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We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent
resources. Specifically, we consider a generalization of the “phaseonium fuel” for the photonic Carnot engine,
which was first introduced as a three-level atom with two lower states in a quantum coherent superposition
by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003)], to the case of
N + 1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well
as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically.
Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find
that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence
boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of
quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel
phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic
coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the
second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current
resonator technologies.
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I. INTRODUCTION

A practical figure of merit to compare fuel and battery
materials is the specific energy or energy-to-mass ratio [1–3].
As a material constant, it measures the energy that will be
harvested by using a unit mass of the material. About a decade
ago, a highly nontraditional fuel, called “phaseonium,” which
is a three-level atom with two lower states in a quantum
coherent superposition, was proposed to be used in a photonic
Carnot engine (PCE) [4]. A phaseonium engine could work
with a single heat bath and a phaseonium reservoir [4–7]. This
proposal stimulated much interest to quantum heat engines
[8–20]. It was later argued that existing resonator systems
cannot implement such an engine, due to high cavity losses
and atomic dephasing [21]. Here we address a fundamental
question of how the specific energy of phaseonium fuel
is scaled with the number of quantum coherent levels. A
favorable scaling law against decoherence and dephasing could
bring the phaseonium engine closer to available practical
systems.

We describe a multilevel generalization of phaseonium fuel
in Fig. 1. The block-diagonal density matrix ρ of an N + 1
level atom is shown in Fig. 1(a). The excited level, denoted by
“a,” and the lower levels, denoted by “b1,b2, . . . ,bN ,” are well
separated from each other by an energy � measured from the
central lower level bN/2 as shown in Fig. 1(b). The lower levels
can be degenerate or nondegenerate. The diagonal elements
ρaa , and ρbb, with b ∈ {b1,b2, . . . ,bN }, determine the level
populations, while the off-diagonal elements ρbb′ , with b′ �=
b, indicate the coherence between the levels. Coherence can
be characterized by the magnitude and phase of the complex
number ρbb′ .
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Though both the amplitude and the phase of coherent
superposition states can be controlled in experiments [22],
the main control variable for the photonic Carnot engine
is the phase of the coherence as the amplitude is required
to be small enough to keep the system only slightly out
of thermal equilibrium. The complete graphs in Fig. 1(a)
have N nodes and N (N − 1)/2 links, representing the atomic
energy levels and the coherences between them, respectively.
The simplest graph has N = 2 nodes, which is the case of
the original phaseonium proposal [4]. The interplay between
quantum coherence and energy discussed in the photon
Carnot engine [4] revealed that the energy content of the
phaseonium with N = 2 can be optimized at a certain phase
of the coherence. We could envision as if we are considering
more complex, larger, phaseonium molecules with the graphs
having N > 2, corresponding to N + 1 level atom phaseonium
(NLAP).

We can imagine different phaseonium molecules can be
possible for a given atom of unit mass and explore how
the specific energy of the atom depends on the size of the
phaseonium molecule characterized by N . Next to the phase of
coherence, N becomes another control parameter which could
favorably contribute to the enhancement of the specific energy
of the single-atom quantum fuel. For N � 1, the number of
coherences would scale quadratically, ∼N2. If the quadratic
coherence scaling could be translated into the energy content
of the atomic fuel, then we could overcome the cavity losses
for implementation and boost the performance of quantum
Carnot engine for applications. From a fundamental point of
view, such a scaling analysis could reveal a profound difference
of quantum fuel from a classical resource, as such a scaling
cannot exist without quantum coherence. Complete graphs of
phaseonium molecules serve as more than a simple counting of
coherences. They emphasize the generality of our question we
address in the present contribution. Can we beat decoherence
with the scaling advantage of quantum coherent resources?
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FIG. 1. N + 1 level atom phaseonium (NLAP) fuel. (a) Density
matrix ρ and complete graph representations of NLAP. ρ is N + 1
dimensional square matrix. Its coherent block can be represented
by a complete graph with N nodes and S = N (N − 1)/2 links.
Graphs were shown up to N = 5 number of nodes. (b) NLAP for
nondegenerate and degenerate atoms. The excited state is denoted
by a and the lower levels are denoted by bi with i = 1, . . . ,N . The
upper level is well separated from the lower levels by an energy ��

measured from the central lower level bN/2.

We have recently proposed a superradiant quantum Otto
engine [20] where clusters of N two-level atoms prepared
in thermal coherent spin states are used as a quantum fuel.
This engine is also capable to exhibit a similar quadratic
scaling law of work with N ; however, the efficiency is
independent of the temperature and N . Superradiant engine has
no analytical master equation and numerical analysis reveals
that the quantum coherence serves as a catalyst, increasing
the energy injection rate into the photonic working medium
from the atomic clusters. In the case of a photonic Carnot
engine with N -level phaseonium fuel, an analytical master
equation reveals that the quantum coherence serves effectively
as a resource. In superradiant Otto engine, two heat baths are
considered; while photonic Carnot engine is used to explore
harvesting work from a single heat bath. Moreover, Carnot
efficiency depends on the temperature and exhibits quadratic
scaling with the number of levels N . Furthermore, even though
the work output scales quadratically with N for both engines,
specific energy of coherent cluster fuel increases linearly
with the number of atoms N ; while it has quadratic scaling
with the number of coherent levels N of the phaseonium fuel.
The linear increase of the mass of the unit atomic cluster
with the number of atoms degrades the quantum coherent
advantage in the specific energy. A quantum advantage in
the charging power of quantum batteries with the number of
qubits has been examined very recently [23]. Linear scaling of
work with the number of qubits is reported, whereas, due to a
quantum speed up of the operation time, the charging power
scales quadratically [23]. The preparation of phaseonium

FIG. 2. Photonic Carnot engine with N + 1-level atom phaseo-
nium (NLAP) fuel. Photon gas in a high-quality cavity of frequency
� is the working substance and the mirrors of the cavity play the
role of the piston. NLAP leaves the hohlraum at temperature Th and
is subsequently prepared in a state with quantum coherence among
its lower levels characterized by N (N − 1)/2 phase parameters φij

with i,j = 1, . . . ,N . Created NLAPs are repeatedly injected into the
cavity at a rate r in the quantum isothermal expansion process, where
heat Qin is transferred to the cavity. The cycle continues with quantum
adiabatic expansion and quantum isothermal compression and is
completed with a quantum adiabatic compression. An amount of heat
Qout is rejected into the entropy sink in the isothermal compression.

fuel and using it in PCE can be compared to charging and
discharging a single qubit quantum battery with multiple
quantum coherences. Phaseonium fuel or battery allows for
quadratic scaling in harvested work, efficiency, and the specific
energy with the number of quantum coherences. We examined
the charging or preparation cost of the phaseonium battery
and compared it with the harvested work by PCE. Our result
verified that the second law is obeyed in our system.

This manuscript is organized as follows: In Sec. II, we
describe the N -level phaseonium model and PCE system
dynamics. We review and discuss the analytical and numerical
verification of the analytical results in Sec. III. We also estimate
the preparation cost of NLAP in this section. We conclude the
results in Sec. IV.

II. NLAP MODEL AND SYSTEM DYNAMICS

The operation of photonic Carnot engine is described in
Fig. 2. The working fluid of the engine is the photon gas in a
high-quality single-mode cavity of frequency �. The radiation
pressure by the cavity photons applies on the cavity mirrors
playing the role of the piston of the engine. The quantum fuel of
the engine is an NLAP. The quantum Carnot cycle consists of
two quantum isothermal and two quantum adiabatic processes.

