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Effect of geometrical frustration on inverse freezing
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The interplay between geometrical frustration (GF) and inverse freezing (IF) is studied within a cluster
approach. The model considers first-neighbor (J1) and second-neighbor (J2) intracluster antiferromagnetic
interactions between Ising spins on a checkerboard lattice and long-range disordered couplings (J ) among
clusters. We obtain phase diagrams of temperature versus J1/J in two cases: the absence of J2 interaction
and the isotropic limit J2 = J1, where GF takes place. An IF reentrant transition from the spin-glass (SG) to
paramagnetic (PM) phase is found for a certain range of J1/J in both cases. The J1 interaction leads to a SG
state with high entropy at the same time that can introduce a low-entropy PM phase. In addition, it is observed
that the cluster size plays an important role. The GF increases the PM phase entropy, but larger clusters can give
an entropic advantage for the SG phase that favors IF. Therefore, our results suggest that disordered systems with
antiferromagnetic clusters can exhibit an IF transition even in the presence of GF.
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I. INTRODUCTION

Inverse transitions are interesting and unusual phenomena
that have received considerable attention recently. In such
transformations, the more ordered phase is cooled down into
a disordered one. In systems that present inverse transition,
a subtle balance between energy and entropy can be pointed
to as a fundamental aspect [1,2]. To shed some light on the
key physical elements of this balance, magnetic models have
been used extensively. For instance, mechanisms able to affect
the entropic behavior of phases under consideration can be
relevant to understand possible routes to inverse transitions. It
is known that geometrical frustration (GF) affects strongly the
entropy of magnetic systems [3]. Therefore, GF could be an
important element to consider in the inverse transition study,
but few efforts have been made in this direction. This specific
point motivates the present work, in which the interplay
between inverse transitions and GF is the main subject.

Spin-1 models have been prototypes to study inverse
transitions. For example, Schupper and Shnerb have proposed
that inverse transitions could appear in the Blume-Capel model
when the relation between the degeneracy of the interacting
(Sz = ±1) and noninteracting (Sz = 0) states is tuned [1,2].
In this case, the noninteracting states are energetically favored
by the crystal field D, and the relative degeneracy provides an
entropic advantage to the interacting states. When disordered
spin-1 models are adopted, an inverse transition from the
spin-glass (SG) state to the paramagnetic (PM) phase, called
inverse freezing (IF), can be found. Interestingly, the IF occurs
without requiring this artificial entropic advantage, as shown
by Monte Carlo simulations [4,5], mean-field theory [6–9],
finite connectivity calculations [10], and a scale-free network
[11]. It has been claimed that the presence of frustration caused
by disorder can introduce an entropic scenario that supports the
IF [1,2,4–6]. In addition, disordered fermionic models can also
exhibit IF spontaneously for a certain range of the chemical
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potential μ [12,13]. It is important to remark that the previous
disordered models follow the Sherrington-Kirkpatrick (SK)
type of interaction, where the replica method is used [14].
This leads to precise thermodynamic quantities within the
ordered SG phase only in the full replica-symmetry-breaking
scheme [6]. As an alternative, the van Hemmen SG model in
a fermionic formulation was proposed. This approach avoids
the replica technique and can also lead to the IF [15].

Recently, some Ising spin models have been adopted to
study inverse transitions [16–20]. For instance, IF was found
in a disordered Ising SG model within a cluster approach [19].
The authors consider Ising spin clusters with AF intracluster
interactions and the infinite-range SK type of coupling between
clusters. Intercluster disorder is strongly dependent on the
cluster magnetic moment, and it introduces frustration. Addi-
tionally, the AF interactions favor energetically compensated
clusters, which are against the intercluster disorder. In this
sense, the presence of AF intracluster interactions plays a
similar role to the crystal field in spin-1 models, while the
frustration coming from disorder introduces the complex
entropic scenario to the IF occurrence. Quite recently, this
cluster formulation was considered to study the effect of
GF in the SG stabilization by adopting the J1-J2 model for
intracluster interactions [21]. As a result, the SG phase appears
at a lower strength of disorder, and the IF disappears as the GF
increases. In Ref. [21], GF supports uncompensated clusters
and introduces a high-entropy PM phase at low temperatures.
However, the energetic favoring of uncompensated clusters
could be enough to undermine the reentrance associated with
the IF [19]. Therefore, it raises the following questions: (i)
Is the IF still eliminated when fully compensated moments
are energetically favored in geometrically frustrated clusters?
(ii) How is the entropic behavior of the PM and SG phases
changed by GF mainly close to the phase boundary?

