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Experimental study of stable imbibition displacements in a model open fracture.
II. Scale-dependent avalanche dynamics
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We report the results of an experimental investigation of the spatiotemporal dynamics of stable imbibition
fronts in a disordered medium, in the regime of capillary disorder, for a wide range of experimental conditions.
We have used silicone oils of various viscosities μ and nearly identical oil-air surface tension, and forced them to
slowly invade a model open fracture at very different flow rates v. In this second part of the study we have carried
out a scale-dependent statistical analysis of the front dynamics. We have specifically analyzed the influence of
μ and v on the statistical properties of the velocity V�, the spatial average of the local front velocities over a
window of lateral size �. We have varied � from the local scale defined by our spatial resolution up to the lateral
system size L. Even though the imposed flow rate is constant, the signals V�(t) present very strong fluctuations
which evolve systematically with the parameters μ, v, and �. We have verified that the non-Gaussian fluctuations
of the global velocity V�(t) are very well described by a generalized Gumbel statistics. The asymmetric shape
and the exponential tail of those distributions are controlled by the number of effective degrees of freedom of the
imbibition fronts, given by Neff = �/�c (the ratio of the lateral size of the measuring window � to the correlation
length �c ∼ 1/

√
μv). The large correlated excursions of V�(t) correspond to global avalanches, which reflect

extra displacements of the imbibition fronts. We show that global avalanches are power-law distributed, both in
sizes and durations, with robustly defined exponents—independent of μ, v, and �. Nevertheless, the exponential
upper cutoffs of the distributions evolve systematically with those parameters. We have found, moreover, that
maximum sizes ξS and maximum durations ξT of global avalanches are not controlled by the same mechanism.
While ξS are also determined by �/�c, like the amplitude fluctuations of V�(t), ξT and the temporal correlations
of V�(t) evolve much more strongly with imposed flow rate v than with fluid viscosity μ.
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I. INTRODUCTION

Flows in porous and fractured media exhibit complex
spatiotemporal dynamics [1–7]. Avalanches and non-Gaussian
intermittent velocity fluctuations [8–17] can arise from the
medium heterogeneous structure, which may involve a very
wide range of spatial scales, from nanometer pore size to kilo-
meter field scales. A common theoretical approach to study
those flows consists in a volume-averaging or homogenization
procedure in order to obtain effective behavior at large scale
from the up-scaling of microscopic phenomena [18].

We propose here to study the intermittent avalanche
dynamics of fluid invasion in a disordered medium as function
of the scale of observation of the process. We have indeed
developed a model experimental setup which allows accessing
in full detail the fluid front motion from the microscopic
scale of the heterogeneities up to the system size. Thus,
in contrast with most other crackling noise systems [19]
where such information is not accessible, we could perform a
scale-dependent analysis of the dynamics. In our imbibition
experiments, a viscous, wetting oil invades a disordered
medium and displaces the air originally present at a constant
flow rate v. The medium is a horizontal Hele-Shaw cell
with a two-valued gap thickness that fluctuates randomly in
space, mimicking an open fracture. Details of the setup and
experimental methods are given in Part I (accompanying paper
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[20]). The imbibition front is distorted by local capillary
pressure fluctuations experienced by the meniscus and by
fluctuations of the permeability of the medium, both produced
by the randomly varying gap thickness of the cell. The
viscosity contrast and the interfacial tension between invading
and displaced fluid, in contrast, tend to restore front flatness.
As a result, the viscous fluid interface develops long-range
correlations, quantified by the characteristic length scale �c =√

κ/Ca, where κ is the permeability of the medium and Ca
the capillary number of the flow. This number characterizes
the relative effect of viscous and capillary forces, Ca = μv/σ ,
with μ the dynamic viscosity of the invading fluid, σ the
interfacial tension at the oil-air interface, and v the mean
velocity of the front. Since �c diverges when Ca → 0, the
capillary number provides a quantitative measure of the
distance to criticality in imbibition displacements. Indeed,
as shown in detail in Part I (accompanying paper [20]), the
front dynamics is driven by spatially localized avalanches with
various scaling relations expected when the critical point for
depinning is approached as Ca → 0 [2,5,14,15].

In the accompanying paper (Part I [20]) we have studied
the front dynamics only at the local scale of our spatial
resolution. Here we focus our attention on the front dynamics
through increasing length scales. To this purpose we compute
a global velocity V�(t) as the spatial average of the local front
velocities over a window of lateral size �, and vary � from
the local scale defined by our spatial resolution up to the
lateral system size L. Even though the imposed flow rate is
constant, the signals V�(t) exhibit strong fluctuations, which
evolve systematically with the parameters μ, v, and �. We
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CLOTET, SANTUCCI, AND ORTÍN PHYSICAL REVIEW E 93, 012150 (2016)

have verified that the fluctuations of V�(t) are non-Gaussian
[11,14]. This is a generic property of the fluctuations of
spatially averaged (or global) quantities in spatially correlated
systems. Non-Gaussian fluctuations are a consequence of the
nonapplicability of the central limit theorem to correlated
systems [21–24]. The large and jerky excursions of V�(t) above
its mean value correspond to global avalanches, which reflect
extra displacements of the imbibition fronts.

