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Scale invariance implies conformal invariance for the three-dimensional Ising model
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Using the Wilson renormalization group, we show that if no integrated vector operator of scaling dimension
−1 exists, then scale invariance implies conformal invariance. By using the Lebowitz inequalities, we prove that
this necessary condition is fulfilled in all dimensions for the Ising universality class. This shows, in particular,
that scale invariance implies conformal invariance for the three-dimensional Ising model.
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I. INTRODUCTION

Conformal symmetry plays a considerable role in both
high-energy and condensed-matter physics. There has been
a renewed interest in recent years, particularly because of the
anti–de Sitter–conformal field theory (AdS-CFT) conjecture
[1] and the successful use of conformal methods in three-
dimensional critical physics [2–7]. The groundbreaking papers
of the 1970s and 1980s [8–13] solved two fundamental
issues in two dimensions: First, scale invariance implies
conformal invariance under mild assumptions [12,13], and
second, conformal symmetry enables us to solve most of
the scale-invariant problems, that is, to determine critical
exponents and correlation functions [14].

An important ingredient for the exact solution of two-
dimensional conformal models is the existence of an infinite
number of generators of the conformal group. In higher
dimensions the number of generators is finite, and we could
naively conclude that symmetry arguments alone are not
sufficient to solve a model in the critical regime. However,
it is well known that scale-invariant theories are in a one-
to-one correspondence with the fixed points of the Wilson
renormalization group (RG) [15], and that the fixed point of a
theory completely determines all the correlation functions of a
critical model for sufficiently small wave numbers. Therefore,
at the level of principles, scale (and a fortiori conformal)
invariance is sufficient to determine all the universal critical
properties of a model. Of course, in practice, the computation
of these critical properties requires us to solve the functional
Wilson RG equations. This is a formidable task that we
do not know how to perform without approximations. Any
supplementary information, even if redundant, is therefore
welcome, and this is what conformal invariance could provide.
A breakthrough in this direction was achieved in recent years
with the conformal bootstrap program [2–4], which led to
the exact (although numerical) computation of the critical
exponents of the Ising model in three dimensions assuming,
among other things, conformal invariance.

In parallel, a large amount of activity has been devoted
to understanding the relation between scale and conformal
invariance in—or close to—four dimensions. It has been
proven to all orders of perturbation theory that scale invariance
implies conformal invariance [16] in four-dimensional unitary
and Poincaré invariant theories. Moreover, there are strong
indications that a nonperturbative proof could be within reach
in this dimension [17–19].

Despite decades of effort, it is still an open question whether
a typical statistical model is conformally invariant at criticality
in three dimensions. The aim of this article is twofold. First, we
derive a sufficient condition that, when fulfilled, ensures that
scale invariance implies conformal invariance. In the second
part of the paper, we prove that this condition is fulfilled in
any dimension for the Euclidean Z2 model.

The rest of the paper is organized as follows. In Sec. II, we
present a brief review of the nonperturbative renormalization
group. We then recall in Sec. III the relation between scale
invariance and the nonperturbative renormalization group
(NPRG). By using the same methods, we generalize these
considerations to the case of conformal invariance in Sec. IV.
In Sec. V, we finally derive a sufficient condition for the
validity of conformal invariance in scale-invariant models. We
use general arguments to show that this condition is expected to
be fulfilled in O(N ) models (and in generalizations thereof). In
Sec. VI, these considerations are made rigourous for the Ising
universality class. We give our conclusions in Sec. VII.

II. NONPERTURBATIVE RENORMALIZATION-GROUP
FORMALISM

The proof of conformal invariance in all dimensions
presented below is intimately related to the deep structure
of the Wilson RG1 and scale invariance. We therefore start by
recalling, in the case of the Z2 model, the formalism of the
modern formulations (sometimes called the nonperturbative
RG, or the functional RG) of the Wilson RG [22–26]. The
coarse-graining procedure at some RG scale k is implemented
by smoothly decoupling the long-wavelength modes ϕ(|q| <

k) of the system, also called the slow modes, by giving them
a large mass, while keeping unchanged the dynamics of the
short-wavelength/rapid ones ϕ(|q| > k). This decoupling is
conveniently implemented by modifying the action or the
Hamiltonian of the model: S[ϕ] → S[ϕ] + �Sk[ϕ], where
�Sk[ϕ] is quadratic in the field and reads, in Fourier space,
�Sk[ϕ] = 1/2

∫
q

Rk(q2)ϕ(q)ϕ(−q). The precise shape of

Rk(q2) does not matter for what follows as long as it can
be written as

Rk(q2) = Zkk
2r(q2/k2), (1)

1The history of the relation between conformal invariance and
Wilson RG is long; see, for example, [20,21].
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where Zk is the field renormalization factor and r is a function
that (i) falls off rapidly to 0 for q2 > k2—the rapid modes
ϕ(|q| > k) are not affected by �Sk—and (ii) goes to a constant
for q2 = 0—the slow modes ϕ(|q| < k) acquire a mass of
order k and thus smoothly decouple. The partition function,
which now depends on the RG parameter k, reads