Motivated by these issues, we investigate the effect of GF on
the IF. We consider the checkerboard lattice divided into clus-
ters. The model allows AF intracluster interactions between
first neighbors (J1) and second neighbors (J2), with intercluster
couplings following a van Hemmen disorder [22,23]. This type
of disorder, even lacking the multiplicity of metastable states
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found in the SK model, still retains important fingerprints of
spin glasses, such as the behavior of the susceptibility and the
specific heat as a function of temperature [22]. It is important to
remark that this intercluster disorder can be evaluated without
the replica technique leading to an effective single-cluster
problem solved by exact diagonalization. This means that
the thermodynamic properties within the SG phase, including
the entropy, can be obtained without mathematical difficulties
related to the replica, which is the main reason for using the
van Hemmen disorder in the present study. In addition, the
intracluster interactions can introduce two regimes: an AF
cluster without GF in the absence of the J2 interactions, and the
geometrically frustrated case in which J2 = J1. We study this
problem for several cluster sizes (4 � ns � 20), in which the
cluster shapes always favor a fully compensated moment in the
two regimes of intracluster interactions. Therefore, the entropy
change caused by GF in the context of the IF is addressed in
the present work.

The paper is organized as follows. In Sec. II, we present
the analytical calculation for the disordered cluster approach
in the checkerboard lattice. In Sec. III, we investigate the
IF by considering phase diagrams, entropic behavior, and
intracluster spin-spin correlations. In particular, the interplay
between GF and IF is analyzed in Sec. III B. The final section
is devoted to the conclusion.

II. MODEL

We consider a checkerboard lattice divided into Ncl clusters
with ns spins, which is described by the Hamiltonian

H = −
Ncl∑
ν

ns∑
i,j

Jij σνi
σνj

−
Ncl∑
ν,λ

ns∑
i,j

J νλσνi
σλj

, (1)

where σνi
= ±1 is the Ising spin of site i of cluster ν. The first

term of Eq. (1) corresponds to intracluster interactions. The
second term is a van-Hemmen–like infinite-range disordered
interaction between clusters given by J νλ = J

Nclns
(ξνηλ +

ξλην), where ξν’s and ηλ’s are independent random variables
that follow identical Gaussian distributions with variance 1
[22,24,25]. We can rewrite Eq. (1) as

H =
Ncl∑
ν

Hν
J1−J2

−
Ncl∑
ν,λ

J

Nclns

(ξνηλ + ξλην)SνSλ, (2)

where Sν = ∑ns

i σνi
is the total magnetic moment of the cluster

ν, and

Hν
J1−J2

= J1

ns∑
(i,j )

σνi
σνj

+ J2

ns∑
〈i,j〉

σνi
σνj

(3)

refers to the AF intracluster interactions, where (i,j ) (or 〈i,j 〉)
denotes the sum over first-neighbor (or second-neighbor) spins
in a given cluster.

The intercluster disorder is evaluated within a usual
mean-field treatment, which allows us to express the last
term of Eq. (2) in a separable form with quadratic terms.
Hubbard-Stratonovich transformations are used to linearize
the quadratic terms by introducing fields q1(ξ,η), q2(ξ,η), and
q3(ξ,η). For a particular set of fixed distribution of {ξ,η}, the

partition function is given by

Z(ξ,η) = Tre−βH (ξ,η)

=
∫

Due
−N

[
(q2

3 −q2
1 −q2

2 )

2βJ
− 1

N
ln Tre−βHeff

]
, (4)

where β = 1/T (T is the temperature), Du ∝ dq1dq2dq3, and

Heff =
Ncl∑
ν

{
Hν

J1−J2
− J [ξν(q3 − q1) + ην(q3 − q2)]Sν

}
. (5)