In comparison to our earlier investigations of avalanche
dynamics in this setup [14,15] we have used for the first
time oils of different dynamic viscosities, from μ = 10 to
350 cP, without a significant change of surface tension (σ �
21 mN/m). This effort has led us to discover that the dynamics
of V�(t) is not simply controlled by the capillary number
Ca ∼ μv. In addition, the range of imposed flow rates has
been sensibly increased to produce mean front velocities in
the range 0.04 < v < 0.6 mm/s. In this way we have been
able to expand the range of capillary numbers to 6 × 10−5 <

Ca < 2 × 10−3, and thus we have been able to characterize
the different scalings with higher confidence. In order to have
highly reliable statistics, finally, we have performed 15 to
20 experiments with different disorder realizations for each
experimental condition (v,μ).

The remainder of the paper is organized as follows. We
study the temporal fluctuations and correlations of V� in Sec. II
and its avalanche dynamics in Sec. III. Finally, in Sec. IV, we
draw the main conclusions of our investigation.

II. SPATIALLY AVERAGED VELOCITIES

The spatiotemporal correlations of the local velocities of
the front studied in the accompanying paper (Part I [20]) lead
to a burstlike dynamics that can be made apparent by plotting
the instantaneous velocity of every point of the front within
the measurement window in the course of time. Figure 1 gives
examples of activity maps v(x,t) for experiments with the same
flow rate but different oil viscosities. Our high-resolution setup
allows us to measure the velocity of the front at scales much
smaller than its lateral correlation length �c.

Detailed local information is not accessible in most systems
that exhibit also a burstlike dynamics. In those systems a
spatially averaged signal over the sample (a crackling noise
[19]) is studied instead. Having access here to v(x,t), however,
allows us to explore systematically the dynamics through
increasing length scales. The spatially averaged (sometimes
called global) velocity of the front on scale � is obtained by
averaging the spatiotemporal map v(x,t) of local velocities
over a window of lateral size �:

V�(t) = 1

�

∫
�

v(x,t)dx.

The value of the window size � can be varied in a wide range,
from the spatial resolution of the images up to the width L

of the measurement region (ROI), allowing a scale-dependent
statistical analysis of the front dynamics. As a consequence of
the jerky dynamics of the front at the local scale (with large
fluctuations of v and spatial and temporal correlations) this
global signal exhibits also a burstlike dynamics.

We have systematically varied the two controlling
parameters—v and μ—and analyzed the interfaces at different

FIG. 1. Spatiotemporal activity maps of the same three experi-
ments shown in Fig. 2 of Part I [20]. v = 0.13 mm/s in all cases
but μ = 10,50,350 cP from top to bottom. The graycode for v(x,t)
is the same in all cases. The black vertical line on the bottom right
corner of each panel gives the nominal correlation length �c for each
experimental condition (�c = 15.3,6.7,2.6 mm from top to bottom).

windows of observation �. To qualitatively show the effect of
each parameter (v, μ, �) six typical signals of V�(t) are shown
in Fig. 2 in groups of two. Each group corresponds to setting
two of the parameters constant and changing the third one. In
all cases shown, V�(t) is a jerky signal that strongly fluctuates
around its mean value. The magnitude of the fluctuations is
larger when the fluid is injected faster but also when the
system is observed at smaller � or the fluid has lower viscosity,
keeping the other parameters constant. However, the relative
magnitude of the fluctuations (compared to the mean velocity
of the front) is larger whenever �, μ, or v are smaller and
the other parameters are fixed (left panels of the figure). The
shape of the fluctuations of the three signals on the left panels
(small �, μ, or v) looks alike when they are observed at the
appropriate scale of velocities. Similarly, the signals on the
right also seem to resemble each other. The properties of these
signals are analyzed quantitatively in the following.

A. Statistical distributions of V�(t)

We first study the amplitude of the fluctuations of
the spatially averaged velocity V�(t). As recalled in the
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FIG. 2. Examples of spatially aver-
aged (global) velocities of the front as
functions of time. Six limiting cases are
shown to identify the effect of the window
of observation � (top), the dynamic vis-
cosity μ (middle), and the imposed mean
velocity v (bottom) on the actual form
of the signal. Each panel (top, middle,
bottom) corresponds to setting two of the
parameters (v,μ,�) constant and changing
the third one (smaller value on the left
than on the right plots). The insets show
V�(t) corresponding to the same mean
advancement of the front (30 s at v =
0.13 mm/s). Dashed lines indicate the
time-averaged velocity 〈V�(t)〉 in each
experiment. System size L = 136 mm.

Introduction and shown in Part I (accompanying paper [20]),
local velocities v(x,t) are spatially correlated along x up to a
lateral distance given by �c = √

κ/Ca. The global signal V�(t)
is a spatial average of a spatially correlated signal, and thus
the fluctuations of V�(t) around its mean are expected to be
non-Gaussian [21–24].