Zk[J ] =
∫

Dϕ exp

(
−S[ϕ] − �Sk[ϕ] +

∫
x

Jϕ

)
, (2)

where the field J is a source term that corresponds to the
magnetic field in the Ising model and where the ultraviolet
(UV) regime of the functional integral is assumed to be
regularized at a momentum scale �; see, for instance, [27]
for a lattice regularization in this formalism. It is convenient
to define the free energy Wk[J ] = lnZk[J ] and its (slightly
modified) Legendre transform by

�k[φ] + Wk[J ] =
∫

x

Jφ − 1

2

∫
xy

Rk(|x − y|) φ(x)φ(y),

(3)
with φ(x) = δWk/δJ (x), Rk(|x − y|) is the inverse Fourier
transform of Rk(q2), and where the last term has been added
for the following reason. When k is close to �, all modes
are completely frozen by the �Sk term because, for all q,
R�(q2) is very large. Thus, Zk→� can be computed by the
saddle-point method, and it is then straightforward to show
that the presence of the last term in Eq. (3) leads to ��[φ] �
S[ϕ = φ]. On the contrary, when k = 0, the definition of Rk

implies that Rk=0(q2) ≡ 0 and the original model is recovered:
Zk=0[J ] = Z[J ] and �k=0[φ] = �[φ], with �[φ] the usual
Gibbs free energy or generating functional of one-particle-
irreducible correlation functions.

The exact RG equation for �k reads [23–25]

∂t�k[φ] = 1

2

∫
xy

∂tRk(|x − y|)Gk,xy[φ], (4)

where t = ln(k/�), and Gk,xy[φ] is the field-dependent prop-
agator:

Gk = (
�

(2)
k + Rk

)−1
, �

(2)
k,xy[φ] = δ2�k[φ]

δφ(x) δφ(y)
. (5)

III. SCALE INVARIANCE

We now discuss how scale invariance emerges in the
NPRG formalism. We first consider a scale-invariant model
described by an action Sscal. As we discuss in the following,
the existence of such a model is not necessary for our proof,
but it is convenient to imagine that it exists to motivate the
form of the expected Ward identity (WI) of scale invariance.
If such a model existed, this WI would be obtained by
performing the infinitesimal change of variables ϕ(x) →
ϕ(x) + ε(Dφ + xμ∂μ)ϕ(x) in the functional integral, with Dφ

the scaling dimension of the field, usually written in terms of
the anomalous dimension η as Dφ = (d − 2 + η)/2. Actually,
the analysis of this model and of its WI faces both UV and
infrared (IR) problems. In the IR regime, nonanalyticities
are present, and in the UV regime it is difficult to control
mathematically the continuum limit: � → ∞. Let us first
discuss the IR aspect. Since �Sk[φ] acts as an IR regulator, the
Wilson RG offers a solution to the IR problem: the regularized

model, Eq. (2), is not scale-invariant even if the original model
associated with Sscal was, and thus all �

(n)
k>0({pi}) are regular

contrary to �
(n)
k=0({pi}). The price to pay for regularity is the

breaking of scale invariance that manifests itself through a
modification of the WI (see [28,29] for situations in which Rk

breaks symmetries). By enlarging the space of cutoff functions
Rk to arbitrary functions Rk(x,y) that are neither constrained
to satisfy (1) nor to be invariant under rotations and translations
(as also done in [30]), this modified WI for scale invariance,
obtained from Eqs. (2) and (3), reads

∫
xy

(Dx + Dy + DR)Rk(x,y)
δ�k

δRk(x,y)

+
∫

x

(Dx + Dφ)φ(x)
δ�k

δφ(x)
= 0, (6)

where Dx = xμ∂x
μ, and DR = 2d − 2Dφ is the scaling dimen-

sion of Rk , which implies that the field renormalization in
Eq. (1) behaves as Zk ∝ k−η. By constraining Rk(q) to be of
the form (1), Eq. (6) can be conveniently rewritten (following
[29]) as

∂t�k[φ] = −
∫

x

(Dx + Dφ)φ(x)
δ�k[φ]

δφ(x)
. (7)

Introducing dimensionless and renormalized quantities (de-
noted with a tilde)

x = k−1x̃, (8)

φ(x) = kDφ φ̃(x̃), (9)

�̃k[φ̃] = �k[φ], (10)

Eq. (7) is rewritten as

∂t �̃k[φ̃] = 0. (11)

Equation (11) means that a hypothetical scale-invariant action
Sscal would lead, in its regularized and not scale-invariant
version Sscal + �Sk , to a RG flow where �̃k[φ̃] would be at a
fixed point �̃∗[φ̃] for all values of t : ∂t �̃

∗[φ̃] = 0.
The very structure of the Wilson RG (or NPRG) also solves

the UV problem. Actual models have a natural UV cutoff �

(e.g., a lattice spacing) at which is defined their microscopic
action S. The momentum integrals are therefore cut off at
� and are thus UV-finite. At scales of order � (i.e., if we
consider correlation functions in the regime where at least one
external momentum or k or the magnetic field in appropriate
units is of the order of �), the model is not scale-invariant.
In fact, scale invariance is an emergent property that appears
in the IR when some parameter (such as the temperature)
has been fine-tuned. We call Scrit the corresponding action. In
the RG formalism, scale invariance emerges in the IR regime
when integrating the RG flow starting at ��[φ] = Scrit[ϕ = φ]
because �̃k gets close to a fixed point for large negative t ,
that is, k � �. As discussed above, the fixed-point condition
coincides with the WI for scale invariance in the presence of a
regulator; see Eqs. (7) and (11). As a consequence, if the RG
flow is attracted toward an IR fixed point, then scale invariance
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emerges in the universal, long-distance regime.2 We stress
that this discussion does not rely on the actual existence of a
well-defined continuum limit associated with a scale-invariant
action Sscal, which is, per se, an interesting issue, but one that
we do not need to address in the present work.

