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Physical origin of nonequilibrium fluctuation-induced forces in fluids
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Long-range thermal fluctuations appear in fluids in nonequilibrium states leading to fluctuation-induced
Casimir-like forces. Two distinct mechanisms have been identified for the origin of the long-range nonequilibrium
fluctuations in fluids subjected to a temperature or concentration gradient. One is a coupling between the heat
or mass-diffusion mode with a viscous mode in fluids subjected to a temperature or concentration gradient.
Another one is the spatial inhomogeneity of thermal noise in the presence of a gradient. We show that in fluids
fluctuation-induced forces arising from mode coupling are several orders of magnitude larger than those from

inhomogeneous noise.
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I. INTRODUCTION

Thermal fluctuations in fluids in nonequilibrium steady
states (NESS) are large and very long ranged [1]. The nonequi-
librium (NE) fluctuations are particularly spectacular in fluids
in the presence of a temperature or concentration gradient.
They arise from a coupling between the heat-diffusion or mass-
diffusion mode and the viscous mode through the convective
term in the fluctuating-hydrodynamics equations. The intensity
of the NE temperature or concentration fluctuations varies
with the wave number g of the fluctuations as ¢, as
predicted theoretically [2-5] and confirmed experimentally
[6-15]. Hence, the NE fluctuations encompass the entire size
of the system [16].

Actually, there are two distinct mechanisms that lead to
long-ranged correlations in NESS. One is the mode-coupling
mechanism mentioned above. Parenthetically, we note that
such mode-coupling terms already play a crucial role in the
dynamical properties of equilibrium fluids both near and away
from critical points [1]. The second mechanism, commonly
considered by other investigators, is one resulting from a
spatial dependence of the thermal noise correlations in the
presence of a gradient [17-25]. In this approach detailed bal-
ance is satisfied locally, but not globally [23,26]. In particular,
this mechanism has been studied in NESS in the simplest
hydrodynamic models with a single conserved quantity. In
contrast to thermal fluctuations from mode coupling, the
intensity of thermal fluctuations from inhomogeneous noise
varies as ¢~2. Thus, while indeed being long ranged, these
NE fluctuations are much less important than the long-ranged
fluctuations from mode coupling.

Earlier, two of us [27] have shown that in the NE
structure factor, experimentally accessible by light scattering
or shadowgraphy [28], the mode-coupling contributions at
any wave number ¢ are orders of magnitude larger than
the contributions resulting from inhomogeneous noise. The
purpose of the present paper is to study the relative importance
of the two mechanisms for long-range correlations in fluids in
NESS in the context of the NE Casimir effect. In some recent
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papers we have evaluated the mode-coupling contribution to
the NE Casimir effect in fluids [29-31]. Subsequently, Animov
et al. [32] have reported a study of the NE Casimir effect in a
simple diffusion model that only had the mechanism of lack of
detailed balance associated with spatial inhomogeneous noise.

In this paper we consider a real fluid system where both
mechanisms are operative. In particular, we shall evaluate both
types of fluctuations in a one-component fluid in the presence
of a temperature gradient. To understand the physical origin of
the various terms that may contribute to the NE pressure, we
note that in general a temperature gradient can cause normal
stresses or pressures, if nonequilibrium thermodynamics is
extended to include nonlinear effects. To frame our purpose in a
more fundamental context, the pressure we are calculating here
corresponds to a nonlinear Onsager-like cross effect causing a
NE pressure induced by a temperature gradient:

(1.1)

Here ki is a kinetic coefficient commonly referred to as a
nonlinear Burnett coefficient [33,34]. As has been discussed
elsewhere [35-38], it is well known that kny, diverges linearly
in the large system size, L, due to long-time-tails effects. To
take this divergence into account we wrote in our previous
publications [29,30] kN as knp = KI(\?I)‘ + KI(\,]IEL, where Kf\?ﬁ is
a bare molecular contribution from short-range correlations.
More generally, we can include other subleading long-range
correlations and write knp as
(=1