In the isothermal expansion, NLAPs are generated and
injected into the cavity at a rate r . The interaction time τ

between an NLAP and the cavity field is short, τ < 1/r , so
only one NLAP can be present in the cavity [24]. Coherences in
NLAP are characterized by N (N − 1)/2 phase parameters φij ,
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with i,j = 1,2, . . . ,N . Coherent superposition states in N + 1
level atom system can be generated by stimulated Raman adia-
batic passage (STIRAP) [25,26], Morris-Shore transformation
[27], or quantum Householder reflection techniques [28,29].
Thermalization of the single atom can be considered relatively
fast and hence the injection rate would be limited by the time
of coherence preparation. The choice of specific technique
of coherence induction depends on the details of a particular
implementation. If the amplitudes of the coherences are much
smaller than the level populations, then NLAP can be assumed
in an approximate thermal equilibrium with a thermal reservoir
(hohlraum) at a temperature Th. During the interaction, the
mean number of photons, n̄, and the cavity temperature
increases; while the expansion cools down the cavity when
there is no atom inside. Repeated injection of NLAPs into
the cavity maintains the cavity field at a temperature Tφ by
transferring a total amount of heat into the cavity as Qin. Tφ

is an effective temperature defined in terms of the steady-state
photon number n̄φ as Tφ = ��/k ln(1 + 1/n̄φ), with k as the
Boltzman constant. It can be higher than Th in the presence of
coherence [4]. The cavity volume, and hence the frequency,
change negligibly, �� � �.

The cycle continues with an adiabatic expansion where the
entropy remains constant and the temperature drops as the �

changes appreciably. The following step is the isothermal com-
pression in which heat Qout is transferred from cavity to a cold
reservoir at a temperature Tc. The cycle is completed by adia-
batic compression where the temperature is raised back to Tφ .

The net work extracted from the cycle is Wnet = Qin −
Qout, where Qin = Tφ(S2 − S1) and Qout = Tc(S3 − S4). The
mean photon number n̄i and the temperature Ti at the
beginning of the i th stage determine the entropy Si by Si =
k ln(n̄i + 1) + ��n̄i/Ti . Using S1 = S4, S2 = S3, T1 = T2 =
Tφ , and T3 = T4 = Tc, we write Wnet = (Tφ − Tc)(S2 − S1).
The efficiency of the engine is defined as η = Wnet/Qin. It
reduces to η = 1 − Th/Tφ . This coincides with the standard
definition of thermodynamic efficiency in Carnot cycle and
used in the original proposal of the phaseonium fuel [4–7] as
well as in the arguments against its feasibility in the presence
of decoherence channels [21]. In order to present results
comparable to the previous works, we calculate the efficiency
as defined by these studies. To avoid any misleading impres-
sions, however, we emphasize that in practical considerations
round-trip efficiency can be more relevant figure of merit. The
round-trip efficiency of the engine should include the cost of
the preparation of the quantum coherent atom; which would
ensure the validity of the second law [7]. On the other hand, it
was noted that the cost of quantum fuel can be expensive [5],
but it is still appealing as it can be used to harvest work from
a single heat reservoir. Our objective here is not to discuss if
such PCEs can be efficient enough for certain applications but
to examine if such devices, proposed in Ref. [4], can produce
positive work in the presence of decoherence by exploiting a
scaling advantage of multiple coherence resources, in contrast
to the negative conclusions of earlier studies [21].

During the adiabatic process n̄ does not change so n̄1 =
n̄4 = [exp(��/kTc) − 1]−1 and n̄2 = n̄φ . These relations re-
veal that work and efficiency of the photonic Carnot engine
can be calculated by determining the n̄φ at the end of the
isothermal expansion stage.

III. RESULTS AND DISCUSSIONS

In order to find the n̄φ , we solve ˙̄nφ =∑n nρ̇nn = 0, where
ρ̇nn = 〈n|ρ̇|n〉. Here |n〉 is the Fock number state for the cavity
photons and ρ is the reduced density matrix of the cavity field.
The equation of motion for ρ can be obtained by tracing the
equation of motion of the complete system over atomic degrees
of freedom

ρ̇nn = − i

�

∑
k

(Trat[Hk,ρk]nn), (1)

where Hk = H0 + Hk
I is the Hamiltonian of the arbitrary

kth atom in the interaction picture relative to the cav-
ity photons, with H0 = �ωa|a〉〈a| + �

∑N
i=1 ωbi

|bi〉〈bi | and
Hk

I = �g
∑N

i=1 |a〉〈bi |âe−i�t + H.c. Here �ωa,�ωbi
are the

energies of atomic states |a〉 and |bi〉, with i = 1 · · · N,g

is the coupling rate between the atom and the field, and â

is the photon annihilation operator. The model Hamiltonian
describes a situation where the N + 1-level atom is coupled to
a single-mode cavity in a fan-shaped transition scheme. A more
realistic model requires consideration of a multimode cavity
coupled to an atom with multiple upper and lower hyperfine
levels [30,31]. Such models can be reduced to an effective
single-mode cavity and multilevel atom interactions [30] or
can be directly described by generalized master equations of
micromasers [32]. Atoms with fan-shaped degenerate level
schemes are also studied from the perspective of generating
large superposition states [25,33]. The central question for us
here is the dependence of work and efficiency on the number
of the superposed quantum states and we will only consider
single upper level and a set of degenerate or nondegenerate
lower levels for simplicity.

Analytically calculating the right-hand side of the Eq. (1),
we find (see Appendix for details)

ρ̇nn = −rg2{Kaρaa[(n + 1)ρnn − nρn−1,n−1]

+
⎛
⎝ N∑

i=1

Kbi
ρbibi

+
∑
i<j

K
φij

ij |ρbibj
|
⎞
⎠

× [nρnn − (n + 1)ρn+1,n+1]}, (2)

where the coefficients Ka, Kbi
, and K

φij

ij depend on the atomic
relaxation rate γ , atomic dephasing rate γφ , and detuning
parameter �i = ωabi

− �, with ωabi
= ωa − ωbi

and ωbibj
=

ωj − ωi , as well as the coherence parameters φij and |ρ0
bibj

|,
by the relations given in the Appendix. Thus, we obtain the
rate of change of average photon number

˙̄nφ = rg2{Kaρaa(n̄φ + 1) − (Rg0 + Rgc
)n̄φ}, (3)

where Rg0 =∑N
i=1 Kbi

ρbibi
and Rgc

=∑i<j K
φij

ij |ρbibj
|.

The equation of motion for the evolution of population ele-
ments in the density matrix coincides with the thermalization
dynamics of a resonator coupled to a heat bath. Accordingly,
the coarse-grained dynamics effectively describes sequence of
NLAP injected into the resonator as a mesoscopic ensemble
of N + 1 level atoms acting as a heat bath. The off-diagonal
elements of the density matrix or the coherences can be kept
vanishingly small to describe the steady-state approximately
as a thermal equilibrium state. The corresponding effective
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temperature can be determined by the modified detailed
balance condition to reach such a quasiequilibrium state in
Eq. (2) which gives

Ka

Rg0 + Rgc

= exp

(−��

kTφ

)
. (4)

The detailed balance between the thermal reservoir at Th and
the photon gas in the resonator is broken but there is a modified
detailed balance between the coherent atomic ensemble and
the resonator photons. Accordingly, the resonator can reach a
thermal equilibrium at a different temperature Tφ than Th.

The steady state of the Eq. (3) yields the average photon
number as

n̄φ = n̄

1 + n̄
Rgc

Kaρaa

, (5)

where n̄ = (Rg0/Kaρaa − 1)−1 is the average photon number
in the absence of coherence. Using n̄φ = [exp(��/kTφ) −
1]−1, we determine the effective cavity temperature as

Tφ = Th

1 + n̄
Rgc

Kaρaa

, (6)

by using high-temperature approximations n̄φ ≈ kTφ/�� and
n̄ ≈ kTh/�� in Eq. (5).

Therefore, the efficiency of the photonic Carnot engine in
the case of NLAP becomes

ηφ = ηc − Tc

Th

n̄
Rgc

Kaρaa

, (7)

where ηc = 1 − Tc/Th is the Carnot efficiency. Note that for
Tc = Th and ηc = 0 but ηφ could have a positive value for
particular values of control parameters φ1,φ2, . . . ,φS . In order
to get further analytical results we will make some simplifying
assumptions.