When the microscopic action is slightly different from the
critical one (e.g., choosing a temperature slightly away from
the critical one), the RG trajectory approaches the fixed point
and then stays close to it for a long RG “time” before departing.
In this situation, the correlation length ξ is finite but large,
and the WI is almost fulfilled for momenta � 	 p 	 ξ−1.
This defines the critical regime of the theory. The closer the
microscopic action is tuned to the critical one, the larger the
correlation length ξ , and the better the WI is fulfilled.

Let us now make two comments. First, when k → 0,
∂t�k[φ] becomes negligible compared to any k-independent
finite scale and �k → �. In this limit, Eqs. (7) and (11) become
the usual WI of scale invariance, as expected. Second, the
above analysis shows that among the continuous infinity of
solutions of the fixed-point equation ∂t �̃k[φ̃] = 0, only those
that are regular for all fields are acceptable since they must
be the limit when k → 0 of the smooth evolution of �̃k[φ̃]
from Scrit[φ̃]. There is generically only a discrete, often finite,
number of such physical fixed points.3

A characteristic feature of the physical fixed points is
that the linearized flow around them has a discrete spectrum
of eigenvalues from which some critical exponents can be
straightforwardly obtained [15]. The discrete character of
the eigenperturbations around a fixed point has been studied
intensively by perturbative means. As for the Wilson RG,
it has been studied in detail in the particular case of the
O(N ) models in [34–36]. Although obtained within the
derivative expansion of the exact RG flow (4), its discrete
character certainly remains true beyond this approximation.
The eigenvalues λ are obtained from the flow by substituting
�̃k[φ̃] → �̃∗[φ̃] + ε exp(λt)γ̃ [φ̃] and retaining only the O(ε)
terms. (With our definition of t , a relevant operator has a
negative eigenvalue.) This leads to the eigenvalue problem

λ γ̃ [φ̃] =
∫

x̃

(Dx̃ + Dφ)φ̃(x̃)
δγ̃

δφ̃(x̃)

− 1

2

∫
x̃i

[(Dx̃ + DR)r(x̃ − ỹ)] G̃∗
x̃z̃ γ̃

(2)
z̃w̃ G̃∗

w̃ỹ , (12)

where x̃i = {x̃,ỹ,z̃,w̃}, G̃∗[φ̃] is the dimensionless renormal-
ized propagator at the fixed point: G̃∗ = (�̃∗(2) + r)−1, and
r(x̃) is the dimensionless inverse Fourier transform of r(q2/k2)
defined in Eq. (1).

We conclude from the above discussion that regularity
selects among all the fixed-point functionals �̃∗[φ̃] those that
are physical, that is, those that can be reached by an RG flow
from a physical action Scrit and that have a discrete spectrum
of eigenperturbations.

2A running anomalous dimension can be defined by ηk =
−∂t log Zk . It is only around the fixed point that ηk approaches a
fixed-point value, which is simply η.

3Two well-known exceptions to this rule are the line of fixed
points of the O(2) model in d = 2 [31] and the discrete infinity
of (multicritical) Z2-invariant fixed points in d = 2 [32,33].

IV. SPECIAL CONFORMAL TRANSFORMATIONS

Let us now study conformal invariance by following the
same method as above. As in the case of scale invariance, to
motivate the form of the WI, we imagine that a conformally
invariant model, associated with an action Sconf[ϕ] written
in terms of a primary field ϕ, exists. We put aside for
now the problem of the existence of this model since, as
discussed below, we do not need it to actually exist for
our proof. If such a model existed, the modified WI would
follow from performing the infinitesimal change of variables
ϕ(x) → ϕ(x) + εμ(x2∂μ − 2xμxν∂ν + 2αxμ)ϕ(x) in Eq. (2).
By considering general cutoff functions as in Eq. (6), we find
that it reads∫

xy

(
Kx

μ − DR xμ + Ky
μ − DR yμ

)
Rk(x,y)

δ�k

δRk(x,y)

+
∫

x

(
Kx

μ − 2Dφxμ

)
φ(x)

δ�k

δφ(x)
= 0, (13)

with Kx
μ = x2∂x

μ − 2xμxν∂
x
ν . By specializing Rk to functions

of the form Eq. (1) and requiring again that Zk ∝ k−η, Eq. (13)
can be rewritten as

0 =�
μ

k [φ] ≡
∫

x

(
Kx

μ − 2Dφxμ

)
φ(x)

δ�k

δφ(x)

− 1

2

∫
xy

∂tRk(|x − y|) (xμ + yμ) Gk,xy. (14)

Again, this identity boils down to the usual WI of conformal
invariance in the limit k → 0 where Rk → 0.