In the thermodynamic limit (Ncl → ∞), the steepest-descent
method is used, which leads to q3 = q1 + q2. The effective
one-cluster problem becomes

Heff = J1

ns∑
(i,j )

σiσj + J2

ns∑
〈i,j〉

σiσj − J (ξ + η)q
ns∑
i

σi, (6)

where

q = q1 = q2 = 1

ns

〈
Tr (ξ+η)

2

∑ns

i σie
−βHeff

Tre−βHeff

〉
ξ,η

(7)

is the SG order parameter and 〈· · · 〉ξ,η represents the average
over the random variables ξ and η. Here, the intercluster
disorder is treated within a mean-field approximation. How-
ever, it is important to remark that the short-range intracluster
interaction is fully preserved, which leads to GF when
J2/J1 = 1.

The free-energy per spin is obtained as

f = Jq2 − 1

βns

〈ln Tre−βHeff〉ξ,η. (8)

The entropy per spin is given by

s = −
(

∂f

∂T

)
= β

ns

〈
TrHeffe

−βHeff

Tre−βHeff

〉
ξ,η

− 1

ns

〈ln Tre−βHeff〉ξ,η, (9)

and the intracluster spin-spin correlation is

〈σiσj 〉ξ,η =
〈

Tr
∑ns

(i,j ) σiσj e
−βHeff

Tre−βHeff

〉
ξ,η

. (10)

III. RESULTS AND DISCUSSION

Numerical results are obtained by computing the single-
cluster problem, given by Eqs. (6) and (7), in a self-consistent
way. We consider clusters with ns Ising spins on a checker-
board lattice with AF J1 and J2 interactions, as shown in
Fig. 1(a). We define r = J2/J1, which is the GF parameter of
the cluster. The SG phase is characterized by the SG order
parameter q �= 0 given by Eq. (7). In particular, a Landau
expansion is used to locate the second-order phase transitions
and the tricritical points, as discussed in the Appendix. The
first-order phase transitions are obtained by comparing free
energies of the PM and SG solutions. The magnetic behavior
of the system with J2 = 0 (r = 0 without GF) is studied in
Sec. III A. In Sec. III B, we analyze the results with GF.
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FIG. 1. Results for clusters without GF (r = 0). (a) Phase diagrams of T/J vs J1/J for several cluster sizes, where the solid and dashed
lines indicate second- and first-order transitions, respectively. Cluster shapes are also presented. (b) Entropy per spin as a function of temperature
for ns = 16. The inset exhibits the entropy as a function of J1/J .

A. Clusters with first-neighbor AF interactions

In Fig. 1(a), a second-order phase transition separates the
PM phase from the SG state when temperature diminishes
for low intensities of J1/J . The increase of J1/J reduces the
critical temperature Tf /J until a tricritical point, in which
the transition becomes first-order. In the first-order region, a
reentrant SG-PM transition appears, which is related to the
IF phenomenon as discussed below. In particular, a second
reentrance can occur at very low temperatures, introducing a
SG ground state. These results indicate that the competition
between AF intracluster interactions and intercluster disorder
can drive to the IF. The J1 interaction contributes to a fully
compensated cluster moment, which is against the disordered
interaction that is favored by a high cluster magnetic moment
(uncompensated clusters). In this sense, the intercluster dis-
order leads to uncompensated clusters. Therefore, intercluster
disorder and intracluster AF interactions cannot be completely
satisfied simultaneously, which could be an additional source
of frustration increasing the entropy of the SG phase.