Figure 3 shows that this is indeed the case. In this figure we
display the probability density function (pdf) of the normalized
variable Y = (V� − 〈V�〉)/σV�

, where 〈V�〉 is the temporal
average of the signal over the duration of the experiment
and σV�

its standard deviation for different windows of
observation � (left), dynamic viscosity μ (middle), or imposed
mean velocity v (right). Those distributions are systematically
skewed to values of V� larger than the mean in all cases. They
depart noticeably from the normal distribution represented by
a solid line. Moreover, we can observe that those distribu-

FIG. 3. Evolution of the distributions of the rescaled global
velocity with window of observation � (left), dynamic viscosity μ

(middle), or imposed mean velocity v (right). In the left panel, data
for � = L/n with n = 1, 8, 11, 16, 27, 50 are plotted. Data in the
middle panel correspond to μ = 10, 50, 100, 169, 350 cP. Data in
the right panel correspond to v = 0.036, 0.053, 0.13, 0.23, 0.35, 0.55
mm/s. The solid lines correspond to a normal distribution.

tions become progressively more and more asymmetric and
develop an exponential tail when either the injection rate v
or the viscosity μ or the window of observation � are reduced.
The skewness Sk of the distributions, plotted as a function of
the linear size of the measuring window � in Fig. 4, quantifies
such asymmetric shape and its evolution with the various
experimental conditions studied. In all cases Sk is significantly
larger than zero at small �, and it decays monotonously with �

towards Sk = 0 (symmetric distribution). Also, for a given �,
Sk is larger at low v and small μ.

Non-Gaussian fluctuations of spatial averages of correlated
variables can arise from the fact that those variables are
not statistically independent [21–24]. Hence the central limit
theorem does not apply. Various studies have shown that
in spatially extended systems, where the correlation lengths
are of the order of the system size, the pdf of a global
quantity takes under certain conditions a form which is very

FIG. 4. Skewness of the velocity distributions as a function of
�. Different symbols correspond to different viscosities. The curves
obtained for different μ and v collapse when plotted as a function of
�/�c (inset). The solid line is a guide to the eye.
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well approximated by generalized Gumbel (GG) distributions
[21–26]:

Pa(Y ) = aaba

�(a)
exp{−a[ba(Y + sa) + e−ba (Y+sa )]},

with ba =
√

ψ1(a)/σY and sa = 〈Y 〉 + [ln a − ψ0(a)]/ba ,
where �(a) is the gamma function and ψm(a) = dm+1

dam+1 ln �(a)
is the polygamma function of order m. When the variable
Y is normalized, the first two moments of the distribution
are 〈Y 〉 = 0 and σY = 1. The only free parameter left to
fix the shape of the GG distributions is a, related to their
skewness by: Sk = 〈Y 3〉 ∼ 1/

√
a. Until now, however, there

is no theoretical argument for using the GG distribution in
the study of fluctuations of global quantities—except for a
particular model that bears no relation with two-phase fluid
displacements [22]. In earlier experiments, we showed that the
fluctuations of V�(t) could be represented by a GG distribution
[14]. Those experiments were performed at different v but
using only one oil (of viscosity μ = 50 cP). In the present
work we have expanded this earlier research in various ways.
First, we have increased substantially the range of capillary
numbers explored and, thus, of lateral correlation lengths �c.
Second we have included experiments with oils of different
dynamic viscosities. This allows us to check the scaling with
�/�c of the GG distributions with respect to both v and μ

independently.
The asymmetry of the GG distributions is related to the

number Neff of effective degrees of freedom of the system un-
der study [26]. In our case, the effective number of statistically
independent domains of the interface can be estimated by the
ratio of the window of observation to the lateral correlation
length, Neff = �/�c. Figure 4 shows the skewness Sk = 〈Y 3〉
of the velocity distributions versus � for the different oils.
For an oil of given viscosity, Sk is smaller at larger v. Let us
mention here that very large data sets are necessary to compute
accurate values of skewness. Considering this difficulty, the
inset shows that the skewness of the distributions for the
available combinations of experimental parameters reasonably
collapse into a common functional form when Sk is plotted
as function of the reduced variable �/�c. Since Sk determines
the shape of the distributions of V�(t), the effective number of
degrees of freedom Neff = �/�c appears as the only controlling
parameter of the fluctuations of V�(t), and v and μ play the
same role here through �c ∼ 1/

√
vμ.

To further confirm this result, Fig. 5 displays the statistical
distributions of velocity fluctuations for different values of
�/�c. Top panels compare the pdfs obtained from separate
experiments (μ,v) analyzed at �/�c constant. The distributions
resulting from considering together all available data with
�/�c constant are also plotted (full symbols). All distributions
remarkably collapse. In addition, distributions corresponding
to all available data are compared to (not fitted by) GG
distributions of same skewness. The agreement is remarkable.
Small discrepancies in the high-velocity tails at small scales
may be attributed to a lack of statistics for large values
of Y . Notice, finally, that the distributions are increasingly
non-Gaussian as �/�c decreases.

FIG. 5. Distributions of the normalized fluctuations of the global
velocity, Y = [(V�(t) − 〈V�(t)〉]/σV�

, for various values of �/�c. Top
panels show P (Y ) for all the experiments with different (μ,v)
compatible with �/�c = 10, 2, 1, and 0.5. Distributions for each
experiment separately and for data sets containing data from all
experiments are shown. Solid lines correspond to generalized Gumbel
distributions with the value of Sk of the experimental distributions.
Dashed-dotted lines correspond to a normal distribution.

B. Temporal correlations of V�(t)

We now study the temporal correlations of the fluctuating
signal V�(t) by computing the autocorrelation function:

CV�
(�t) = 〈(V�(t + �t) − 〈V�(t)〉)(V�(t) − 〈V�(t)〉)〉t .