At any fixed point, the scaling dimension of �
μ

k [φ] is fixed
by Eq. (14) to be −1. We thus define �̃

μ

k [φ̃] = k �
μ

k [φ]. Its
flow equation reads

∂t �̃
μ

k [φ̃] − �̃
μ

k [φ̃] =
∫

x̃

(Dx̃ + Dφ)φ̃(x̃)
δ�̃

μ

k

δφ̃(x̃)

− 1

2

∫
x̃i

[(Dx̃ + DR)r(x̃ − ỹ)]

× G̃k,x̃z̃ �̃
μ (2)
k,z̃w̃ G̃k,w̃ỹ , (15)

where �̃
μ (2)
k [φ̃] is the second functional derivative of �̃

μ

k .
An important property of �

μ

k is that, at the fixed point, it
is the integral of a density with no explicit dependence on xμ.
Indeed, observe that the left-hand sides of Eqs. (6) and (13)
can be interpreted as the action of the generators of dilatations
D and conformal transformations Kμ on �k ,

D�k =
∫

x

(Dx + Dφ)φ(x)
δ�k

δφ(x)

+
∫

xy

(Dx + Dy + DR)Rk(x,y)
δ�k

δRk(x,y)
, (16)

Kμ�k =
∫

x

(
Kx

μ − 2Dφxμ

)
φ(x)

δ�k

δφ(x)

+
∫

xy

(
Kx

μ − DRxμ+Ky
μ − DRyμ

)

× Rk(x,y)
δ�k

δRk(x,y)
, (17)
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that is, �μ = Kμ�k . Similar expressions can be obtained for
the generators of translations Pμ and rotations Jμν :

Pμ�k =
∫

x

∂μφ(x)
δ�k

δφ(x)

+
∫

xy

(
∂x
μ + ∂y

μ

)
Rk(x,y)

δ�k

δRk(x,y)
, (18)

Jμν�k =
[ ∫

x

xμ∂νφ(x)
δ�k

δφ(x)

+
∫

xy

(
xμ∂x

ν + yμ∂y
ν

)
Rk(x,y)

δ�k

δRk(x,y)

]

− [μ ↔ ν]. (19)

It can easily be checked that the generators satisfy the
algebra of the conformal group. In particular, applying
[Pμ,Kν] = 2δμνD + 2Jμν to a translation, rotation, and di-
latation invariant �k yields

Pμ�ν
k = 0. (20)

Thus, at the fixed point, �
μ

k is the integral of a density that
does not have an explicit dependence on x. This density only
depends on the field and its derivatives. This proof generalizes
trivially to other scalar models.

V. A SUFFICIENT CONDITION FOR CONFORMAL
INVARIANCE

Let us now consider a physical model at criticality. At the
scale �, �� = S = Scrit and the model is neither conformally
invariant nor scale-invariant. However, when k � �, the
regularized model gets close to a fixed point and thus G̃k � G̃∗
and �̃

μ

k [φ̃] � �̃μ∗[φ̃]. The key point of our proof is that at the
fixed point, Eq. (15) is identical to (12) with γ̃ [φ̃] → �̃μ∗[φ̃]
and λ = −1, although these two equations have different phys-
ical meanings. A sufficient condition for proving conformal
invariance is therefore to show that there is no integrated vector
eigenperturbation Vμ = ∫

x
Vμ of �̃∗[φ̃] of scaling dimension

DV = −1. If no such eigenperturbation exists, the conformal
WI is satisfied, which means that the system is conformally
invariant at criticality in the long-distance regime. Moreover,
the form of the conformal WI (14) fixes the transformation law
fulfilled by ϕ, which is the one of a primary field.

To understand how conformal invariance is related with the
scaling dimension of the vector eigenperturbations, it proves
useful to consider three simple examples. The first one is the
Ising model in d = 4. The fixed point being Gaussian, the
eigenvalues are trivially given by the canonical dimensions.
By using the fact that �̃

μ

k is Z2- and translation-invariant,
see Eqs. (14) and (20), we find by inspection that the vector
operator with lowest dimension reads

∫
x
φ ∂μφ(∂φ)2. It has

therefore dimension +3. Note that there exists local vector
operators with lower scaling dimensions [φ∂μφ, φ3∂μφ, and
φ∂μφ(∂νφ)2]. However, these are total derivatives and are not
associated with integrated vector operators. In the absence of a
vector operator of dimension −1, we retrieve the well-known
property that this model is conformally invariant at criticality
in the long-distance regime [13,16]. Using standard methods,
we can compute the corrections to the scaling dimension of

the vector operator
∫
x
φ ∂μφ(∂φ)2 in a systematic expansion

in ε = 4 − d. We performed the calculation at one loop and
found that the correction vanishes. The scaling dimension is
therefore 3 + O(ε2).