We focus on degenerate NLAP case to proceed an-
alytically, for which Ea = �,Ebi

= 0,i = 1, . . . ,N,ωabi
=

�,�i = 0,ωbibj
= 0, and Ka = 2N/γ 2. In addition, we

consider phase-locked equal amplitude coherences with
φij = φ and |ρbibj

| = λ. Hence the coefficients in Eq. (2)

become K
φij

ij = 4 cos φ/γ 2,Rg0 = 2NPg/γ
2, and Rgc

=
2N (N − 1) cos φλ/γ γ̄ , and hence Eq. (3) reduces to

˙̄nφ = 2μN [(Pe − Pg + Nξλ)n̄φ + Pe] − κn̄φ, (8)

for N � 1,φ = π , where μ = rg2/γ 2,Pe = ρaa =
exp(−βEa)/Z,Pg = ρbibi

= 1/Z with Z = exp(−βEa) + N .
Here we introduced κ and ξ , with |ξ | < 1, as the decoherence
rate due to the dissipation in the cavity and a phenomenological
decoherence factor due to atomic dephasing, respectively
[21]. While the dephasing factor is phenomenologically
introduced in Ref. [21] we provide its rigorous microscopic
derivation in the Appendix.

Steady-state solution of Eq. (8) yields an effective temper-
ature given by Tφ = Th/[1 + F (Th)] in the high-temperature
limit where

F (Th) = n̄

Pe

(
−Nξλ + κ

2Nμ

)
, (9)

with n̄ = Pe/(Pg − Pe). For small coherence and decoherence
terms in F (Th), an approximate expression can be written for

the effective temperature

Tφ = Th

(
1 + N2ξλn̄ − κ

2μ
n̄

)
. (10)

This result shows that if the reduction of the magnitude
of coherence due to dephasing is slower than the quadratic
increase with N , then the multilevel coherence could be used
to beat the decoherence induced by the cavity dissipation. The
magnitude of coherence λ is limited by the positivity require-
ment of the density matrix as well as the thermal equilibrium
requirement of the cavity field. The former condition requires
|ρbibj

| � (ρbibi
ρbj bj

)1/2 so λ � 1/N for N � 1 as ρbibi
∼ 1/N

for N � 1. Accordingly, one can fix the coherence amplitude
λ as a constant as long as it remains smaller than 1/N for the
range of N values. For a realistic number of levels this is not a
very restrictive condition. More severe limitation on λ is due to
the quasiequilibrium condition of the photon gas. We will take
λ ∼ 10−6 and consider N � 40 in our numerical examinations.
In the classical asymptotical limit of N → ∞ and then λ → 0
as 1/N and hence the quadratic scaling reduces to a linear one
for which the specific energy becomes a constant, as expected
for classical systems. Mesoscopic systems in quantum regime
are therefore necessary to exploit the quadratic scaling in the
specific energy.

We note that the coarse-grained dynamics is designed on
purpose to determine the steady state by rapid convergence
using a numerically efficient dynamical equations. Analytical
solution of the mean photon number dynamics for the
degenerate case and with λ = 0, κ = 0, ξ = 1 gives

n̄φ = n̄ − (n̄ − n̄0)e−t/tth , (11)

where tth = 1/2μN (Pg − Pe) is the thermalization time. We
will first discuss the predicted analytical state states by the
coarse-grained master equation in modern resonator settings
and then examine the exact numerical description of the
dynamics of the system to verify the analytical results in the
subsequent subsections.

A. Analytical results for modern resonator systems

In the high-temperature limit (T � �), the entropy change
in the isothermal expansion stage is �S = k��/� and the
heat input becomes Qin = Th�S. The work output at Th =
Tc is found to be W = Qinη, where η = n̄(N2ξλ − κ/2μ),
respectively. In the superconducting circuit, microwave and
optical resonators, it is estimated that κ/2μξλ ∼ 10 [21].
N2 should be replaced by N (N − 1)/2 for smaller number
of levels. Accordingly, by using five or more level quantum
phaseonium fuel, the working fluid can beat quantum deco-
herence to harvest positive work.

In Fig. 3, we plot the work output and efficiency of
the photonic Carnot engine with degenerate NLAP fuel,
depending on the number of quantum coherent levels. We
consider N -independent as well as N -dependent scaling
models [34] for the decoherence factor and take ξ = exp (−x)
in Figs. 3(a) and 3(b), ξ = exp (−Nx) in Figs. 3(c) and 3(d),
and ξ = exp (−N2x) in Figs. 3(e) and 3(f), where x = γφ/γ

as shown in the Appendix. The plots are given for the circuit
quantum electrodynamics (QED) parameters in Ref. [21]. We
consider larger atomic dephasing rates than the typical values

012145-4



QUANTUM FUEL WITH MULTILEVEL ATOMIC COHERENCE . . . PHYSICAL REVIEW E 93, 012145 (2016)

FIG. 3. Extracted work (W ) and efficiency (η) of photonic Carnot
engine, with N + 1 level atom phaseonium (NLAP) fuel, depending
on the number of degenerate coherent ground-state levels N , for
different decoherence factor models [(a) and (b)] ξ = exp (−x) and
[(c) and (d)] ξ = exp (−Nx). [(e) and (f)] ξ = exp (−N2x), where
x = γφ/γ . Coherence parameter is λ = 10−6 and the initial thermal
coherent atomic temperature is Th = 4 in units of ��/kB . x values
are 0.15, 0.1, 0.05, and 0.001 for (a) and (b); 0.14, 0.12, 0.1, 0.08
for (c) and (d); and 0.012, 0.01, 0.008, 0.006 for (e) and (f) for
the dashed-dotted, dotted, dashed, and solid lines, respectively. The
plots are given for the circuit QED parameters in Ref. [21]. The
quantities g = 0.01, r = 1 × 10−4, κ = 6.25 × 10−4, and γ = 5 ×
10−6, which are the coupling coefficient to the cavity field, atomic
injection rate, cavity loss term, and atomic decay, respectively, are
dimensionless and scaled with the resonance frequency � ∼ 10 GHz.
η is dimensionless, and W is dimensionless and scaled with �.

to demonstrate its limiting effect on W and η. The plots indicate
that even when there is large dephasing, which can increase
with N linearly or quadratically, W and η can retain their
quadratic power law with N up to a critical N .

Similar results are found for the cases of optical and
microwave cavities. We see in Figs. 4(a) and 4(b) and Figs. 5(a)
and 5(b) that when dephasing is independent of N , the work
output and efficiency increases quadratically with the number
of coherent levels. If the dephasing rate is increasing linearly
with N as in Figs. 4(c) and 4(d) and Figs. 5(c) and 5(d), or if it
is increasing quadratically with N as in Figs. 4(e) and 4(f) and
Figs. 5(e) and 5(f), then the work output and efficiency of the
photonic engine is enhanced quadratically with the number
of coherent levels only up to critical N , beyond which the
work output and efficiency decays exponentially due to the
dominating effect of decoherence.

FIG. 4. Extracted work (W ) and efficiency (η) of microwave
resonator photonic Carnot engine, with N + 1 level atom phaseonium
(NLAP) fuel, depending on the number of degenerate coherent
ground-state levels N for different decoherence factors [(a) and
(b)] ξ = exp(−x), [(c) and (d)] ξ = exp(−Nx), and [(e) and (f)]
ξ = exp (−N 2x), where x = γφ/γ . The coherence parameter is
λ = 10−6 and the initial thermal coherent atomic temperature is
Th = 4 in units of ��/kB . x values are 0.1, 0.15, 0.05, 0.001 for (a)
and (b); 0.12, 0.1, 0.08, 0.06 for (c); 0.14, 0.12, 0.1, 0.08 for (d); and
0.012, 0.01, 0.008, 0.006 for (e) and (f) for the dashed-dotted, dotted,
dashed, and solid lines, respectively. The parameters g = 9.21 ×
10−7, r = 6.47 × 10−5, κ = 1.96 × 10−8, and γ = 9.54 × 10−10 are
the atom-field coupling coefficient, atomic injection rate, cavity loss
term, and atomic decay, respectively. They are dimensionless and
scaled with the typical resonance frequency is � = 51 GHz [35]. η

is dimensionless, and W is dimensionless and scaled with �.