Here 〈· · · 〉t is an average over the duration of every experiment,
and · · · the ensemble average over different experimental
realizations. The results are shown in Fig. 6 for a number
of conditions. In all cases CV�

decays monotonously in time
until it reaches a maximum anticorrelation—minimum value
of CV�

below zero—at �t∗. Above �t∗, CV�
increases towards

zero. The temporal correlations of the velocity signal show
a systematic evolution with �, μ, and v, as displayed on the
panels of the figure. The smaller the window of observation,
the shorter �t∗. On the contrary, the maximum anticorrelation
is achieved at larger �t as μ or v decrease. Moreover, these
three parameters do not play the same role in the sense that the
differences in �t∗ are much larger when v is changed rather
than μ or �.

Figure 7 displays the evolution of �t∗ as a function
of the capillary number Ca ∼ vμ, for various experimental
conditions, when the velocity signal V�(t) is computed at
� = �c. The first important result is that the capillary number
Ca does not control the temporal correlations of the global
velocity V�(t). Indeed, �t∗ evolves very differently with the
imposed flow rate v and viscosity μ. The dashed line goes
through experiments performed at different v but the same
μ and is proportional to a power law v−1.4. Experiments at
the same v but different μ correspond to the dotted line that
goes as μ−0.4. Interestingly, both the values as well as the
scaling behavior of the temporal correlations �t∗ of the global
velocity signal V�(t) measured at � = �c are similar to the
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FIG. 6. Autocorrelation functions of V�(t) as a function of the
time lag �t . Top: Evolution with � for �/�c = 10, 5, 2, 1, 0.75, 0.5
and two different values of μ. Middle: Evolution with μ = 10, 50,
100, 169 cP for �/�c = 1. A zoom of the minima is also shown.
Bottom: Evolution with v from 0.036 to 0.55 mm/s for two values of
�/�c.

ones of the local velocity reported in Part I (accompanying
paper [20]). Those temporal correlations correspond actually
to the maximum duration of local avalanches, which follow
consistently the scaling �t∗ ∼ �H

c /v, where H = 0.82(2) is
the scaling exponent characterizing the shape of the local
avalanches. Nevertheless, for � > �c, �t∗ becomes larger, as
shown in the inset of the figure. At these scales (larger than
�c) simultaneous overlapping local avalanches—correlated or
not—contribute to the global advancement of the front. The

FIG. 7. Evolution of the maximum anticorrelation time �t∗ with
the capillary number Ca. The solid line �t∗ ∼ v−1.4 follows the results
for various velocities but one viscosity μ = 50 cP (solid circles). The
dashed line �t∗ ∼ μ−0.4 passes through data for various viscosities
but one velocity v = 0.13 mm/s (open symbols). Inset: Evolution
with �/�c for one set (μ,v).

proportionality between �t∗ and the maximum duration of
a local avalanche �H

c /v may not hold then. The inset shows
also that, for � < �c, �t∗ becomes slightly smaller. This is the
result of observing local bursts through windows � < �c which
may cut them laterally.

III. GLOBAL AVALANCHES

Events of fast motion of the average front in a window
� can be distinguished from slower advancements. Global
avalanches—excursions of V�(t) above an arbitrary threshold
Vc—have a size S and duration T defined by the area enclosed
and the time elapsed between two consecutive threshold
crossings of the signal V�(t), as shown in Fig. 8. The size
S represents the extra advancement of the front with respect
to the distance advanced at velocity Vc. The threshold used is
Vc = 〈V�(t)〉 + cσV , where 〈V�(t)〉 is the temporal average of
the signal over the duration of the experiment, σV its standard
deviation, and c is an arbitrary constant.

To avoid artifacts arising from the temporal resolution
of image acquisition δt , we will only consider avalanches
longer than Tmin = 10δt . The size of the disorder patches also
introduces a cutoff size for the smallest avalanches, Smin, which
we assign to the avalanche produced by the advancement of the
front over a single patch of disorder. We have Smin = (�p/�)r ,
where �p = 0.4 mm is the lateral size of a disorder patch, � is
the lateral size of the window of observation, and r = 0.106
mm (per pixel) is the spatial resolution.

We first check the effect of the arbitrary threshold Vc on
the statistical properties of global avalanches. Figure 9 shows
the distributions of sizes and durations for different values of
c. Both P (S) and P (T ) display a power-law regime with an
upper cutoff. We observe that the clip level c does not affect
the power-law scaling of the distributions but shifts the cutoff.
Distributions corresponding to the smallest value displayed
(c = −0.5), however, start to show deviations in the power-law
regime that would lead to a lower value of the exponent. For
this reason we will consider clip levels larger than c = −0.5.
Even though all the analysis presented below corresponds to
a single value c = 0, we have checked the robustness of the

FIG. 8. The main panel shows an example of the global velocity
signal for � = L, clipped by its average value. The inset is a single
avalanche of size S and duration T .
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FIG. 9. Effect of the clip level c on P (S) (main plot) and P (T )
(inset) for experiments with v = 0.13 mm/s, μ = 50 cP, and � = 2�c.
Here c = −0.5, −0.25, 0, 0.25, 0.5. Solid lines are guides to the eye
corresponding to a power law with exponent α = 0.96 for sizes and
τ = 1.15 for durations.

results presented in this section for various clip levels from
−0.25 to 0.5.