KNL
+ I3 +
The ellipsis in Eq. (1.2) indicates terms that vanish faster as
L — oo than those indicated. Substituting Eq. (1.2) into (1.1),
we may write more generally the expected NE pressure as

(=D
e =k QYT + K%(VT)Z +o LV
(1.3)
Actually, we shall see that the subleading terms in Egs. (1.2)
and (1.3) also contain logarithmic corrections, o< In L.
In our previous publications [29-31] we have shown that
mode-coupling effects yield a giant NE fluctuation-induced

pressure png corresponding to the term with coefficient KI(\IIL)

e = knn(VT)2.

0)

KNL = Ky, i\ L. (1.2)

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.93.012148

KIRKPATRICK, ORTIZ DE ZARATE, AND SENGERS

in Eq. (1.3). In this paper we show that the breakdown of
detailed balance associated with the presence of inhomo-
geneous thermal noise yields a subleading contribution in
Eq. (1.3) proportional to ocL~!'In L. Thus for large L the
mode-coupling contribution is much more important than
contributions resulting from the breakdown of detailed balance
from spatially inhomogeneous noise. Physically, the mode-
coupling term, L, arises from NE correlations that grow
linearly with the system size L, while terms ocZ~'In L and
oL =" arise from NE correlations that decay linearly in space.

We shall proceed as follows. In Sec. II we specify the
relationship between the NE fluctuation-induced Casimir-like
pressure and the intensity of the NE temperature fluctuations.
In Sec. Il we review the expressions obtained for the
NE temperature fluctuations from coupling of hydrodynamic
modes in the presence of a temperature gradient. The resulting
fluctuation-induced pressures arising from this mode-coupling
mechanism are discussed in Sec. IV. In Sec. V we derive
the intensity of the NE temperature fluctuations arising from
the spatial inhomogeneity of the local-equilibrium correlations
of the fluctuating heat flux in the presence of a temperature
gradient. We conclude this paper with a comparison between
the two types of NE fluctuation-induced pressures in Sec. VI.
In Sec. VII we conclude that the mode-coupling contribution to
the fluctuation-induced pressures is orders of magnitude more
important than contributions from a lack of detailed balance
due to the inhomogeneity of thermal noise correlations.

II. RELATION BETWEEN NE PRESSURE AND NE
TEMPERATURE FLUCTUATIONS

We consider the pressure p as a function of a fluctuating

mass density p + dp and a fluctuating energy density e + Je:
p(p +ép.e +de) = p(p.,e) +dp, (2.1

where p and e are the local average mass density and energy
density, respectively. We then apply a Taylor expansion up to
terms quadratic in 8p and Se:

ap ap
p(p+dp.e+de)=plp,e)+|— | dp+ |- ) de
ap /, de J ,

1[/d%p 2 a%p
“1(=£) (s 2 8p8
+2[<ap2>e< ") * (apae>”
92 :
+ ap de .
de? 0

The NE enhancement of the temperature fluctuations origi-
nates from a coupling of the heat mode with a viscous mode and
are unaffected by the sound modes [2,3], i.e., with vanishing
linear pressure fluctuations, so that

ad ad
_p 8,0 + _p 86‘ — O,
op/, de /,

ép = —padT,

(2.2)

2.3)

and
2.4)

where « is the thermal expansion coefficient and 87 is the
fluctuation of the local temperature 7. We then substitute
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Egs. (2.3) and (2.4) into Eq. (2.2) and determine the average
NE contribution png to the pressure p:

(pa)* [ (0*p 5 9%p
= — ] —2w
Pe="5"1\502 ), Ipde

82p
- wz(@)p]«smw

o= (5)./ (),

Only the NE temperature fluctuations ((87)?)ng cause a
renormalization of the pressure, because the equilibrium
temperature fluctuations are already incorporated in the un-
renormalized pressure. Taking the pressure as a function of the
conserved thermodynamic quantities p and e in the expansion
(2.2) to identify the NE fluctuation contribution to the pressure
can be shown to be consistent with the mechanical definition
of the pressure in terms of the microscopic stress tensor in
nonequilibrium thermodynamics [30].