B. Numerical verification of the theory

In order to perform a faithful numerical simulation of a
typical setup described in theory, we investigate the injection
process in detail. We assume a regular atomic injection of
Rydberg atoms into a Fabry-Perot cavity [37] with an atomic
interaction time τ with the cavity field and an empty cavity
time τ0 such that 1/r = τ + τ0, where r is the injection rate.
During the time interval τ , the Hamiltonian is

H = ωa|a〉〈a| + �â†â + g

( N∑
i=1

|a〉〈bi |â + H.c.

)
, (12)

while for the time interval τ0, H = �â†â (� = 1 and ωbi
= 0

for degenerate ground-state levels).
We choose injection time 1/r = 1/(Nexκ), where κ is the

cavity decay rate and Nex is the number of atoms kicking the

012145-5



TÜRKPENÇE AND MÜSTECAPLIOĞLU PHYSICAL REVIEW E 93, 012145 (2016)

FIG. 5. Extracted work (W ) and efficiency (η) of optical resonator
photonic Carnot engine, with N + 1 level atom phaseonium (NLAP)
fuel, depending on the number of degenerate coherent ground-state
levels N for different decoherence factors [(a) and (b)] ξ = exp(−x),
[(c) and (d)] ξ = exp(−Nx), and [(e) and (f)] ξ = exp(−N2x), where
x = γφ/γ . Coherence parameter is λ = 10−6 and the initial thermal
coherent atomic temperature is Th = 4 in units of ��/kB . The x

values are 0.15, 0.1, 0.05, 0.001 for (a) and (b); 0.14, 0.12, 0.1,
0.08 for (c) and (d); and 0.01, 0.008, 0.006, 0.004 for (e) and (f)
for the dashed-dotted, dotted, dashed, and solid lines, respectively.
The parameters g = 6.28 × 10−7, r = 8 × 10−5, κ = 2.86 × 10−7,
and γ = 4.68 × 10−8 are the coupling frequency to the cavity
field, atomic injection rate, cavity loss term, and atomic decay,
respectively. They are dimensionless and scaled with the typical
resonance frequency is � = 350 THz [36]. η is dimensionless, and
W is dimensionless and scaled with �.

cavity field in the photon lifetime. The time elapsed when
cavity is empty τ0 can be related to the interaction time such
that τ0 = Nemτ . Thus, we can write 1/r = τ (1 + Nem). Here,
Nem is a factor introduced to measure τ0 in terms of τ so
Nem = 1/(Nexκτ ) − 1.

We solve the master equation by numerical methods and
compare the results with the developed theory. We use the
QuTip package [38] in PYTHON software to solve the master
equation. We perform single atomic injection in two steps.
First step is the atom-cavity field interaction (during τ ) and
the second one is the free cavity field evolution (during τ0).
The master equation for the first step is written under Markov
and Born-Markov approximations as [39]

ρ̇ = −i[H,ρ] + γ

N+1∑
m

L[Lγ
m] + γφ

2

N∑
n

L[Lφ
n ], (13)

where last two terms stand for pure spontaneous emission and
pure dephasing [40–43], respectively. Here L[x] = (2xρx† −
xx†ρ − ρx†x)/2 is a Liouvillian superoperator in Lindblad
form and L

γ
m = |r〉〈αm|,Lφ

n = |bn〉〈bn|. We include an auxil-
iary state |r〉 to the atomic state space to model the decay of the
excited and the lower levels. Presence of |r〉 is not altering the
initial phaseonium state. The auxiliary state is unpopulated
and at the lower level energy. Its use allows for faithful
simulation of the excited state and the degenerate ground-
state (αm = a,b1, . . . ,bN ) decay equations in Eq. (A19). This
decay model is already used in the original master equation
developed for the two-level phaseonium engine [6]. Different
decay models, for example, decay of excited level to the
lower levels are employed for other systems such as many
atom superradiant Otto engine [20] and similar effect of
beating decoherence with scaling up coherence is found.
The present contribution discusses the original photo-Carnot
engine [4] as well as the objection to its feasibility due to
dephasing, phenomenologically described by factor ξ [21].
Our introduction of γ is an additional decoherence channel
not included in Ref. [21]. We have found that γφ can be
analytically expressed in terms of ξ (see Appendix for details).
The microscopical master equation approach describes the
original photo-Carnot engine coarse-grained master equations
both with [21] and without [6] dephasing and generalizes them
to the multilevel case, as our mesoscopic master equation,
Eq. (2), does analytically.

In the second step, cavity decay (κ) is present during the
time interval τ0 in accordance with the key assumptions of
micromaser theory [24] and the corresponding master equation
is

ρ̇ = −i[H,ρf ] + κL[â]. (14)

In Fig. 6, we present the thermalization process of the cavity
field depending on different Nex values by depicting the photon
number versus scaled time. Physical parameters [21] are given
in the figure caption consistent with the Rydberg atoms in
a superconducting Febry-Perot cavity [37]. For low values
of Nex which correspond to large Nem, we have zigzag-like
curves and for high values of Nex we have smoother lines.
The average photon number n̄φ converges to the theoretical
value for Nem = 12 × 103. Thermalization time is much longer
than the convergence rate of coarse-grained master equation
and the microscopic exact method is much more costly
numerically.

In Figs. 7(a) and 7(b), we express the effect of the number
of degenerate atomic ground-state levels N of the coherent
atoms against the dephasing and the cavity loss mechanisms.
Horizontal dotted and dotted-dashed lines are the analytical
values of average photon numbers(n̄φ,n̄) of the no loss case
for each N . In Fig. 7(a) when decoherence channels are
open, average photon number saturates below the analytical
values for N = 2 in accordance with the argument that 2LAP
phaseonium cannot beat decoherence [21]. The average photon
number exceeds n̄ for N = 4 in Fig. 7(b) by keeping all the
other parameters the same. Thus, we show that the decoherence
can be beaten by using higher N . To make the effect more
visible in the figures, we take larger coherence magnitude,
λ = 10−3.
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FIG. 6. Time evolution of average photon number during ther-
malization process of PCE field while regular injection of 2LAP
depending on different Nex parameters. Nex values are 4500, 1500,
150, 100, and 50 in decreasing order for the upper to lower curves,
respectively. The coherence parameter is λ = 10−3, the initial field
temperature Tf = 1, and the temperature of the thermal coherent
atoms is Th = 2 in units of ��/kB . The resonant field frequency is
� = 51 GHz, cavity quality factor is Q = 2 × 1010, atom cavity field
interaction time is τ = 10 μs, atom decay rate is γ = 33.3 Hz, atom
dephasing rate is γφ = 3.3 Hz, and the atom cavity field coupling is
g = 50 kHz. Time is dimensionless and scaled with �.

We also compare the consistency of effective field
temperature Teff, harvested work (W ), and efficiency (η) versus
N in Fig. 8 between developed analytical and numerical
results when dissipation channels open. We observe a good
consistency between numerical and theoretical results in
steady state.

C. Preparation of the NLAP and its energy cost

Typical methods to generate quantum superposition states,
such as pulse area, adiabatic passage, or STIRAP techniques
[25,26], utilize optical pulses interacting with the atomic
system to transfer an initial atomic state to a target one. The
initial and target quantum states are known and hence one can
easily determine the required unitary transformation between
them. Physical implementation of the required propagator
is, however, a much more challenging problem than the
calculation of the transformation matrix. An efficient strategy
to synthesize the transformation matrix is to decompose it into
a product of matrices, representing interacting steps that can
be implemented by using optical pulses coupled to the atom.