A. Influence of the experimental conditions on the
statistics of avalanches

In this section the statistics of avalanche sizes and durations
are studied as a function of the experimental controlling
parameters, v and μ, and the observation scale �.

1. Spatially averaged velocities measured at scales larger than �c

Figure 10 shows the evolution of the distributions of sizes
(left) and durations (right) with �, μ, and v (top, middle,
bottom) when the other two parameters are fixed. In all cases
P (S) and P (T ) can be represented by the general functional
form Px(x) = axx

−mx e−x/ξx corresponding to a power-law
distribution with an exponential cutoff.

The power-law exponent for the sizes of the avalanches
is the same irrespective of the experimental conditions or
the window of observation. However, the cutoff of the
distributions, which controls their scaling range, evolves with
the three parameters. The smaller �, μ, or v, the larger
the power-law range. The dependence of the cutoffs on the
controlling parameters can be rationalized in terms of the
ratio �/�c, which provides an estimation of the effective
number of statistically independent domains of the interface
considered to compute V�(t). �c diverges as v → 0 or μ → 0.
When approaching this limit, the correlation length becomes
larger and, therefore, local avalanches occupy a larger fraction
of the window of observation. The bigger the underlying
local avalanches, the larger the extra advancement of the
interface within a given window � and hence the size S of
the global avalanches. Similarly, when V�(t) is computed at
progressively smaller scales �, correlated regions of the front
occupy a larger fraction of the window of observation. We
expect therefore that the sizes of global avalanches will only
depend on the ratio �/�c. This hypothesis will be verified
in Sec. III C.

FIG. 10. Distributions of sizes (left) and durations (right) of the global avalanches for velocities analyzed at � � �c. The top, middle, and
bottom panels show the evolution of the distributions with �, μ, and v respectively when the other two parameters are not changed. The top
panels show the results for � = 136, 34, 17, 12.4, 8.5, and 5 mm and the bottom panels for v = 0.036, 0.053, 0.13, 0.23, 0.35, 0.55 mm/s.
Dashed lines are guides to the eye corresponding to power laws with exponents α = 0.96 for sizes and τ = 1.15 for durations.
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FIG. 11. Distributions of sizes (left) and durations (right) of the global avalanches for velocities computed at � < �c. The top, middle, and
bottom panels show the evolution of the distributions with �, μ, and v respectively when the other two parameters are not changed. The top
panels show results for � = 6.5, 5, 4.3, 3.4, and 2.7 mm, and the bottom panels for v = 0.036, 0.053, 0.13, 0.23, 0.35, 0.55 mm/s. The inset
shows the results for the lowest and highest velocity in the main plot. Dashed lines are guides to the eye corresponding to power laws with
exponents α = 0.96 for sizes and τ = 1.15 for durations and dotted lines a power law with exponent 0.8.

Regarding the distributions of durations, P (T ), they follow
also the same power law at the scaling regime regardless of
the controlling parameters. In this case, however, in contrast
with the distributions of sizes, the cutoffs of the distributions
of durations do not evolve with � and μ, but they do evolve
with v. The cutoffs of the pdfs, which provide an estimation
of the maximum duration of the global avalanches, increase
as v → 0. This reveals that avalanches behave differently in
space than in time. The evolution of the cutoffs is analyzed in
more detail also in Sec. III C.

2. Spatially averaged velocities measured at scales smaller than �c

The evolution of the distributions of sizes and dura-
tions of global velocities computed at scales smaller than
the correlation length are shown in Fig. 11. Distributions
of sizes (left panels of the figure) can be approximated
again by a power law with an exponential cutoff. However,
the value of the exponent α compatible with the data is
now smaller (�0.8). In addition, the distributions show a
small bump near the cutoff before the decay. Those two
observations are signatures of windowed data, i.e., that
local avalanches are cut laterally when the global signal is
computed [27].

The evolution of P (S) with � is tiny but systematic (top
left panel of Fig. 11). The cutoffs are slightly larger at small
windows of observation. The effect of μ and v is more clear
(two other left panels of the figure). The cutoffs increase
when either μ or v decrease. The behavior of the bump of
the distributions is also systematic with the three parameters.
Again, the effect is more evident for small μ and v because �c

is larger; the data are more heavily windowed, and therefore
the bump is more pronounced.

Distributions of durations of the global avalanches are
shown in the right panels of Fig. 11. They can be approximated
also by a power-law distribution with an exponential cutoff.
In this case the (small) scaling regime is compatible with the
value of τ obtained for � > �c. Moreover, the bump observed in
P (S) close to the cutoffs is less clear in these distributions. This
reveals that data windowing affects much less the avalanche
durations. As it happened for � > �c, the cutoffs of the duration
distributions do not evolve with μ and �, but they do evolve
with v. This shows, once again, that the influence of v and μ

on the properties of the global avalanches differs in space and
in time.

In order to avoid spurious effects arising from data
windowing, in the following section, we will consider
avalanches of V�(t) corresponding only to windows of
observation � > �c.
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FIG. 12. Distributions of avalanche sizes for �/�c > 1. Experi-
ments compatible with �/�c = 2 (solid symbols) and �/�c = 10 (open
symbols) are shown. μ ranges from 10 to 350 cP and v from 0.036 to
0.55 mm/s. The dashed line gives a power law exponent α = 0.96.