This analysis can be extended to the O(N ) models. In
d = 4, there exists now two independent integrated vector
operators,

∫
x
φa(∂μφa)(∂νφ

b)2 and
∫
x
φa(∂νφ

a)(∂μφb)(∂νφ
b),

with the lowest scaling dimension 3. As in the Ising case,
there exist local operators with lower scaling dimensions that
are, however, total derivatives. Our sufficient condition is again
fulfilled, and we recover the well-known fact that these models
are conformally invariant in the critical regime for d = 4. At
one loop, the degeneracy of the scaling dimensions is lifted
and we obtain 3 + O(ε2) and 3 − 6ε

N+8 + O(ε2).
The third example involves a vector field Aμ(x) and is

described by the (Euclidean) action

S =
∫

x

[
1

4
(∂μAν − ∂νAμ)2 + α

2
(∂μAμ)2

]
. (21)

This model is interesting because it is scale-invariant but
generically not conformally invariant, except for α = αc =
(d − 4)/d [37,38]. This situation can be understood in our
context by considering the contraposition of our sufficient
condition, which states that, assuming that Aμ is a primary field
[38], a necessary condition for having scale invariance without
conformal invariance is that there exists an integrated vector
operator with scaling dimension −1. It is actually easy to find
such an operator (which is unique, up to a normalization):
C

∫
x
Aμ(∂νAν). We can understand the particular case α = αc

by an explicit calculation of �
μ

k [Aν] from Eq. (14). This
shows that C = αd + 4 − d, which, as expected, vanishes
when α = αc.

To conclude this section, we discuss the plausibility of
not having conformal invariance in d = 3 for the O(N )
models at criticality. The only possibility would be to have a
vector eigenperturbation with eigenvalue −1 in this dimension;
see Fig. 1. This would mean that the d = 3 model has an
integer critical exponent, a property that is highly improbable.
Nevertheless, let us suppose that one of these eigenvalues
crosses −1 right in d = 3, as in curve (c) of Fig. 1. Then, for

3

d

λ (a)

(b)

(c)

−1

3

d

λ

−1

FIG. 1. Possible behavior of the lowest eigenvalue DV associated
with a vector perturbation as a function of dimension. Left panel: (a)
and (b) correspond to typical behavior, while (c) corresponds to the
exceptional case in which DV = −1 right in d = 3. In the three cases,
conformal invariance holds. Right panel: the shaded area represents
a continuum of eigenvalues, and the curve denotes an eigenvalue
DV having a plateau at −1 around d = 3. In these cases, conformal
invariance can be broken.
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any dimension infinitesimally smaller or larger than 3, there
would exist no eigenperturbation of dimension −1. The critical
system would exhibit conformal symmetry above and below
d = 3. Since correlation functions of the critical theory are
expected to be continuous functions of d, we conclude that,
even in this highly improbable situation, the model would
exhibit conformal invariance at criticality in d = 3. We are
thus led to the more stringent necessary (but not sufficient)
condition: for a critical model not to be conformally invariant,
there must exist a vector perturbation of scaling dimension −1
in a finite interval of dimensions containing d = 3. This could
happen either because a discrete eigenvalue is independent of
the dimension in some range of dimension around 3, or because
there exists a continuum of eigenvalues, see Fig. 1. Such a
behavior is, to say the least, not standard. To our knowledge,
this has never been observed in any interacting model.

The previous arguments are compelling but not mathemat-
ically rigorous. In particular, assuming that the theory can be
properly defined in noninteger dimensions, which is standard
but not obvious, it is hard to control the analytic structure of
the critical exponents in d. In the next section, we give a proof
in the physically important case of the Ising model in d = 3
that does not rely on such arguments.

VI. PROOF IN THE ISING UNIVERSALITY CLASS

We concentrate here on the Ising universality class and show
that, in this case, the smallest eigenvalue DV associated with
an integrated vector perturbation is larger than −1 for d < 4.
Using our necessary condition, this proves that, for the Ising
universality class, the critical regime is conformally invariant.

For simplicity, we consider a lattice version of the
Ginzburg-Landau model whose dynamics is described by the
Hamiltonian (or action)

S = −J
∑
〈ij〉

ϕ(i)ϕ(j ) +
∑

i

U (ϕ(i)), (22)

where the index i labels the lattice sites, the ϕ(i) take
values in the real domain, and U (ϕ) is an even function
that diverges for |ϕ| → ∞. We choose here a hypercubic
lattice with lattice spacing a. The original Ising model can
be recovered by considering a potential U (ϕ) strongly peaked
around ϕ = ±1, but the Ginzburg-Landau model, which is in
the Ising universality class for a generic potential, is more
convenient for what follows.

The use of the Ginzburg-Landau model has another advan-
tage. In the case of a quartic potential,

U [ϕ(i)] = r0

2
ϕ2(i) + u0

4!
ϕ4(i), (23)

and for d < 4 the model is super-renormalizable. Its ultraviolet
behavior is therefore controlled by a Gaussian fixed point. In
this case, the existence of a controlled scaling limit seems to be
under control even if, to the best of our knowledge, there is no
mathematical proof of its existence [39]. To compare different
models in the Ising universality class, we assume below that
this scaling limit does exist in the following precise sense. Let
us consider two local operators O1(i,a) and O2(i,a). Let us
also introduce (i) a smooth interpolating field φinterp(x) with
x ∈ Rd that coincides on the lattice points with φ(i), and (ii)

two interpolating operators O
interp
1,2 (x,a) defined by O

interp
i =

Oi(φinterp). Of course the construction of these interpolating
operators is not unique. We now consider the particular case
in which O1 and O2 are such that O

interp
1 → O

interp
2 when a →

0. (We notice that this limit is independent of the choice of
interpolation used to define φinterp.) Our assumption, which
we call the “scaling limit” for short, is that there exists a
multiplicative factor ZO(a) depending on the lattice spacing
such that the correlation functions of the operators O1(x,a) and
ZO(a)O2(x,a) are the same for distances much larger than a:

〈O1(x,a)O3(y3) · · · On(yn)〉
∼ ZO(a)〈O2(x,a)O3(y3) · · ·On(yn)〉, (24)

where {O3, . . . ,On} are arbitrary local operators and where the
equivalence occurs for a � min{|y3 − x|, . . . ,|yn − x|}. This
hypothesis is a prerequisite of all Monte Carlo simulations, and
it is, of course, satisfied to all orders of perturbation theory in
any renormalizable theory. We assume here that it is also valid
nonperturbatively.