With the aid of some thermodynamic relations [39],
Eqg. (2.5) can be converted into

2.5)
with

(2.6)

_1 ~
chp(y )B

57 (8T)*)nE,

PNE 2.7

where, to shorten notation, we introduced the dimensionless

quantity
~ 1 /0 1 /0
acp\ 0T /), a*\3T )/,

while ¢, is the isobaric specific heat capacity and y the ratio of
the isobaric and isochoric heat capacities [30]. An alternative
expression for the NE fluctuation-induced pressure png is
obtained by noting that e = —p~'(dp/d ), = v’l(av/aT)p,
where v is the specific volume, and using (dc,/dT) =
(3%h/d Tz)p, where £ is the specific enthalpy:

o oply—1) 9%h oCy 9%v 2
o252 2(2%) o

2.9)
Equation (2.9) is interesting because of its similarity to the
expression for the NE pressure induced by concentration
fluctuations in a fluid mixture [31].

III. NE TEMPERATURE FLUCTUATIONS FROM
COUPLING OF HYDRODYNAMIC MODES

We consider a fluid layer between two horizontal thermally
conducting plates located at z =0 and z = L subject to
a stationary temperature gradient V7j, where Ty(z) is the
local average temperature which is a linear function of the
coordinate z. In this paper the upper plate at z = L has the
higher temperature, so that for fluids with a positive thermal
expansion coefficient convection is absent for any possible
value of the temperature gradient. The temperature fluctuations
8T = 6T (x,t), which depend on the location r and the time ¢,
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satisfy a linearized fluctuating heat equation:

asT )

where A is the thermal conductivity coefficient and where §J
is a fluctuating heat flux [3,40]. This fluctuating heat equation
differs from the one in thermal equilibrium by the presence of
the term §v - VT which causes a coupling of the temperature
fluctuations with the velocity fluctuations év = §v(r,¢). This
coupling is absent at this linear level in equilibrium. The
velocity fluctuations are to be determined from the linearized
Stokes equation at constant pressure [3,40]:

OV Vv — V8T
E— vV — . ,
o Y n
where 7 is the shear viscosity and §IT a fluctuating stress tensor.
In fluctuating hydrodynamics §J and §T1 are assumed to satisfy
a local fluctuation-dissipation theorem such that [41-43]

(3.2)

(8 (0,1) 81,(¢ 1)) = 2k T2A8;8(r — 113t — 1) (3.3)
and
(8T1;; (r,0)8 Ty (x',t")) = 2k To n(8ikSj1 + 8i8 i)
X8-St —1).  (34)

where kg is the Boltzmann constant.

The fluctuating-hydrodynamics equations (3.1) and (3.2)
have been solved in previous publications. In principle,
all thermophysical properties in these equations depend
on temperature and, hence, on the vertical position z in
the fluid layer, but in practice we approximate them by
their average value in the fluid layer. This approximation
has turned out to be in good agreement with NE light-
scattering experiments [7]. Specifically we approximate Ty(z)
in Egs. (3.3) and (3.4) by the average temperature T,. The
effect of the spatial dependence of 7y(z) on the NE Casimir
pressure will be considered in Sec. V. The temperature
fluctuations should vanish at thermally conducting walls. For
the velocity fluctuations both stress-free and rigid boundary
conditions have been considered [16,44]. For stress-free
boundaries we have been able to obtain an explicit analytic
solution [29]:

2 _ ksToL(VTp)?
(8T @)*)NEme = RroDo(o DT)F(Z) (3.5)
with
Z Z
F(z) = 6Z<1 - Z)’ (3.6)

where Dy is the thermal diffusivity and v =n/p the
kinematic viscosity. The subscript NE,mc indicates that
Eq. (3.5) represents the intensity of NE temperature fluc-
tuations arising from a coupling between hydrodynamic
modes, i.e., from solving the coupled equations (3.1) and
(3.2). The intensity (((ST)Z)NEmC of the NE temperature
fluctuations depends on the vertical location z in the
fluid layer through the function F. We note that the
average intensity of the NE temperature fluctuations is
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given by