B. Dependence on �/�c of the distributions of sizes
and durations

Since the fluctuations of V�(t) are controlled by the ratio
�/�c, as shown in Sec. II, it is natural to study the statistics of
avalanches of the signal V�(t) from all experiments together at
windows of observation such that �/�c is constant.

Figure 12 shows the distributions of avalanche sizes for
data corresponding to �/�c = 2 and 10. As expected, all
the distributions show a power-law regime with the same
exponent α. In addition, experiments performed at different
v or μ but analyzed at given �/�c decay exponentially with
a very similar cutoff for large S. The scaling range of the
distributions is controlled by the ratio �/�c: the smaller �/�c

the larger the cutoff ξS . However, tiny differences for different
experimental conditions analyzed at the same �/�c are still
observed.

As for P (T ), shown in Fig. 13, we recover a power-law
distribution with an exponential cutoff. Again, the power-law
exponent does not depend on �/�c. The distributions show no
clear dependence on �/�c, either. However, the cutoff ξT seems
to evolve with the imposed mean velocity. The maximum
duration of the avalanches gets longer when the fluid is injected
more slowly in the system. We will return to the behavior of
the cutoffs in Sec. III C.

FIG. 13. Distributions of avalanche duration for two experimental
conditions: μ = 100 cP and v = 0.051, 0.13 mm/s, for three different
values of �/�c. The line gives a power-law exponent τ = 1.15.

C. Collapse of the distributions and determination
of the power-law exponents

To obtain accurate values of the power-law exponents, we
recompute the statistical distributions of sizes and durations in
terms of reduced variables, as explained in Refs. [28,29].

Figure 14 shows the rescaled distributions of sizes (top) and
durations (bottom) and their respective fits for experiments
analyzed at � > �c. Thirty-four different data sets (μ,v,�) are
considered, showing a remarkable data collapse for both sizes
and durations. Experiments at the highest mean velocities,
v = 0.35,0.55 mm/s for the oil of μ = 50 cP, and experiments
with the oil of largest viscosity, μ = 350 cP, have not been
considered in the data collapse. The distributions in these cases
are dominated by the exponential cutoff, making the method
used to extract α and τ inaccurate. Nevertheless, the exponents
obtained considering these faster experiments or using the
largest viscosity are still compatible with the values shown in
the figure. The power-law regimes are robust and extend for
almost two decades of sizes and durations. However, small
deviations at large values of the variables—where statistics is
poorer—are observed. The error functions ε and their minima
are shown in the insets. From these data collapses we can
extract reliable size and duration exponents:

α = 0.96 ± 0.05, τ = 1.15 ± 0.15.

These values are in excellent agreement with previous re-
sults obtained in the same setup, i.e., α = 1.00 ± 0.15 and

FIG. 14. Data collapse of the probability distributions of sizes
(top) and durations (bottom) of the global avalanches for experiments
analyzed at �/�c > 1. Different symbols correspond to different
viscosities. The best fits to a power law with an exponential cutoff are
achieved with α = 0.96 and τ = 1.15 (solid lines). The insets show
the error of the fits as a function of α or τ .
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FIG. 15. Top: Distributions of avalanche sizes rescaled by Sα for
�/�c = 2, 5, 10, 20. Solid lines are exponential fits of the data for each
�/�c. Bottom: Distributions of avalanche durations rescaled by T τ for
�/�c = 2 and v = 0.052, 0.13, 0.22, 0.35 mm/s. In both cases different
symbols correspond to experiments with different viscosities—we do
not distinguish different v for the same μ. Solid lines are exponential
fits of the data for each v. Insets: Evolution of the cutoff values
obtained from the previous fits with �/�c (top) and v (bottom). Solid
lines are guides to the eye.

τ = 1.25 ± 0.25 [14,30]. They are now determined with
higher precision and, more importantly, they include now
experiments with different oil viscosities, showing that the
scale-invariant picture of the dynamics that emerges from
the previous analysis is very robust. The results also agree
with phase-field simulations of constant flow rate imbibitions,
where α = 1.03 ± 0.05 and τ = 1.10 ± 0.11 were found [31].

Once the the power-law exponents of the distributions
have been extracted, we can obtain the cutoffs ξS and ξT

by considering only their exponential decay. In order to do
so, we fit an exponential function to the distribution P (x)xmx

versus x. The exponential decays of P (S) are displayed in the
top panel of Fig. 15. Distributions for different experiments
(μ,v) are grouped by �/�c, as previously observed in Fig. 12.
Small deviations of the cutoffs are still observed. These small
fluctuations, however, do not evolve systematically with any of

the parameters, indicating that they result probably from lack
of statistics. The functions P (S)Sα are well fitted by a decaying
exponential, from which the cutoffs ξS are obtained. The inset
displays the divergence of ξS [corresponding to an increase of
the power-law range of P (S)] as � approaches �c from above,
revealing that the system becomes more and more critical. The
cutoffs of the distributions of durations are extracted from the
curves P (T )T τ versus T . The bottom panel of Fig. 15 displays
the results for experiments analyzed at �/�c = 2. Distributions
are sorted by the imposed mean velocity. The slower the fluid
is injected, the larger the cutoff. We find that ξT ∼ 1/v, as
shown in the inset.