Let us briefly describe a few more details of the physical
implementation of the transformation matrix that we shall
consider (see Refs. [28,29] and the references therein). The
atom consists of N degenerate ground states coherently
coupled to a common excited ancilla state by resonant or nearly
resonant pulsed external laser fields in a fan shaped N -pod
transition scheme. The temporal profiles and the detunings
from the atomic resonance of the pulses are the same; but their
amplitudes and the phases can differ. Nonzero detuning allows
for a more general transformation matrix. Using femtosecond
pulses is advantageous to eliminate population losses and to
reduce decoherence effects on such short interaction times;

FIG. 7. Comparison of time evolution of average photon number
in presence of thermal and coherent atom injection with N = 2 (top
figure) and N = 4 (bottom figure). The horizontal dashed and dashed-
dotted lines stands for the analytical n̄φ and n̄ values in absence of loss
mechanisms. Solid and dotted lines stands for time evolution of n̄φ

and n̄, respectively, in presence of dissipation channels. Nex = 4000
for both subplots corresponding to τ0 = 90 μs. Insets magnifies the
lines between �t = 600 and �t = 800. All the remaining parameters
are the same with that of Fig. 6. Time is dimensionless and scaled
with �.

besides, pulse shapes and areas can be controlled to a high
degree of accuracy. It is sufficient to use a few tunable
lasers and split their fields using beam splitters to further
ensure identical pulse profiles, which are typically hyperbolic
secant or Gaussian. Polarizers can be used to selectively
couple atomic states to the laser fields. An interaction step
is achieved by simultaneously coupling N coincidence pulses
in fan-shaped transition scheme to the N + 1-level atom. This
is repeated sequentially by the train of set of laser pulses. The
process ends when the initial state is navigated into the target
state by the product of the propagators of interaction steps.
Relative to other pulse area or adiabatic transfer schemes,
which require N2 operations, the coincidence pulse technique
needs fewer, N , operational steps.

An arbitrary N dimensional unitary matrix U(N ) can be
decomposed into so-called N -generalized quantum House-
holder reflection (QHR) matrices or N − 1 standard QHRs
and a phase gate [28,29]. A generalized QHR is defined by

M(ν; φ) = I + (eiφ − 1)|ν〉〈ν|, (15)
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FIG. 8. Comparison of numerical results (black circles) with
developed theory (solid line) of efficiency η (top figure), harvested
work W (inset), and effective field temperature Teff (bottom figure),
respectively, depending on the number of degenerate ground-state
levels N . Nex = 12 × 103 and corresponding τ0 = 2.01 μs. All the
remaining parameters are the same as in Fig. 6. η is dimensionless,
Teff and W are dimensionless and scaled with �.

where I is the identity operator and the |ν〉 is the normalized
column vector with dimension N , the same with the number
of the pulses, and φ is an arbitrary phase factor. The
decomposition of U(N ) in terms of generalized QHRs can
be written as

U = M(ν1; φ1)M(ν2; φ2) . . . M(νN ; φN ). (16)

For φ = π , Eq. (15) reduces to M = I − 2|ν〉〈ν|, which
is the standard QHR. The interaction represented by each
Householder matrix can be described by a propagator which
can be determined by the Morris-Shore transformation [27].

Our N+1 level atom coupled to N optical pulses in a
fan-shaped transition scheme, or so-called N -pod model,
is a generic model that is used to discuss generation of
arbitrary multilevel superposition states. Under the Morris-
Shore transformation, the lower levels of the atom are grouped
into a single bright level coupled to an effective single pulse
and N − 1 dark levels uncoupled from the optical pulses.
The propagator is then easily determined in this Morris-Shore
basis. Back-transformation to the original basis gives the full
propagator or the generalized QHR matrix. Both the number
of QHR steps and the number of pulses used in each step are

in the order of N , and therefore the total number of pulses to
be used to generate the target state would be in the order of
N2. This shows that the energetic cost of preparation of the
target state scales with N2, same with the work and efficiency
scaling in the corresponding photonic Carnot engine.

The preceding discussion is applicable to the case of mixed
states as well, for which the normalized vectors of generalized
QHRs are defined as [28]

|νi〉 = 1

e−iφi − 1

√
2 sin (φ/2)

|1 − uii | (|ui〉 − |ei〉). (17)

Here ui is the i th column of U(N ),|ei〉 = [0, . . . ,1ith, . . . ,0]T

and φ is an arbitrary phase where φi = 2arg(1 − uii) − π .
It is shown that for an N -pod system any standard QHR
M(ν) can be realized by single pulses with an rms pulse
area A = 2π [29]. The corresponding unitary transformation
can only link the mixed states with the identical dynamical
invariants. In our case we consider initial thermal states out of
a hohlarum transformed to a final state with small coherences.
The initial and final states would then possess different
spectral decompositions so they cannot be unitarily connected.
A resolution to this is suggested to exploit decoherence
channels such as spontaneous emission or pure dephasing in
combination with the unitary transformation [28,29]. We will
not follow this route but use an alternative, which allows for
a fully unitary procedure to generate desired coherences. As
the coherences contribute additively, to exploit their scaling
advantage we do not need an exact state but an approximate one
would be sufficient. Accordingly, we can simply consider an
approximate approach and do not specify an exact value for the
coherences. We only need to keep them small enough to ensure
slightly out of thermal equilibrium final state. We illustrate our
strategy for N = 2 case and suggest that in principle larger
NLAP can be generated by straightforward extension of this
technique. Unitarity of our procedure also makes the details
of generation process immaterial for the cost estimation. The
cost would be the same for other unitary equivalent processes
to generate same states.

The initial state of the atom from the hohlarum at Th is the
thermal density matrix

ρth = 1

Z
e−βH =

N+1∑
n=1

Pn|�n〉〈�n|, (18)

where β = 1/kBTh is the inverse temperature (kB = 1)
and Z = Tre−βH is the partition function, with H =∑N+1

i=1 �ωi |i〉〈i| being the atomic Hamiltonian. Taking N = 2
and Th = 2, we find ρth = diag(0.327,0.384,0.384). Target
density matrix ρc is taken to be

ρc =
⎛
⎝0.327 0 0

0 0.384 0.000001
0 0.000001 0.384

⎞
⎠, (19)

where the off-diagonal elements between degenerate
ground-state levels are taken real and much smaller than
the diagonal elements that are equal to those of the ρth. The
initial and final density matrices have distinct dynamical
invariants in their spectral decompositions and hence they
cannot be linked by a coherent evolution. Let us assume,
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however, an approximate link such that ρc ≈ UρthU†. The
unitary transformation U can be determined from the matrix
that diagonalize ρc and found to be

U =
⎛
⎝1 0 0

0 −0.707 0.707
0 0.707 0.707

⎞
⎠. (20)

Writing ρ̃c = UρthU†, the fidelity between ρc and ρ̃c is
determined by F(ρc,ρ̃c) = |T r

√√
ρcρ̃c

√
ρc|2 and found be

F(ρc,ρ̃c) � 1. Thus, Ũ can be approximately be used as
the unitary operator linking the initial and the target density
matrices.

Ũ can be synthesized by using two standard QHRs and a
phase gate as

Ũ = M(ν1; φ1)M(ν2; φ2)M(ν3; φ3), (21)

where φ1 = φ2 = φ3 = π and M(ν3; φ3) = �(0,0,�3) is a
one-dimensional phase gate. By using Eq. (17) one finds
the normalized column vectors to be |ν1〉 = [0,0,0]T ,|ν2〉 =
[0,0.924, − 0.383]T . The example for N = 2 here illustrates
the basic principles to generate arbitrary NLAP. One can use
N pulses for each N − 1 standard QHRs and a phase gate
to synthesize a unitary transformation matrix, which is the
diagonalization matrix of a quasiequilibrium thermal state at
Th with small coherences. When the pulses applied to the
actual atom out of hohlarum at Th, the final state will be
approximately the same with the target state used to determine
the properties of the pulses.