For instance, the entropic behavior for ns = 16 [see
Fig. 1(b)] helps us to understand the effects of AF interactions
in the SG phase. For J1/J = 0, the entropy goes to zero
when T → 0, which is expected for a canonical SG system
[22]. But in the presence of AF intracluster interactions, the
entropy curve goes toward a finite value as T → 0 inside
the SG phase, as shown in Fig. 1(b) for J1/J = 0.1. It is
important to remark that this residual entropy is caused by
the inability to satisfy the disordered and AF interactions at
the same time. For large values of J1/J , a PM ground state
is found with a residual entropy of S(T → 0) = ln (2) per
cluster. However, for a certain range of J1/J , the increase
of temperature leads the PM system to a SG state. In other
words, the cluster magnetic moments are thermally activated
potentializing the disordered interactions, which can give rise
to a SG state with higher entropy than the low-temperature
PM phase, as shown in Fig. 1(b) for J1/J = 0.145. In fact,
the presence of AF intracluster interactions increases the SG

phase entropy, and, for a sufficiently low temperature, the PM
phase has a lower entropy than the SG one [see the inset of
Fig. 1(b)].

The intracluster spin-spin correlation 〈σiσj 〉ξ,η between first
neighbors can also be used to explain the effect of the AF
interactions (see Fig. 2). In the absence of AF interactions,
this spin-spin correlation within the SG phase is ferromag-
netic, which is a consequence of the uncompensated states
introduced by the intercluster disorder. However, the increase
of J1/J favors AF correlations. Therefore, the competition
between disorder and J1 interactions results in a conflicting
situation that implies spin-spin correlation close to zero and
a high entropy inside the SG phase. On the other hand, the
increase in J1/J can also lead to a PM phase with negative
spin-spin correlation: 〈σiσj 〉ξ,η ≈ −1. These results indicate

FIG. 2. Intracluster first-neighbor correlation as a function of
J1/J for several cluster sizes without GF. The cluster shapes are
the same as in Fig. 1(a).
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TABLE I. Relative degeneracy γ and ground-state entropy per
spin for different ns in the absence of disorder and r = 1. The cluster
shapes are depicted in Fig. 1(a).

ns 4 8 12 16 20

γ 1.667 2.657 3.433 4.092 4.675
s (T = 0) 0.448 0.288 0.241 0.227 0.191

that the low-entropy PM phase is composed of compensated
clusters.

We also investigate the cluster size outcome on the IF
by considering various ns , as displayed in Fig. 1(a). The
SG region is reduced in the phase diagram as ns increases.
Furthermore, the cluster-size growth also leads to a reduction
in the intracluster spin-spin correlation close to the phase
transition, as exhibited in Fig. 2. This means that the increasing
of the cluster size intensifies the effects of J1. We notice that
the second reentrance, at very low temperatures, becomes
less evident as ns increases until it completely disappears
for ns = 20. In this way, the inverse reentrant transition
becomes more pronounced for larger clusters. These findings
are comparable to the results reported quite recently in a
disordered cluster approach [19], in which the IF appears for
a large enough cluster size and becomes more consistent as
ns increases. However, contrary to the present approach, the
SK type of disordered interaction was considered in Ref. [19].
This suggests that our results are qualitatively insensitive to
the choice of randomness.

We propose that the cluster-size effect could be ana-
lyzed by considering a relative degeneracy parameter γ =
ωSν �=0/ωSν=0, in which ωSν �=0 (or ωSν=0) is the number of
uncompensated (or compensated) cluster states. We find that
γ is increased as ns grows (see Table I). Interestingly, in
disordered spin-1 systems with IF, a second reentrance was
also found, but it disappears when the interacting states’

degeneracy is larger than that of the empty ones [6]. Although
we analyze a different model, our results suggest that γ could
be related to the relative degeneracy parameter proposed by
Schupper and Shnerb [1,2] for the disordered spin-1 model.
Thus, the cluster size could play an important role in inverse
transitions.

B. Clusters with geometrical frustration

The presence of antiferromagnetic crossing (J2) interac-
tions introduces GF in the checkerboard lattice. In particular,
for r = 1 the ground state is highly degenerated and con-
strained in such a way that each square with crossings has
zero magnetization [26]. Additionally, the clusters used in our
approach have a fully compensated ground state (Sν = 0) for
r = 1 and J = 0.