The evolution with �/�c and v of the mean size 〈S〉 and mean
duration 〈T 〉 of the avalanches parallels the corresponding
evolution of the cutoffs. This allows us to characterize the dis-
tributions without having to specify their actual shape, which
is especially convenient for � < �c, where the distributions
display a bump close to the beginning of the decay. The
comparison of the cutoffs ξS and ξT to 〈S〉 and 〈T 〉 is shown
in Fig. 16. Cutoffs are an upper limit for sizes and durations,
and thus their values are larger than 〈S〉 and 〈T 〉. However,
the evolution of both 〈S〉 and ξS is perfectly compatible with
(�/�c)−1.1 for �/�c � 1. As for the durations, 〈T 〉 and ξT are
both consistent with a scaling 1/v. In addition, these durations
are compared to the time needed to advance a distance �d

(the characteristic size of the disorder) at the imposed mean
velocity, τc = �d/v. Although the cutoffs of P (T ) depend on
the velocity threshold Vc chosen for defining avalanches, they
are of the same order of magnitude than τc. Specifically, for the
value of Vc chosen in Fig. 16 they are equal within error bars.
This reveals that the maximum durations of the avalanches
of the global velocity V� seem to be controlled by the spatial
extent of the disorder.

D. Joint distribution P(S,T )

The distributions of sizes and durations P (S) and P (T )
are the marginal pdfs of a joint distribution P (S,T ).
Figure 17 shows the joint distribution for the rescaled variables
S∗ = S/〈S〉1/(2−α) and T ∗ = T/〈T 〉1/(2−τ ), which depend on
the exponents α and τ previously obtained, for �/�c = 1
and 10 (left and right). In both cases the crest of the joint
distribution follows a power law, limited by an upper and
lower cutoff indicated by the vertical dashed lines. The upper
cutoff reflects the upper cutoffs of P (S) and P (T ). The lower
cutoff is associated with the minimum possible size of a global
avalanche and the discretization of time.

In the scaling regime the most probable values follow
S ∼ T γ . We have obtained γ from a fit of the whole data

FIG. 16. Dependence of the mean
value and the cutoff of the distributions
of sizes (left) and durations (right) on �/�c

and v, respectively. The solid line in the
left panel is a power-law fit to 〈S〉 vs
�/�c down to � = �c. In the right panel,
the experimental values are compared to
τc = �d/v with �d = 0.6 mm.
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FIG. 17. Probability density plots of the joint distribution of
rescaled variables S∗ and T ∗ for �/�c = 1 (left) and 10 (right). Vertical
dashed lines show the scaling regime chosen to extract the power-law
exponent γ . The solid straight lines are the best fits S∗ ∼ (T ∗)γ

(statistical error of the fit quoted in the figure). The probability density
of points increases from the sides to the center.

set. We consider only avalanches within T ∗ = T/〈T 〉1/(2−τ ) ∈
[10−0.9,1] and T > 0.2 s to ensure that Tmin > 10 δt , where δt

is the temporal resolution. The values of γ obtained are given
in the figure. The largest value is obtained when the interface
is averaged over a window of size �c. For larger windows the
value of γ decreases systematically with �/�c. The maximum
variation of measured exponents between �/�c = 1 and 20,
however, is smaller than 10%.

The exponent γ can be related to the exponents α and
τ of the distributions of sizes and durations. Since P (S)
and P (T ) are marginal distributions of the joint probability
distribution P (S,T ), given by power laws P (S) ∼ S−α and
P (T ) ∼ T −τ up to the cutoff scales ξS and ξT , it follows that
τ − 1 = γ (α − 1). This scaling relation is compatible with the
exponents quoted earlier, within error bars. However, since α

and τ are close to 1, the value of γ derived from this scaling
relation is subjected to a very large uncertainty.

IV. DISCUSSION AND CONCLUSIONS

In this work and its companion paper (Part I [20]) we
have studied the spatiotemporal dynamics of stable-imbibition
displacements, driven at constant flow rate, in a laboratory
model of an open fracture. The study has been supported
by large data sets, in which the different roles played by
the mean front velocity v, the dynamic viscosity of the oil
μ, and the lateral size of the window of observation, �,
have been systematically explored [32]. In particular, carrying
experiments with oils of different viscosity but same oil-air
surface tension has allowed us to uncover dynamic properties
of the front that scale differently with v and μ, and therefore
are not simply controlled by the capillary number Ca ∼ μv.

As discussed in Part I [20], fluctuations and lateral correla-
tions of local velocities scale indeed with the capillary number
Ca. However, temporal correlations depend more strongly
on v than on μ, scaling as �H

c /v, where �c ∼ 1/
√

vμ and
H = 0.82(2). This is consistent with the behavior that was
predicted theoretically and observed experimentally for the
duration of the longest-lasting avalanches at local scale [15].

The fluctuations of the spatially averaged velocity, charac-
terized by the probability density function of the amplitudes of
the velocity signal V�(t), are controlled only by the ratio �/�c

(interpreted as the number of effective degrees of freedom of

the invading front, Neff), and hence they scale in the same
way with v and μ and depend only on the capillary number
Ca, as it was the case also for the local velocities. The pdfs of
normalized velocities are increasingly non-Gaussian at smaller
observation scales, reflecting the fact that the signal V�(t) is
a spatial average of a spatially correlated quantity—the local
velocity v(x,t). However, the theoretical reason why the pdfs
are very well represented by generalized Gumbel distributions
with the skewness of the experimental data remains yet an
open question.