We can now estimate the energy cost Uc of generating ρc

using Uc = N2Up, where N2 is the total number of pulses used
in the QHR technique and Up is the energy of a single pulse.
Up can be determined from the pulse area A as in Ref. [20].
For a square pulse of duration τp and amplitude Ep we have
A = dEpτ/�, where d is the magnitude of the dipole moment

d =
√

3πε0�c3γ

�3
, (22)

where ε is the vacuum permittivity and c is the speed of light.
Taking the pulse area A = 2π we find

Ep = 2π�

τp

√
�3

3πε0�c3γ
. (23)

The intensity of the pulse is given by Ip = cε0|Ep|2/2. The
pulse energy in a beam of radius rb can be estimated by Up =
πr2

b Ipτp. Using � = 2πc/λ and ζ = λ/2πrb, where λ and
ζ are the wavelength of the optical field and the radial beam
divergence, respectively, we find

Up = ��
π2

6

1

τpγ

1

ζ 2
. (24)

Taking 1/τpγ ∼ 2 and ζ ∼ 0.5 [20], we find Up ∼ 12��.
The total energy cost to reach steady state per cycle

is Uss = mUc = mN2Up, where m = r�ts . Here m is the
number of atoms needed for thermalization, r is the injection
rate, and �ts is the time elapsed to reach the steady state. In
our results we have found that the harvested work per cycle
is much less than the resonance energy, W � ��, thus the
generation cost of NLAP fuel is several orders of magnitude

larger than the harvested work Uss � W , which confirms that
the second law of thermodynamics obeyed in a photonic Carnot
engine with NLAP. The generation cost is not included in the
thermodynamic efficiency but it can be a significant figure
of merit in the round-trip efficiency. To make such photonic
Carnot engines more appealing for certain applications, it is
necessary to increase their round-trip efficiency as well. For
that aim one could consider the cases of larger compression
ratios (�� � �) and high operation temperatures (kBTh �
��). Our focus here is on the discussion if such engines can
operate under decoherence. Despite the negative conclusions
for a two-level phaseonium case [21], we have found that
larger phaseonium fuel allows for operational photonic Carnot
engines. The question of how to increase their round-trip
efficiency requires further analysis which is beyond the scope
of present contribution.

IV. CONCLUSIONS

Summarizing, we examined scaling of work and efficiency
of a quantum heat engine with the number of quantum
resources. Specifically, we considered a photonic Carnot
engine with a multilevel phaseonium quantum fuel. We derived
a generalized master equation for the cavity photons, which
forms the working fluid of the engine, and determined the
steady-state photon number to calculate the work output and
thermodynamic efficiency. We find that they scale quadrati-
cally with the number of quantum coherent levels N .

The role of the quantum coherence in multilevel phaseo-
nium fuel is the same as the original two-level phaseonium
proposal [4]. It breaks the detailed balance between the
heat reservoir and the cavity field. A modified detailed
balance condition can be established between an effective
heat reservoir, at an effective higher temperature than the
physical heat reservoir, and the cavity field. Accordingly,
the resonator field can reach a quasithermal equilibrium at
a higher temperature than the heat reservoir. This allows for
operating a Carnot cycle using a single heat bath, and an
atomic coherence reservoir, which could be seen as an apparent
violation of the Carnot bound. However, the energetic cost
of coherence preparation as well as the modified detailed
balance condition ensure that the thermodynamical laws are
not violated. Our generalization of N level phaseonium fuel
reveals that quantum coherent contribution to the heat reservoir
temperature scales quadratically with N , which is translated
into quadratic scaling of the specific energy of the multilevel
phasenonium fuel with the number of coherent levels.

We examined the case of degenerate levels to get analytical
results and to examine scaling laws against decoherence due to
cavity dissipation and atomic dephasing. We verified our ana-
lytical results with detailed numerical methods and have shown
consistency of coarse-grained analytical results with the micro-
scopical numerical approach. Generation of multilevel phaseo-
nium fuel using a Morris-Shore transformation-determined
quantum Householder reflection technique as well as its cost
are examined. Using typical parameters in modern resonator
systems, such as circuit QED, our calculations reveal that
decoherence due to cavity dissipation could be overcome by
the multilevel quantum coherence even in the presence of a
large dephasing rate. If the dephasing rate increases with N ,
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then work and efficiency can still overcome the decoherence
and retain their N2 scaling up to a critical number of coherent
levels.
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APPENDIX

We generalize the micromaser mesoscopic master equation
treatment [6] applied for a three-level phaseonium engine [4]
to a multilevel case. In the NLAP model, the Hamiltonian
of the whole system is H = H0 + Hk

I where label k implies
an injected kth arbitrary atom. We adopt the notation of
Ref. [44] for the Hamiltonian and relevant quantities. Here
H0 = �ωa|ak〉〈ak| + �

∑N
i=1 ωbi

|bk
i 〉〈bk

i | and

Hk
I = �g

N∑
i=1

|ak〉〈bk
i |âe−i�t + H.c. (A1)

in the interaction picture where ω1,ωbi
are atomic energy

levels, g is the atom-field coupling coefficient, and � is
the single-mode cavity frequency. Here we assume all levels
coupled to the excited one with the same coefficient g. The
equation of motion of overall system is

ρ̇ = − i

�
[H,ρ] + LA[ρ] + Lf [ρ], (A2)

where LA[ρ] and Lf [ρ] are the Liouvillian superoperators
expressed in the main text corresponding to atomic and field
degrees of freedom, respectively.

The equation of motion of the radiation field which is the
working substance of the heat engine can be found by tracing
out the atomic part as

ρ̇nn = − i

�

∑
k

(Trat[Hk,ρk]nn)

+ TratLA[ρ]nn + TratLf [ρ]nn, (A3)

where ρ̇nn = 〈n|ρ̇|n〉. Here [H,ρ]nn = 〈n|(Hρ − ρH )|n〉 =∑
m〈n|H |m〉〈m|ρ|n〉−∑m〈n|ρ|m〉〈m|H |n〉=∑m(Hnmρmn−

ρnmHmn). In micromaser theory, due to the short atom-cavity
interaction time, the last term, the cavity decay, is usually
ignored when the atom is inside the cavity. The second term
is treated perturbatively and will be considered for zeroth
order in g. Here we will keep it but assume it can be treated
independently. One may write the partial trace operation over
atomic degrees of freedom for a random single atom as

Trat[H,ρ]nn =
∑

α

〈α,n|[H,ρ]|α,n〉

= 〈an|[H,ρ]|an〉 +
N∑

i=1

〈bin|[H,ρ]|bin〉, (A4)

where α are the atomic basis as expressed on the right-hand
side. Each term of Eq. (A4) can be calculated by using the
selective rules of the Hamiltonian between certain levels n and

m; for instance, by inserting it for the first term of Eq. (A4) we
have

〈an|[H,ρ]|an〉 = 〈an|(Hρ − ρH )|an〉
=
∑
α′m

{〈an|H |α′m〉〈α′m|ρ|an〉

− 〈an|ρ|α′m〉〈α′m|H |an〉}
=
∑
α′m

{Han,α′mρα′m,an − ρan,α′mHα′m,an}.

(A5)

HI is the Hamiltonian Eq. (A1) to be inserted into Eq. (A5)
which can be written as

HI = �gR̂+âe−i�t + �gR̂−â†ei�t , (A6)

where R̂+ =∑N
i=1 |a〉〈bi | and R̂− = R̂

†
+. Expressing the terms

of Eq. (A5) conveniently, we write

(R̂+)aα′ = 〈a|(|a〉〈b1| + · · · + |a〉〈bN |)|α′〉
= (δb1α′ + · · · + δbN α′ ) (A7)

and (R̂−)aα′ = 0. Besides, ânm = 〈n|â|m〉 = √
m〈n||m −

1〉 = √
mδn,m−1. Substituting these terms into the first

part of Eq. (A5) we have
∑

α′m{Han,α′mρα′m,an} =
�ge−i�t

√
n + 1(ρb1n+1,an + · · · + ρbN n+1,an). The second part

of Eq. (A5) is simply the complex conjugate. Hence the first
term of Eq. (A4) is

〈an|[H,ρ]|an〉 = �ge−i�t
√

n + 1
∑N

i=1 ρbin+1,an − c.c. (A8)

The second term of Eq. (A4) would be calculated by
similar considerations. We can write 〈bin|[H,ρ]|bin〉 =∑

