
54) and the (38, 60) resonance, respectively. The dashed lines at each
column are the (34, 72) and the (32, 78) resonance, respectively. Dot
dashed lines are the (2 : 6) resonant torus in each region. The first
and the second row are the actions on each degree of freedom. The
third and the fourth row are standard deviations on each degree of
freedom.

important findings. First, now it is clear that the maximum
points of the standard deviations of the interaction pairs do
not coincide with each other. Although we tested the values
expressed by a relative variance (σrel = σ

I
), we were not able

to deduce any meaningful clues for explaining it. Second, the
actions and standard deviations depend on class of the coupling
structure as shown in Figs. 9 and 11. Third, the actions of a
resonant torus are placed at the center between the actions of
the interacting pair. The concerns enumerated above will be
addressed in rigorous and extensive ways in the future.

VI. BIFURCATION OF PERIODIC ORBIT

As a last remark, we point out the mechanism of a
bifurcation and a developing of a resonant torus mediating
interactions. The bouncing-ball-type resonant torus in an
elliptic cavity is developed from a bouncing-ball orbit by a
bifurcation. The “born” parameter is determined by the relation
ε = cos [(qπ )/r] [53,54]. After the generation of the resonant
torus, as ε increases, the action on the v degree of freedom
increases, whereas that on the u degree of freedom decreases
as shown in Fig. 12. Hence, the action of the resonant torus
can pass between a pair of tori, where a pair of resonances
are localized. At this moment, when the Fermi resonance

FIG. 12. Positions of two resonances (9, 9) and (7, 15) on
the energy surfaces depending on eccentricity. The lower and the
upper panel show resonance positions at ε = 0.5 and ε = 0.614,
respectively. The upper triangle, the lower triangle, and the diamond
symbol stand for the resonance (7, 15) and (9, 9), and the periodic orbit
(2:6), respectively. Before ε = 0.5, the real (2:6) periodic orbit does
not exist and has a negative Iν , which corresponds to an imaginary
orbit. W and B region is a whispering gallery and a bouncing-ball-type
region, respectively. The energy surfaces are obtained by using an
arithmetic average of k squares of the interaction pair for energy E.
α is ranged −f 2 < α < b2.

relation is satisfied, dynamical tunneling takes place through
the resonant torus.

VII. CONCLUSION

In conclusion, we demonstrate a type of dynamical tunnel-
ing, which is resonant torus-assisted tunneling. This occurs
when a resonant torus passes between a pair of tori. Although
a pair of resonances, scar-like resonances, seem to be localized
on a resonant torus, they are not scars, but the phenomenon
of dynamical tunneling mediated by a resonant torus. This
result will contribute to a deeper understanding of the widely
prevailing phenomena of dynamical tunneling related to the
interaction of a pair of eigenfunctions.
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