1 [t )
((BT)Z)NE,mc = Zﬂ dZ(((ST) )NE,mc
C

DLV
- 487TpDT(l) + DT)

(3.7)

IV. NE FLUCTUATION-INDUCED PRESSURES FROM
COUPLING OF HYDRODYNAMIC MODES

The NE fluctuation-induced pressure png mc is obtained by
substituting Eq. (3.5) into Eq. (2.7):

CpkBTO (]/ — 1) ~ VTO
PNEmc = 967 Dy (v + DT)BF(Z)L< TO > . 4.1)
This fluctuation-induced pressure depends on the position z
in the fluid layer. Mechanical equilibrium requires that any
induced pressure gradient will cause a rearrangement of the
density profile by a NE amount png(z) so as to create a uniform
pressure enhancement pyg. The total pressure is then

P = Deq t+ PNE> (4.2)

where pq is the equilibrium pressure. The fluctuation-induced
NE density profile caused by png(z) is

PNE(z) = —pkr[pre(2) — Pxels 4.3)

where k7 = p~'(dp/dp)r is the isothermal compressibility.
Conservation of mass implies that

L L

/ dz pae(z) = —,OKT[ f d: pNE<z>—LﬁNE] —0, (44)
0 0

so that

L
PNE = l/ dz pne(2), 4.5)
L Jo

which equals the average value of the NE fluctuation-induced
pressure in the fluid layer [29]. We note that Egs. (4.3)—(4.5)
are independent of the boundary conditions for the fluctuations
and independent of the physical origin of the NE temperature
fluctuations.

We conclude that the effective uniform NE Casimir-like
pressure is obtained by substituting Eq. (4.1) into Eq. (4.5):

—2 2

_ cpkgTo (v — 1) ~ (VT
=— " BIL|— ) . 4.6

PNEme = gg - Dy (v + Dy) (4.6)

To

It is important to note that for a fixed value of the temperature
gradient, the NE fluctuation-induced pressure increases with
the distance L. Thus we have recovered the contribution in
Eq. (1.3) proportional to L(VT)? with an explicit expression
for the divergent part /(I(\IIL) of the nonlinear Burnett coefficient
KNL-

Experimentally, it may be more practical to study the NE
fluctuation-induced pressure as a function of the distance L
at a fixed temperature difference AT = LV T between the
plates:

_ okTo (= 1) §<AT>2 @

PNEme = 96 Dr(v+ D) L\ T,
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TABLE 1. Estimated Casimir pressures.

L=10"m =10"%m L=10"m L=10"*m =10"m
Pemt» Eq. (4.8) —10 Pa —1x 1073 Pa —1x 1077 Pa —1x 107" Pa —1x 107 Pa
pe, Eq. (4.9)* +20 Pa +2x 1072 Pa +2 x 107> Pa +2x 1078 Pa +2 x 1071 Pa
PrEmes EQ. (4.7)° +10 Pa +1Pa +1 x 107! Pa +1 x 1072 Pa +1 x 1073 Pa
Pne.in» EQ. (6.6)° —1x 107! Pa —2x 107 Pa —2x 1077 Pa -3 x 1071 Pa -3 x 10713 Pa

20 = +5.5[52,53].
"Water at Ty, = 298 K and AT = 25 K.