Our strategy is to study correlation functions of local
vector operators Vμ(x) and use their critical behavior to find
a bound on the scaling dimension of the integrated operator
Vμ = ad

∑
i Vμ(i). We now mention two difficulties.

First, there are local vector operators that are total deriva-
tives, and which are therefore not associated with an integrated
one. As discussed before, the vector operator ∂μ(ϕ2) is such an
operator. Note that its scaling dimension near d = 4 is lower
than that of the vector operators that are not total derivatives
[such as ∂μ(ϕ)2(∂νϕ)2].

Second, operators with the same quantum numbers typi-
cally mix together in the calculation of correlation functions.
As a consequence, the critical behavior of a two-point function
of some vector operator is governed by the lowest scaling
dimension of the class of operators with which it mixes. To
be more precise, let us call V (n)

μ the local vector eigenoperator

of scaling transformations with scaling dimension D
(n)
V (or-

dered such that D
(0)
V � D

(1)
V � · · · ). The associated two-point

correlation function behaves, in the critical regime, as

〈
V (n)

μ (x)V (n)
μ (y)

〉
c
∼ 1

|x − y|2D
(n)
V

, (25)

where the subscript c indicates connected correlation func-
tions, defined as

〈X(x)Y (y)〉c = 〈X(x)Y (y)〉 − 〈X(x)〉〈Y (y)〉 (26)

and where an appropriate normalization has been chosen.
In d = 4, the eigenproblem can be solved and the scaling
dimensions are the canonical dimensions. In particular, the
eigenoperators with the lowest scaling dimensions are

V (0,d=4)
μ ∝ ∂μφ2, D

(0,d=4)
V = 3, (27)

V (1,d=4)
μ ∝ ∂μφ4, D

(1,d=4)
V = 5, (28)

V (2,d=4)
μ ∝ ∂μ(∂νφ)2, D

(2,d=4)
V = 5, (29)

V (3,d=4)
μ ∝ (∂μφ2)(∂νφ)2, D

(3,d=4)
V = 7,

· · · , (30)
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where ∂μ is a lattice discretization of the partial derivative.
(Note that the first three operators are total derivatives.) In
dimension d < 4, although we do not know the explicit form
of the eigenoperators, we can, in principle, decompose any
vector operator on the basis {V (n)

μ }, and generically there is a
nonvanishing overlap with each of the eigenoperators:

Vμ =
∑

n

αnV (n)
μ . (31)

As a consequence, the critical regime of the two-point
correlation function is dominated by the smallest critical
dimension,

〈Vμ(x)Vμ(y)〉c ∼ α2
0

|x − y|2D
(0)
V

. (32)

We stress that the list of quantum numbers must include those
associated with lattice isometries. For example, we require
scalar (vector) operators defined on the lattice to be even (odd)
under parity transformations.

The proof is organized as follows. Using Lebowitz in-
equalities [40,41], we derive a lower bound for D

(0)
V from

which follows a lower bound for the scaling dimension of
the integrated vector operators. The proof that the scaling
dimension DV of any integrated vector operator is different
from −1 for d � 4 is then a direct consequence of this bound.

As a first step, we derive a bound for the correlation function
〈ϕ2(x)ϕ2(y)〉c. We use here the Lebowitz inequalities [40],
which state that, considering two decoupled copies of the
ferromagnetic system (that we denote ϕ and ϕ′), both described
by the action (22), and considering two sets A and B of lattice
points,

〈 ∏
i∈A,j∈B

[ϕ(i) + ϕ′(i)][ϕ(j ) − ϕ′(j )]

〉

�
〈∏

i∈A

[ϕ(i) + ϕ′(i)]
〉〈 ∏

j∈B

[ϕ(j ) − ϕ′(j )]

〉
, (33)

〈 ∏
i∈A,j∈B

[ϕ(i) + ϕ′(i)][ϕ(j ) + ϕ′(j )]

〉

�
〈∏

i∈A

[ϕ(i) + ϕ′(i)]
〉〈 ∏

j∈B

[ϕ(j ) + ϕ′(j )]

〉
. (34)

In particular, this implies that

〈[ϕ(x) + ϕ′(x)]2[ϕ(y) − ϕ′(y)]2〉
� 〈[ϕ(x) + ϕ′(x)]2〉〈[ϕ(y) − ϕ′(y)]2〉. (35)

Expanding the binomials, we readily obtain the following
identity:

〈ϕ2(x)ϕ2(y)〉c � 2G2(x − y), (36)

where we have used the fact that the average of an odd
number of fields vanishes for temperatures higher than (or
equal to) the critical temperature. This implies that the
connected correlation function 〈ϕ2(x)ϕ2(y)〉c cannot decrease
more slowly than the square of the propagator at long distances.
This inequality can be generalized to arbitrary even powers of

the fields:

0 � 〈ϕm(x)ϕn(y)〉c � C G2(x − y), (37)

where C is a positive constant (that depends on m and n), as
shown in Appendix A.