α′m{Hbin,α′mρα′m,bin}. In this case (R̂+)biα′=0,(R̂−)biα′=
〈a||α′〉 = δaα′ , and â

†
nm = 〈n|â†|m〉 = √

m + 1〈n||m + 1〉 =√
m + 1δn,m+1. Then 〈bin|[H,ρ]|bin〉 = �gei�t

√
nρan−1,bin

− c.c. and, finally, the second term of Eq. (A4) becomes

N∑
i=1

〈bin|[H,ρ]|bin〉 = �gei�t
√

n

N∑
i=1

ρan−1,bin − c.c. (A9)

Inserting these results into Eq. (A3) and after some rearrange-
ments we have the field equation of motion,

ρ̇nn = −g
∑

k

{(i√n + 1e−i�t

N∑
i=1

ρk
bin+1,an

−i
√

ne−i�t

N∑
i=1

ρk
bin,an−1) + c.c.} + Lf [ρf ]nn. (A10)

We use ρf ≡ ρ hereafter for simplicity. Here

Lf [ρ]nn = 〈n|κ
2

(2âρâ† − ρâ†â − â†âρ)|n〉
= κ{(n + 1)ρn+1,n+1 − nρnn}. (A11)

In order to proceed with the calculation, any single term
in the summation of Eq. (A10) should be calculated and
inserted therein. The terms can be obtained by the integration
of corresponding equation of motions by using the selecetive
rules of the Hamiltonian as expressed above. We evaluate the
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atomic equation of motion at zeroth order in g first, and we
have

ρ̇A = − i

�
[HA,ρA] + γα,α′

∑
α,α′

L[Lα,α′ ] + γφ

2

∑
i

L[Lbi,bi
],

(A12)

where Lα,α′ = |α〉〈α′| and Lbi,bi
= |bi〉〈bi |. The final two

terms of Eq. (A12) correspond to LA[ρA] with α′ �= α and

i = 1, . . . ,N . Here α = {a,b1, . . . ,bN } and γα,α′ is taken equal
to γ for simplicity. Note that the atomic part of the master
equation is for the case of pure dephasing and relaxation and
we follow the usual assumption of micromaser theory [24] that
cavity decay and atomic dynamics can be separately treated.
When the atom is inside the cavity, decay is not included.

The equation of motion of the i th term of the first summation
of Eq. (A10) for a single atom is

ρ̇bin+1,an = −ig
√

n + 1ei�t {ρan,an − (ρbin+1,b1n+1 + · · · + ρbin+1,bN n+1)}. (A13)

Here we have neglected the the matrix element 〈bin + 1|Lf [ρ]|an〉 in accordance with the assumptions indicated above. The
equation of motion for ρbin,an−1 which is the i th term of second summation of (A10) could be obtained by simply replacing
n → n − 1 in Eq. (A13), that is,

ρ̇bin,an−1 = −ig
√

nei�t {ρan−1,an−1 − (ρbin,b1n + · · · + ρbin,bN n)}. (A14)

Therefore we obtain the ρbin+1,an and ρbin,an−1 terms by integrating Eqs. (A13) and (A14) formally in the following forms:

ρk
bin+1,an = −ig

√
n + 1

∫ t

tk0

dt ′e(iωabi
−γ )(t−t ′)ei�t ′{ρk

an,an − (ρk
bin+1,b1n+1 + · · · + ρk

bin+1,bN n+1

)}
, (A15)

ρk
bin,an−1 = −ig

√
n

∫ t

tk0

dt ′e(iωabi
−γ )(t−t ′)ei�t ′{ρk

an−1,an−1 − (ρk
bin,b1n

+ · · · + ρk
bin,bN n

)}
. (A16)

The terms of Eqs. (A15) and (A16) can be factorized to atomic and field density matrices for the zeroth-order solution in g. For
instance,

ρk0
αn,αn(t ′,tk0 ) = ρk0

α,α(t ′,tk0 )ρn,n(t ′), ρ
k0
αn+1,αn+1(t ′,tk0 ) = ρk0

α,α(t ′,tk0 )ρn+1,n+1(t ′), (A17)

ρ
k0
bin,bj n

(t ′,tk0 ) = ρ
k0
bi ,bj

(t ′,tk0 )ρn,n(t ′), ρ
k0
bin+1,bj n+1(t ′,tk0 ) = ρ

k0
bi ,bj

(t ′,tk0 )ρn+1,n+1(t ′). (A18)

Here ρk0
α,α and ρ

k0
bi ,bj

, which are the initial atomic density matrix elements, obey the respective atomic equations of motion,

ρ̇k0
α,α(t ′,tk0 ) = −γρk0

α,α(t ′,tk0 ), ρ̇
k0
bi ,bj

(t ′,tk0 ) = −(iωbibj
+ γ + γφ)ρk0

bibj
(t ′,tk0 ), (A19)

in which the solutions are

ρk0
α,α = e−γ (t−tk0 )ρk0

α,α(tk0 ,tk0 ), ρ
k0
bi ,bj

= e
−(iωbi bj

+γ̄ )(t−tk0 )
ρ

k0
bi ,bj

(tk0 ,tk0 ), (A20)

where γ̄ = γ + γφ . Equations (A19) and (A20) imply that excited- and ground-state levels decay to a lower level. The off-diagonal
elements of the atomic density matrix are equal to ρ

k0
bi ,bj

(tk0,tk0 ) = |ρ0
bi ,bj

|eiφij . The eiφij is assigned with the coherence preparation.
Thus, we can express Equations (A15) and (A16) by using zeroth-order atomic Equations (A18)–(A20) to find first order solutions
in g,

ρk
bin+1,an = −ig

√
n + 1

∫ t

tk0

dt ′e(iωabi
−γ )(t−t ′)ei�t ′ {e−γ (t ′−tk0 )ρaaρnn − e−γ (t ′−tk0 )ρbibi

ρn+1n+1

−
∑
i �=j

e
−(iωbi bj

+γ̄ )(t−tk0 )|ρ0
bi ,bj

|eiφij ρn+1n+1}. (A21)

Likewise,

ρk
bin,an−1 = − ig

√
n

∫ t

tk0

dt ′e(iωabi
−γ )(t−t ′)ei�t ′ {e−γ (t ′−tk0 )ρ0

aaρn−1n−1 − e−γ (t ′−tk0 )ρ0
bibi

ρnn

−
∑
i �=j

e
−(iωbi bj

+γ̄ )(t−tk0 )|ρ0
bi ,bj

|eiφij ρnn}. (A22)
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Putting all these results into Eq. (A10), we have the field equation of motion,

ρ̇nn = − g2
∑

k

∫ t

tk0

dt ′
{
e−i�(t−t ′)

[
(n + 1)

N∑
i=1

e(iωabi
−γ )(t−t ′)

(
e−γ (t ′−tk0 )ρ0

aaρnn − e−γ (t ′−tk0 )ρ0
bibi

ρn+1n+1

−
∑
i �=j

e
−(iωbi bj

)+γ )(t ′−tk0 )∣∣ρ0
bi ,bj

∣∣eiφij ρn+1n+1

)
− n

N∑
i=1

e(iωabi
−γ )(t−t ′)

(
e−γ (t ′−tk0 )ρ0

aaρn−1n−1 − e−γ (t ′−tk0 )ρ0
bibi

ρnn

−
∑
i �=j

e
(iωbi bj

+γ̄ )(t ′−tk0 )∣∣ρ0
bi ,bj

∣∣eiφij ρnn

)]
+ c.c.