Order of magnitude estimates for the NE fluctuation-induced
pressures obtained by substituting the thermophysical proper-
ties of liquid water [45] at 298 K into Eq. (4.7) are presented
in Table I. It is interesting to compare the magnitude of the
NE fluctuation-induced pressures with the magnitude of the
original electromagnetic Casimir pressures penys between two
conducting plates [46] and the Casimir pressures p. induced
by critical fluctuations in fluids [47]:

_ % he @8)
Pemt = =240 L '
where £ is Planck’s constant and c is the speed of light [48].
kB
pe = —5 O(L/8§), 4.9)

where ©(L/£) is a finite-size scaling function with & be-
ing the correlation length of the critical fluctuations [49].
One commonly defines a universal Casimir amplitude ® =
lim,_,o®(x), which however depends on the boundary con-
ditions [50]. For the three-dimensional Ising universality
class with symmetry-breaking boundary conditions (4—),
the experimental value is ®;_ = +6+2 [51]. The most
recent theoretical estimates are ®,_ = +5.42 + (0.04 [52]
and ®,_ = +5.61 £ 0.02 [53]. It is seen from Table I that,
except for distances of the order of 0.1 um, the NE fluctuation-
induced pressures are orders of magnitude larger than either
the electromagnetic Casimir pressures or the critical Casimir
pressures. We note that pyg . Will vary as L~!, while pems
varies as L™ and p. varies as L~> with the distance L.
Hence, the NE fluctuation-induced pressures pyg . should
be observable over a much larger range of distances L than
either pems Or pc. And indeed from Table I we see that
PNE.me at L =1 mm becomes already comparable with pems
at L =1 pum [54] and at L = 0.1 mm comparable with p,
at L =1 um [55-57]. At distances smaller than 0.1 pm,
fluctuating hydrodynamics becomes less accurate and other
short-range phenomena like van der Waals forces need to be
considered.

V. NE TEMPERATURE FLUCTUATIONS
FROM INHOMOGENEOUS NOISE

Recently, an alternative approach for identifying NE
fluctuation-induced pressures has been proposed by Aminov
et al. [32]. They consider a purely diffusion model in which
the NE Casimir forces originate from the local dependence
of the correlation function for the random fluctuations of
the flux in the presence of a gradient. As mentioned in the
Introduction, this mechanism for the appearance of long-range

fluctuations in fluids in NESS has earlier been proposed by
other investigators [17-25]. Aminov et al. [32] determine
NE density fluctuations from a fluctuating mass-diffusion
equation. For our system this approach requires that we should
determine the NE temperature fluctuations from the fluctuating
heat-diffusion equation:

T,

6.
Equation (5.1) differs from Eq. (3.1) by the absence of a
convective term, but the spatial dependence of the amplitude
of the correlation function (3.3) for the fluctuating heat flux
through the dependence of the local temperature 7y(z) on the
position z should now be retained:

(8J:(r,1) 8T,(r' . 1")) = 2kgTH(2)A8;;8(r — r')3(1

7))

Equation (5.1) for the temperature fluctuations has been solved
by two of us in a previous publication [27]. In principle, p, ¢,
and A in Eq. (5.1) also depend on the temperature, but it can be
readily shown that their dependence on the position z is less
important than that of the local temperature 7. From Eq. (17)
in Ref. [27] we find

1) (5.2)

with

To(z) = To[l + (5.3)

kg L(V Ty)? / 4an JO(CIn”H)
_ - 7 d E
ocy 2L2

. (Nmz\ . (N=nZ
x sin [ —— | sin ,
L L

where g is the magnitude of the component of the wave
vector q of the fluctuations in the horizontal XY plane
and where Jy(qr)) is a Bessel function with r| being the
distance between r and r’ in the horizontal XY plane. The
subscript NE,in indicates that these NE fluctuations result from
inhomogeneous noise.

For our present purpose we need the intensity of the tem-
perature fluctuations at the same location r = r’. A problem is
that Eq. (5.4) diverges when r = r’ [27], as was also noticed
by Aminov et al. [32]. The physical reason is that fluctuating
hydrodynamics ceases to be valid at molecular length scales
and we need to separate the fluctuations at long-range
hydrodynamic length scales from molecular fluctuations. For
a complete theory of NE fluctuations one would need to
supplement fluctuating hydrodynamics with kinetic theory for
dealing with short-range fluctuations, but that is outside the
scope of the present paper.