In the critical regime, scale invariance implies that con-
nected two-point correlation functions behave as power laws.
In particular,

〈ϕm(x)ϕn(y)〉c ∼ A

|x − y|ℵm+ℵn
(38)

with A a positive constant (see, for example, [14]). The
inequality (37) implies that ℵn � d − 2 + η. We can then
deduce the asymptotic behavior of the matrix of second
derivatives of this correlation function:〈

∂x
μ[ϕm(x)]∂y

ν [ϕn(y)]
〉
c

∼ 1

|x − y|ℵm+ℵn+2

(
Bδμν + C

(x − y)μ(x − y)ν
(x − y)2

)
, (39)

where B and C are some constants.
We now consider two local vector operators that are the

product of one power of ∂μϕ(x) and an odd (finite) number of
fields evaluated at points in a finite neighborhood of x:

W (1)
μ (x) = 1

2
[∂μϕ(x)]

∑
s=±1

m−1∏
i=1

ϕ
(
x + s e

(1)
i

)
, (40)

W (2)
μ (x) = 1

2
[∂μϕ(x)]

∑
s=±1

n−1∏
i=1

ϕ
(
x + s e

(2)
i

)
, (41)

where e
(1)
i and e

(2)
i are some constant lattice vectors.4 The oper-

ators W (1)
μ (x) and W (2)

μ (x) are, up to a multiplicative constant,
other discretizations of, respectively, the operator ∂x

μ[ϕm(x)]
and ∂x

μ[ϕn(x)]. According to the assumption of the existence of
the scaling limit, Eq. (24), the connected correlation function
〈W (1)

μ (x)W (2)
ν (y)〉c has the same asymptotic behavior as in

Eq. (39) up to a multiplicative factor depending on the lattice
spacing. Indeed, when |x − y| is much larger than the lattice
spacing a, the vectors e

(1)
i and e

(2)
i can be neglected in (40)

and (41) and the local operators W (1)
μ and W (2)

μ are then
proportional to ∂μ(ϕm) and ∂ν(ϕn), respectively, as explained
before.

Now, any local vector operator Vμ on the lattice is a linear
combination of vector operators of the form (40). For instance,
a discretization of the operator ∂μ(φ2)(∂νφ)2 is given by

φ(x)

16a3
[φ(x + μ̂) − φ(x − μ̂)]

∑
ν

[φ(x + ν̂) − φ(x − ν̂)]2,

(42)
where the sum runs over all the nearest neighbors of x.

Using the triangular inequality, we conclude that

|〈Vμ(x)Vν(y)〉c| � Zμν

|x − y|2(d−1+η)
, (43)

4Since �μ, defined in Eq. (14), is odd under parity, it is important
in what follows to consider only vector operators that are also odd.
This is the reason why the sum over s is necessary in the definitions
(40) and (41).
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where Zμν is a positive constant. Using Eq. (32), this implies
that, for all n,

D
(n)
V � d − 1 + η. (44)

We conclude that the scaling dimension DV = DV − d of any
integrated vector operator is not smaller than −1 + η.5 Using
the unitarity of the Minkowskian φ4 theory, one can prove
that η � 0 [42] for the Ising universality class. Moreover, an
interacting massless theory, such as the critical Ising model for
d < 4, has a nonzero η [43]. As a consequence, our necessary
condition is fulfilled, and we conclude that scale invariance
implies conformal invariance for the Ising universality class
for all d � 4.

VII. CONCLUSIONS

Let us now point out some directions of research for the
future. It is clear that the condition of conformal invariance (14)
can be straightforwardly extended to other theories (involving
scalar, fermionic, or vector fields), and it would be interesting
to come to a conclusion on the fate of conformal invariance in
this wider class of models. In these systems, it is much more
difficult to find rigorous bounds on correlation functions (that
would generalize the Lebowitz inequalities). It would then
prove useful to approach the problem by computing the scaling
behavior of vector operators by Monte Carlo simulations.

Another promising line of investigation consists in making
use of the conformal invariance in the Wilson framework to
perform actual calculations of universal quantities. On the
one hand, and in the best case, this would lead to closed
and numerically tractable equations for the critical exponents.
On the other hand, because the approximation schemes
currently used for solving the Wilson RG flow equation are
incompatible with exact conformal invariance, we can expect
that constraining them to be conformally invariant at the fixed
point would improve their accuracy.