}
. (A23)

Before proceeding, we replace the summation over number of injected atoms by integration over injection time as
∑

k →
r
∫ t

−∞ dk0 where r is the injection rate. We also define �i = ωabi
− � where ωabi

= ωa − ωbi
. Then

ρ̇nn = − rg2
∫ t

−∞
dtk0

∫ t

tk0

dt ′
({

N∑
i=1

e(i�i−γ )(t ′−tk0 )ρ0
aa[(n + 1)ρnn − nρn−1n−1]

−
[

N∑
i=1

e(i�i−γ )(t−t ′)e−γ (t ′−tk0 )ρ0
bibi

]
[(n + 1)ρn+1n+1 − nρnn]

−
⎛
⎝∑

i<j

[
e(i�i−γ )(t−t ′)e

−(iωbi bj
+γ̄ )(t ′−tk0 )∣∣ρ0

bi ,bj

∣∣eiφij + e(i�j −γ )(t−t ′)e
−(−iωbi bj

+γ̄ )(t ′−tk0 )∣∣ρ0
bi ,bj

∣∣e−iφij
]

× [(n + 1)ρn+1n+1 − nρnn]

}
+ c.c.

)
+ Lf [ρ]nn. (A24)

Note that ρbj bi
= e

−(−iωbi bj
+γ̄ )(t−tk0 )|ρ0

bi ,bj
|e−iφij while ρbibj

= e
−(iωbi bj

+γ̄ )(t−tk0 )|ρ0
bi ,bj

|eiφij . Evaluating the integrals in (A24) over

t ′ and tk0 after changing integration order as
∫ t

−∞ dtk0

∫ t

tk0
dt ′ = ∫ t

−∞ dt ′
∫ t ′

−∞ dtk0 we have

ρ̇nn = − rg2

(
1

γ

(
N∑

i=1

1

−i�i + γ

)
ρ0

aa[(n + 1)ρnn − nρn−1n−1] −
{

1

γ

(
N∑

i=1

1

−i�i + γ

)
ρ0

bibi

+
∑
i<j

[
1

(−i�i + γ )

1

(iωbibj
+ γ̄ )

eiφij + 1

(−i�j + γ )

1

(−iωbibj
+ γ̄ )

e−iφij

]∣∣ρ0
bi ,bj

∣∣
⎫⎬
⎭

× [(n + 1)ρn+1n+1 − nρnn] + c.c.

⎞
⎠+ Lf [ρ]nn. (A25)

We proceed by summing each term with their respective complex conjugates, with some rearrangements, and then,

ρ̇nn = −rg2

(
1

γ

(
N∑

i=1

2γ

�2
i + γ 2

)
ρ0

aa[(n + 1)ρnn − nρn−1n−1] −
[

1

γ

(
N∑

i=1

2γ

�2
i + γ 2

)
ρ0

bibi

]

+
∑
i<j

{[
2 cos φij (�iωbibj

+γ γ̄ ) + 2 sin φij (ωbibj
−�iγ̄ )(

�2
i + γ 2

)(
ω2

bibj
+ γ̄ 2

) + 2 cos φij (γ γ̄ − �jωbibj
) + 2 sin φij (ωbibj

+ �j γ̄ )(
�2

j + γ 2
)(

ω2
bibj

+ γ̄ 2
)

]∣∣ρ0
bibj

∣∣}

× [(n + 1)ρn+1n+1 − nρnn]

⎞
⎠ (A26)
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and, by using Eq. (A11), finally we have

ρ̇nn = −R{Kaρaa[(n + 1)ρnn − nρn−1n−1] + (Rg0 + Rgc
) × [nρnn − (n + 1)ρn+1n+1]} + κ[(n + 1)ρn+1,n+1 − nρnn], (A27)

where

Ka =
N∑

i=1

2

�2
i + γ 2

, Rg0 =
N∑

i=1

Kbi
ρ0

bibi
,Rgc

=
S∑

i<j

K
φij

ij

∣∣ρ0
bibj

∣∣, Kbi
= 2

�2
i + γ 2

, (A28)

K
φij

ij = 2 cos φij (�iωbibj
+ γ γ̄ ) + 2 sin φij (ωbibj

− �iγ̄ )(
�2

i + γ 2
)(

ω2
bibj

+ γ̄ 2
) + 2 cos φij (γ γ̄ − �jωbibj

) + 2 sin φij (ωbibj
+ �j γ̄ )(

�2
j + γ 2

)(
ω2

bibj
+ γ̄ 2

) , (A29)

where �i,j = ωabi,j
− �, ωabi,j

= ωa − ωbi,j
, and R = rg2. Note that Rg0 has N number of terms and Rgc

has S = N (N − 1)/2
number of terms in the summation. Since we seek the solutions in the steady state, we obtain the steady-state photon number n̄φ

by solving ˙̄nφ = 0, where ˙̄n =∑n nρ̇nn, and we write ˙̄nφ by using previously obtained ρ̇nn as

˙̄n = − RKaρaa

∑
n

n(n + 1)ρnn + RKaρaa

∑
n

n2ρn−1,n−1 − RRg0

∑
n

n2ρnn + RRg0

∑
n

n(n + 1)ρn+1,n+1

− RRgc

∑
n

n2ρnn + RRgc

∑
n

n(n + 1)ρn+1,n+1 + κ
∑

n

n(n + 1)ρn+1,n+1 − κ
∑

n

n2ρnn. (A30)

Then we insert n → n − 1 for ρn+1n+1 and n → n + 1 for and ρn−1n−1 so we get

˙̄n = RKaρaa

∑
n

(n + 1)ρnn − RRg0

∑
n

nρnn − RRgc

∑
n

ρnn = RKaρaa(n̄φ + 1) − Rn̄φ(Rg0 + Rgc
) − κn̄φ. (A31)

Solving ˙̄nφ = 0, we have

n̄φ = Kaρaa

Rg0 + Rgc
+ κ

R
− Kaρaa

= 1
Rg0

Kaρaa
+ Rgc

Kaρaa
+ κ

RKaρaa
− 1

. (A32)

We write the final form of the steady-state photon number after some rearrangements,

n̄φ = n̄κ

1 + n̄κ
Rgc

Kaρaa

, (A33)

where

n̄κ = n̄

1 + n̄ κ
RKaρaa

. (A34)

Here n̄κ is the average photon number in the absence of atomic coherence in terms of the average photon number
n̄ = 1/(Rg0/Kaρaa − 1), which is the average photon number in the absence of atomic coherence and in the absence of cavity
decay κ .

Finally, we look at the degenerate ground-state case (ωabi,j
= 0,�i,j = 0). In this case, n̄ can be simplified to n̄ = Pe/(Pg −

Pe), where Pe = ρaa,Pg = ρbibi
for any i. The simplified forms of other parameters are

Ka = 2N

γ 2
, Rg0 = 2NPg

γ 2
, Rgc = 2N (N − 1) cos φλ

γ γ̄
(A35)

for θ = π . The analytical decoherence term for a degenerate case can be identified in the Rgc
expression such that

ξ =
(

1 + γφ

γ

)−1
∼= e−γφ/γ (A36)

for γφ � γ .
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TÜRKPENÇE AND MÜSTECAPLIOĞLU PHYSICAL REVIEW E 93, 012145 (2016)

[7] M. S. Zubairy, in AIP Conference Proceedings, Vol. 643 (AIP,
Washington DC, 2002), pp. 92–97.

[8] T. D. Kieu, Phys. Rev. Lett. 93, 140403 (2004).
[9] H. T. Quan, Y.-x. Liu, C. P. Sun, and F. Nori, Phys. Rev. E 76,

031105 (2007).
[10] A. E. Allahverdyan, R. S. Johal, and G. Mahler, Phys. Rev. E

77, 041118 (2008).
[11] R. S. Johal, Phys. Rev. E 80, 041119 (2009).
[12] J. Wang, J. He, and Z. Wu, Phys. Rev. E 85, 031145 (2012).
[13] K. E. Dorfman, D. V. Voronine, S. Mukamel, and M. O. Scully,

Proc. Natl. Acad. Sci. USA 110, 2746 (2013).
[14] H. Li, J. Zou, W.-L. Yu, L. Li, B.-M. Xu, and B. Shao, Eur. Phys.

J. D 67, 134 (2013).
[15] Z. Zhuang and S.-D. Liang, Phys. Rev. E 90, 052117

(2014).
[16] F. Altıntaş, A. Ü. C. Hardal, and Ö. E. Müstecaplıoğlu, Phys.
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