(8T (ST (X))NEin =

(5.4)
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We find it convenient to introduce a dimensionless integra-
tion variable ¢ = g L. Then

2 kg 2
(6T (2)"INE,in = (VTo)" Fne(z) (5.5)
oCp
with
4 (AL > sin? (Nwz/L)
F = — dqq —_—, 5.6
NE(2) 2 /0 Q?C]Niz1 Nirlt 32 (5.6)

where we have retained an upper cutoff wave number A
corresponding to an inverse microscopic length. To evaluate
Eq. (5.6) we first note that [16,58]

i sin’ (Nmz/L)
N
frat Nm*+¢q

1 cosh(g) — cosh[g(1 —2z/L)]

= 4ng sinh(g)

(5.7)

to be substituted into Eq. (5.6). Physically we should not
only retain a molecular cutoff in the integral over the wave
numbers but also in the summation so that N < AL/2w. We
shall take care of this limitation by never letting z or L — 2
become microscopically small. As was shown in Sec. IV, the
z dependence of the NE temperature fluctuations induces a
pressure gradient dpng(z)/dz that causes a NE contribution
ONE(2) to the density profile. In the present case this pressure
gradient will be determined by d Fyg/dz. With a finite cutoff
we can interchange differentiation and integration, so that

dixg 2 /AL . ~sinh[g(1 — 2z/L)] (5.8)
dz L% ), sinh(q) : :
Taking the limit A — oo we obtain [58]
dFng 1
i —ﬁ[é(ll —z/L)—¢(2,z/L] (5.9)
with the generalized Riemann zeta function
= 1
2,x) = —_ 5.10
£(2.x) Ngo Ny (5.10)

Separating out the N =0 term in Eq. (5.10), we rewrite
Eq. (5.9) as

dFNE_|:1 1 }
dz |22 (L —2z)?

1 ~ ~
+5506Q2z/L) =821 —z/L)]  (5.11)

202
with
- <
{(2,x) = 1; TR (5.12)

To obtain Fng(z) we integrate Eq. (5.11) subject to the
appropriate boundary conditions for the fluctuations. Our
description in terms of fluctuating hydrodynamics ceases to
be valid at microscopic distances from the walls and will only
be valid in the interval

no <z< L —no, (5.13)
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where o represents a molecular size and where n > 1. We
thus require that

FNE(I/ZO') = FNE(L - I’lO’) =0. (514)
‘We then obtain
Fs(2) = 17 1 1 n 1 1
NEZ_Z no z L—no L—z
1 z/L - -
+ — dx[¢(2,x) —¢(2,1 —x)] (5.15)
2L Jo

valid in the range given by Eq. (5.14). Differentiation of
Eq. (5.15) indeed reproduces Eq. (5.11), while the boundary
condition (5.13) is satisfied if we neglect terms that vanish as
no/L — 0. We find it convenient to rewrite Eq. (5.15) as

F ()_1 1 1+ 1 1
NEZ_Z no z L—no L—z

1 z/L 1 -
+i[/0 dx_[z/L dxj|§(2,x). (5.16)

Of particular interest in Eq. (5.16) are the terms 1/z and
1/(L — z). From Eq. (5.6) we see that the correlation function
varies in wave-number space as 1/¢>, which would imply
a 1/r decay in real space, if two different space points
were considered. For evaluating the NE pressure we need the
correlation function at a single space point. The walls at z = 0
and z = L break the translational symmetry. This implies that
we should find terms that slowly decay as 1/z and 1/(L — z)
as one moves away from the two walls.

VI. NE FLUCTUATION-INDUCED PRESSURES
FROM INHOMOGENEOUS NOISE

If we substitute Eq. (5.5) into Eq. (2.7), we obtain for the
NE pressure enhancement:

ks To(y — 1)§<VT0

2
> f) Fne(2).