Note finally that, at first glance, our approach could seem
similar to the one based on the energy-momentum tensor and
on the analysis of the virial current. This is not the case,
although there is perhaps a relationship between the two. �μ

k is
a functional of φ and not of ϕ; it is built from �k and not from
S. What matters is that its density vanishes up to a surface term
and not that it is conserved. Moreover, as we already explained,
we only deal with a regularized theory, which enables us to
consider only the analytic candidates for �̃μ∗ contrary to what
should be done in a nonregularized theory. In any case, a
clarification of the relation between the two approaches would
be welcome. In this respect, our proof of the nonexistence of
a local vector operator of scaling dimension d − 1 (conserved
or not) might be of interest also when applied to a hypothetical
conserved virial current.
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APPENDIX: BOUND FOR CORRELATION FUNCTIONS
〈ϕm(x)ϕn( y)〉

In this appendix, we derive bounds on the correlation
functions 〈ϕm(x)ϕn(y)〉c, in the symmetric phase (T � Tc),
with m and n arbitrary integers with the same parity (otherwise
the correlation function vanishes).

We want to show that

〈ϕa(x)ϕb(y)〉c � C1G(x − y) for odd a,b, (A1)

〈ϕa(x)ϕb(y)〉c � C2G
2(x − y) for even a,b, (A2)

where C1 and C2 are some strictly positive constants and

G(x − y) = 〈ϕ(x)ϕ(y)〉. (A3)

Note that for odd a and b, the connected and disconnected
correlation functions are equal; see Eq. (26).

Property (A1) is obvious for a = b = 1. The proof of (A2)
for {a = 2,b = 2} is presented in the core of the article. For
general a and b, the proof is made by induction. Assuming that
the inequalities (A1) and (A2) are fulfilled for {a � m,b �
n} \ {a = m,b = n}, we have to prove that these properties
are also valid for a = m and b = n.

We first consider the case in which m and n are even. Using
the Lebowitz inequality [40] [see Eq. (33)],

〈[ϕ(x) + ϕ′(x)]m[ϕ(y) − ϕ′(y)]n〉
� 〈[ϕ(x) + ϕ′(x)]m〉〈[ϕ(y) − ϕ′(y)]n〉, (A4)

as well as translation invariance and the binomial expansion,
we obtain

m∑
a=0

n∑
b=0

(−1)b
(

m

a

)(
n

b

)
[〈ϕa(x)ϕb(y)〉c〈ϕm−a(x)ϕn−b(y)〉c

+ 〈ϕa(0)〉〈ϕb(0)〉〈ϕm−a(x)ϕn−b(y)〉c
+ 〈ϕa(x)ϕb(y)〉c〈ϕm−a(0)〉〈ϕn−b(0)〉] � 0. (A5)

Writing explicitly the terms with a ∈ {0,m} and b ∈ {0,n}, we
get the following bound:

2〈ϕm(x)ϕn(y)〉c �
∑

a∈{1,3,...,m−1}

∑
b∈{1,3,...,n−1}

(
m

a

)(
n

b

)

× 〈ϕa(x)ϕb(y)〉c〈ϕm−a(x)ϕn−b(y)〉c,
(A6)

where we have used the fact that connected correlation
functions, as well as 〈ϕm(0)〉, are non-negative [44,45] to
eliminate the terms with even b. We observe that there appears
on the right-hand side only connected correlation functions
with at most m − 1 powers of ϕ(x) and at most n − 1 powers
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of ϕ(y). By hypothesis, properties (A1) and (A2) are thus valid
for these correlation functions. Furthermore, we observe that
the right-hand side involves a sum of terms that are a product
of two correlation functions with odd powers of the fields. In

both cases, by using properties (A1) and (A2), this quantity
is bounded by some positive constant times G2(x − y).6 This
concludes the proof of the induction hypothesis in the case of
even m and n.

We now turn to the case in which m and n are odd. We now make use of the Lebowitz inequality

〈[ϕ(x) + ϕ′(x)]m−1[ϕ(x) − ϕ′(x)][ϕ(y) − ϕ′(y)]n〉 � 〈[ϕ(x) + ϕ′(x)]m−1〉〈[ϕ(x) − ϕ′(x)][ϕ(y) − ϕ′(y)]n〉, (A7)

which is of interest if m > 1 (we can obviously derive a similar inequality with {m,x} ↔ {n,y}, which can be applied in the case
m = 1). We again use the binomial expansion and the positivity of (connected and disconnected) correlation functions to obtain
the following inequality:

〈ϕm(x)ϕn(y)〉c �
∑

a∈{0,2,...,m−1}

∑
b∈{1,3,...,n−1}

(
m − 1

a

)(
n

b

)
〈ϕa(0)〉〈ϕm−a−1(0)〉〈ϕ(x)ϕb(y)〉c〈ϕn−b(0)〉

+
∑

a∈{1,3,...,m−2}

∑
b∈{0,2,...,n}

(
m − 1

a

)(
n

b

)
〈ϕa+1(x)ϕb(y)〉〈ϕm−1−a(x)ϕn−b(y)〉. (A8)

The first term involves the product of a correlation function
with odd powers of the fields and a positive constant. The
second sum involves either a product of two correlation
functions, one with even and one with odd powers of the
fields, or the product of a correlation function with odd
powers of the fields and a positive constant. In all cases,
the correlation functions that appear on the right-hand side

fulfill the conditions of our hypothesis. We therefore conclude
that 〈ϕm(x)ϕn(y)〉c satisfies property (A1) for m and n odd
(see footnote 6). This concludes the proof of the induction
hypothesis.

Using the fact that the property (A1) is valid for a = b = 1,
it is easy to check, by applying several times the induction
property, that (A1) and (A2) are valid for any a and b.
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