As with local velocities, the temporal correlations of V�(t)
scale differently with μ and v. When the invading front is
viewed at scale � = �c, in particular, we have found the
maximum anti-correlation of V�(t) to occur at a time �t∗ ∼
�H

c /v, which corresponds to the same scaling in μ and v that
was observed for the temporal correlations of the local velocity
in Part I [20]. However, when the scale of observation does
not coincide with the lateral correlation length �c, the situation
becomes more complicated. The characteristic anticorrelation
time �t∗ becomes slightly larger when the front dynamics
is analyzed at larger scales. We believe that deviations from
the expected scaling �H

c /v may reflect the presence of lateral
correlations between local avalanches at scales larger than
�c. Large-scale correlations have been predicted theoretically
indeed for constant flow rate displacements, as a consequence
of the global mass conservation per unit time imposed by this
particular driving condition [2].

Our experimental setup has the advantage of providing
access in detail to the front motion at all scales. This contrasts
with other experimental realizations of slowly driven extended
systems with avalanche dynamics, where only a spatially
averaged temporal signal (a crackling noise) can be recorded.

By changing the scale of observation systematically, we
have been able to perform the scale-dependent statistical
analysis of the front dynamics reported in this second paper.
Our results show that the dynamics of stable imbibition
fronts evolve systematically with the observation scale. We
already discussed the evolution of the temporal correlations
of V�(t) with �. Focusing now on the properties of global
avalanches—positive excursions of V�(t) above a prescribed
threshold—we have found that the distributions of sizes S

and durations T follow a power law with an exponential
cutof only for � > �c. The power-law exponents [α = 0.96(5)
for sizes and τ = 1.15(15) for durations] appear independent
of the experimental conditions, but they probably depend
slightly on the scale of observation. Indeed, the exponent γ

characterizing the scaling behavior of the joint distributions
of sizes and durations S ∼ T γ slightly evolves with �/�c.
In order to verify carefully this result, and try to get a
better understanding of this slight evolution, we are currently
analyzing the scaling behavior of the average shape of the
global avalanches, as recently done in the context of the
crackling dynamics of interfacial crack fronts [33]. Such
analysis will allow to go beyond the (simple but subjected
to large dispersions) measurements of power-law exponents
[34]. Additional evidence that the avalanche dynamics of
stable imbibition fronts differs at small and large scales is
provided by the different values of γ and γav, the exponents
characterizing the scaling behavior of the joint distributions of
sizes and durations of global and local avalanches respectively.
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Interestingly, however, the value of the exponent γ measured
at the observation scale � = �c corresponds to the value of the
exponent γav. The upper cutoffs of the distributions of sizes
and durations of global avalanches also evolve through the
scales of observation, but in different way. The maximum size
ξS depends on �/�c, and hence is controlled by the capillary
number, while the maximum duration ξT depends only on v,
the mean velocity of the interface. This last observation points
to the existence of a new relevant length scale in the direction
of front advancement, as discussed below.

To conclude, the ensemble of results presented in the
two parts of this work gives a comprehensive picture of the
dynamics of stable imbibition fronts in open fractures. Spatial
properties are essentially controlled by the effective number
of degrees of freedom of the invading front, through the ratio
�/�c, which involves the lateral scale of observation and the
capillary number of the displacement. Temporal properties,
instead, are related to the direction of advancement of the
front and do not depend simply on the capillary number.

We just mentioned that the maximum duration of global
avalanches depends only on v, pointing to the existence
of a characteristic length scale in the direction of front
advancement. We believe that this new length scale could be
the characteristic linear extent of the disorder patches, �d .
We arrived to the same conclusion in a recent study of the
intermittent properties of V�(t) [17]. However, since �d was not
changed in either study, this possibility remains a conjecture
that will require further investigation.

Another open question is the reason why the power-law
exponents of sizes and durations of global avalanches reported
here are in excellent quantitative agreement with the ones
obtained from phase-field simulations [31]. This is in contrast
with the lack of quantitative agreement between experiments
and phase-field simulations for the distributions of local
avalanches distributions, as discussed in Part I [20]. It looks
as if spatially averaging the front velocities on scales above

the correlation length �c would be sufficient to eliminate
specific features of the local dynamics that might arise from the
particular morphology or extension of the quenched disorder.
To solve this question it seems necessary to change the
properties of the disorder systematically in both experiments
and simulations. We have so far investigated only one single
configuration of the disorder.

The avalanche dynamics of imbibition fronts at increasingly
large observation scales are ultimately a consequence of
the burstlike dynamics at local scale. Interestingly, Laurson,
Santucci, and Zapperi [35] could obtain a theoretical relation
linking the scaling behavior of the clusters of local high
velocity and the global avalanche dynamics of an interfacial
crack front. However, such a relation cannot be used for
the imbibition process studied here. Indeed, the constant
flow rate boundary condition in our experiments imposes a
global mass conservation per unit time of the invading fluid.
This global conservation—obviously not present in the crack
problem—may introduce correlations at large scales (larger
than the characteristic length scale �c). Those correlations
depend moreover on the distance of the front to the inlet (where
the boundary condition applies) [2]. A clear measurement
and characterization of such large-scale correlations will be
an important step in order to establish a theoretical relation
between the scaling behavior of the avalanche dynamics at
different spatial scales. This constitutes also a subject of
current investigation.
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