The phase diagrams of Fig. 3(a) show that the IF does not
appear for clusters with low ns . The results of Fig. 3(b) indicate
that the presence of intracluster GF leads to a low-temperature
PM phase with higher entropy than the SG one, which prevents
the IF transition for small clusters. To understand the effect of
GF on the entropic content close to the low-temperature phase
boundary, the inset of Fig. 3(b) exhibits entropy as a function
of r for the PM and SG phases. The growth of r increases the
entropy of both phases, which reaches a maximum close to
r = 1. This indicates that the GF affects the SG phase entropy.
In addition, this effect is more pronounced in the PM phase
close to r = 1. In particular, we investigate how the system
with geometrically frustrated clusters is affected by ns .

Interestingly, the increase of ns can bring again a reentrance
[see Fig. 3(a) for ns � 16], in which the SG entropy becomes
higher than the low-temperature PM one [see Fig. 3(b)]. The
cluster-size growth reduces the PM phase entropy (see Table I),
and it also leads to an entropic inversion between the SG and
PM phases close to the transition [see the insets of Fig. 3(b)
for ns = 12 and 20]. This means that the IF could appear in the
geometrically frustrated case for large enough clusters. This

FIG. 3. Results for clusters with GF (r = 1). (a) Phase diagrams of T/J vs J1/J , where solid and dashed lines represent first- and
second-order transitions, respectively. (b) Entropy per spin as a function of J1/J for T/J = 0.07. Insets show the entropy as a function of r at
T/J = 0.07 for the SG and PM phases when ns = 12 and 20. The cluster shapes are the same as Fig. 1(a).
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result corroborates the arguments of Schupper and Shnerb,
who proposed that a larger degeneracy of interacting states
can be a key mechanism for inverse transitions [1,2]. However,
contrary to previous works [1,2,6], here the relative degeneracy
γ is a consequence of the cluster size, and it is not an additional
(and rather artificial) parameter of the model.

IV. CONCLUSION

In summary, we have studied the interplay between GF
and IF by adopting a cluster SG model in the checkerboard
lattice. This approach enables us to tune the GF from the AF
intracluster interactions J1 and J2, while the disorder J comes
from intercluster interactions. We find an IF transition in the
absence of GF. The AF intracluster interactions compete with
the intercluster disorder increasing the SG phase entropy. The
increase of J1 can also introduce a low-entropy PM phase with
compensated clusters. At low temperatures, this PM phase has
a lower entropy than the SG one.

When GF is considered, the IF occurs only for clusters
higher than a critical size (ns � 16). Regardless of the cluster
compensation mechanism, GF increases the entropy of both
phases: SG and PM. This increase is more pronounced on the
disordered phase, which avoids a PM phase with lower entropy
than the SG one at relatively small clusters. We propose that
the cluster size growth leads to an increase in the relative
degeneracy between compensated and uncompensated cluster
states, in such a way that larger clusters can give an entropic
advantage for the SG phase introducing IF. This hypothesis
corroborates with the previous findings for spin-1 systems,
in which the imposition of a relative degeneracy parameter
favors the inverse transitions [1,2,6]. Here, the degeneracy

mechanism is a consequence of the AF disordered cluster
framework. Although we study a specific model, our results
enforce the idea that disordered systems with AF clusters (even
with GF) are candidates to exhibits IF. In particular, we suggest
that this cluster formalism could be a starting point for other
studies of inverse transitions, including, for instance, random
fields and quantum fluctuations.
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APPENDIX: LANDAU EXPANSION

The critical temperature can also be obtained from a Landau
expansion for the free energy in powers of the order parameter
q. Let us expand Eq. (8) through fourth order: f = A0 +
A2q

2 + A4q
4 + O(q6), where

A2 = J

(
1 − βJ

ns

〈S2〉J1−J2

)
(A1)

and

A4 = −β3J 4

2ns

(〈S4〉J1−J2 − 3〈S2〉2
J1−J2

)
, (A2)

where 〈· · · 〉J1−J2 represents the thermal average for HJ1−J2 =
J1

∑ns

(i,j ) σiσj + J2
∑ns

〈i,j〉 σiσj . The second-order PM-SG
phase transition occurs when A2 = 0 with A4 > 0, while the
tricritical point is located when A2 = 0 and A4 = 0.
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