PNEin(2) = 6.1)

As discussed in Sec. IV, to obtain the effective NE pressure
we need to take the spatial average of Eq. (6.1) in accordance
with Eq. (4.5):

_ keTo(y — 1) ~( VIo\*—
PNE.in ) T() NE

(6.2)

with

+ _1/L—"”dF()_11 1 21 L
NE_LM ZNEZ_Zna L Lnna

I
— l/ dx(1 — 2x)Z(2,x)], 6.3)
L Jo
where we have again neglected some terms that vanish as
no/L — 0. The first term in Eq. (6.3) is a molecular contri-
bution independent of L. Upon substituting it into Eq. (6.2) it
gives a contribution to the bare NE pressure with coefficient
KI(\?L) in Eq. (1.3). Kinetic theory should be able to give the
actual finite molecular contribution to the bare coefficient Kf\?ﬁ.
The first two terms in Eq. (6.3) arise from the terms 1/no
and 1/(L — no) of short-range molecular origin in Eq. (5.16);
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they are independent of z and therefore do not yield any
contribution to a NE density profile, i.e., they cancel when the
difference is taken between pne(z) and pyg in Eq. (4.3). The
terms 1/z and 1/(L — z) in Eq. (5.16) account for long-range
fluctuations at hydrodynamic length scales. They will cause a
NE density profile in the fluid just as the critical fluctuations
responsible for the critical Casimir effect lead to a density
or concentration profile [50,55,56,59]. Retaining only terms
that arise from the long-range correlations, we identify the NE
fluctuation-induced pressure as

_ ksTo(y —1) B (VTy\*~
w=—"""""-—|—=1 G, 6.4
pNE,m 2 L T() ( )
where G is a dimensionless quantity:
- = L 1! ~
G=LFng=—In|— | —= [ dx(1—-2x)¢Q2,x)
no 2 Jo

L L
~ —In (—> —0.077 ~ —1In <—> (6.5)
no no

In the last approximate equality in Eq. (6.3) we have used that
as L — oo, i.e., for macroscopic values of L, the leading term
is the logarithmic one. From Egs. (6.4) and (6.5) we see that
that the NE pressure arising from noise inhomogeneity gives a
contribution to the term in Eq. (1.3) with coefficient KI({LI) with
a logarithmic factor.

As discussed in Sec. IV, in practice one may want to study
this fluctuation-induced force as a function of L at a fixed
temperature difference AT = LV Ty between the plates:

_ keTo(y — 1) B ( ATy~
PNE,in = 7 L%( TO ) G. (66)
Unlike the NE pressure (4.7) from mode coupling, the NE
pressure (6.6) from inhomogeneous noise depends on a
molecular cutoff through the term In(L/no) in Eq. (6.5) for
G(z). To get some order-of-magnitude estimates for pyy ;, We
shall in practice approximate the cutoff length by the cube root
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of the molecular volume vy:

no =~ (vy)'/3. (6.7)
Estimated values thus obtained for pyg ;, in liquid water at
To =298 K and AT = 25K are included in Table I. The
NE Casimir pressures from inhomogeneous noise are orders
of magnitude smaller than the NE Casimir pressures from
mode coupling. The physical reason is that in the absence
of boundaries, fluctuations from inhomogeneous noise vary
with the wave number ¢ as ¢~ like critical fluctuations, while
fluctuations from mode coupling vary as ¢ —*. Thus in fluids
NE fluctuations from inhomogeneous noise will always be
negligible compared to those from mode coupling.

VII. CONCLUSION

Long-range NE correlations in fluids cause NE Casimir
effects. First, they establish a NE contribution to the density
profile in the fluid. Second, they induce a NE contribution
to the pressure. In principle there are two mechanisms that
may cause NE fluctuation-induced pressures in fluids, namely,
coupling between hydrodynamic modes and inhomogeneous
thermal noise. Considering a fluid subjected to a temperature
gradient VTj as an example, we have shown that NE Casimir
pressures from mode coupling increase with the distance L as
L(VT,)?, while those from inhomogeneous noise decrease as
L~'In(L)X(V Tp)*. As a consequence, NE fluctuation-induced
forces from mode coupling are orders of magnitude larger than
those from inhomogeneous noise.
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