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Phase transition of the Ising model on a fractal lattice
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The phase transition of the Ising model is investigated on a planar lattice that has a fractal structure. On the
lattice, the number of bonds that cross the border of a finite area is doubled when the linear size of the area is
extended by a factor of 4. The free energy and the spontaneous magnetization of the system are obtained by
means of the higher-order tensor renormalization group method. The system exhibits the order-disorder phase
transition, where the critical indices are different from those of the square-lattice Ising model. An exponential
decay is observed in the density-matrix spectrum even at the critical point. It is possible to interpret that the
system is less entangled because of the fractal geometry.
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I. INTRODUCTION

Phase transitions and critical phenomena have been some
of the central issues in statistical analyses of condensed
matter physics [1]. When a second-order phase transition is
observed, thermodynamic functions, such as the free energy,
the internal energy, and the magnetization, show nontrivial
behavior around the transition temperature Tc [2,3]. This
critical singularity reflects the absence of any scale length at
Tc, and the power-law behavior of thermodynamic functions
around the transition is explained by the concept of the
renormalization group [1,4–6].

Analytic investigations of the renormalization group flow
in a ϕ4 model show that the Ising model exhibits a phase
transition when the lattice dimension is larger than one, which
is the lower critical dimension [6,7]. In a certain sense, the one-
dimensional Ising model shows rescaled critical phenomena
around Tc = 0. When the lattice dimension is larger than four,
which is the upper critical dimension, and provided that the
system is uniform, then the Ising model on regular lattices
exhibits mean-field-like critical behavior.

Compared with critical phenomena on regular lattices,
much less is known about fractal lattices. Renormalization
flow has been investigated by Gefen et al. [8–11], where
correspondence between the lattice structure and the value of
critical indices is not fully understood in a quantitative manner.
For example, the Ising model on a Sierpinski gasket does not
exhibit a phase transition at any finite temperature, although the
Hausdorff dimension of the lattice, dH = ln 3/ ln 2 ≈ 1.585, is
larger than one [12,13]. The absence of a phase transition could
be explained by the fact that the number of interfaces, i.e., the
outgoing bonds from a finite area, does not increase when the
size of the area is doubled on the gasket. A nontrivial feature
of this system is that there is a logarithmic scaling behavior in
the internal energy toward zero temperature [14]. The effect
of anisotropy has been considered recently [15]. In case of an
Ising model on a Sierpinski carpet, the presence of a phase
transition is proved [16], and its critical indices were roughly
estimated by Monte Carlo simulations [17]. It should be noted
that it is not easy to collect a sufficient number of data plots
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for finite-size scaling [18] on such fractal lattices by means of
Monte Carlo simulations, because of the exponential blowup
of the number of sites in a unit of a fractal.

In this article, we investigate the Ising model on a planar
fractal lattice, shown in Fig. 1. The lattice consists of vertices
around the lattice points, which are denoted by the open dots
in the figure, where there are Ising spins. The whole lattice is
constructed by recursive extension processes, where the linear
size of the system increases by a factor of 4 in each step.
If the lattice was a regular square one, 4 × 4 = 16 units are
connected in the extension process, whereas only 12 units are
connected on this fractal lattice; four units are missing in the
corners. As a result, the number of sites contained in a cluster
after n extensions is Nn = 12n, and the Hausdorff dimension
of this lattice is dH = ln 12/ ln 4 ≈ 1.792. The number of
outgoing bonds from a cluster is only doubled in each extension
process since the sites and the bonds at each corner are missing.
If we evaluate the lattice dimension from the relation

M = Ld−1 (1)

between the linear dimension L and the number of outgoing
bonds M , we have d = 1.5, since M is proportional to

√
L on

the fractal. We remark that the value is different from dH ≈
1.792.

We report the critical behavior of the Ising model on
the fractal lattice when the system size is large enough.
The thermodynamic properties of the system have been
numerically studied by means of the higher-order tensor
renormalization group (HOTRG) method [19]. The system
exhibits an order-disorder phase transition, where the critical
indices are different from the square-lattice Ising model. In
the next section we will introduce a representation of the
Ising model in terms of a vertex model, which is suitable
for numerical analyses by means of the HOTRG method. In
Sec. III, we show the calculated result around the transition
temperature Tc. Conclusions are summarized in the last
section.

II. VERTEX REPRESENTATION

We introduce a representation of the Ising model as a
(symmetric) 16-vertex model. The Ising interaction between
two adjacent Ising spins σ and σ ′, where each one takes either
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FIG. 1. Composition of the fractal lattice. Upper left: A local
vertex around an Ising spin shown by the open dot. Middle: The basic
cluster which contains N1 = 12 vertices. Lower right: The extended
cluster which contains N2 = 122 vertices. In each step of the system
extension, the linear size of the system increases by a factor of 4,
where only 12 units are linked, and where four units at the corners
are missing, if it is compared with a 4 × 4 square cluster.

+1 or −1, is represented by the diagonal Hamiltonian

H (σ,σ ′) = −Jσσ ′, (2)

where J > 0 represents the ferromagnetic coupling. Through-
out this article we assume that there is no external magnetic
field. The corresponding local Boltzmann weight on the bond
is given by

exp

[
−H (σ,σ ′)

kBT

]
= exp

[
J

kBT
σσ ′

]
= eKσσ ′

, (3)

where T is the temperature, kB is the Boltzmann constant, and
we have introduced a parameter K = J/kBT .

It is possible to factorize the bond weight eKσσ ′
into two

parts, by introducing an auxiliary spin s = ±1, which is often
called an “ancilla,” and which is located between σ and σ ′
[20]. A key relation is

eKσσ ′ = 1

2(cosh 2K)1/2

∑
s

eKs(σ+σ ′), (4)

where the right-hand side (rhs) takes the value (cosh 2K)
1/2

when σ = σ ′, and (cosh 2K)
−1/2

when σ �= σ ′, and where
Eq. (4) holds under the condition

eK = (cosh 2K)1/2. (5)

The new parameter K is then expressed as follows,

eK =
√

e2K +
√

e4K − 1. (6)

Thus, if we introduce a factor

Wσs = eKσs[2(cosh 2K)1/2]−1/2 (7)

for each division of a bond, we can rewrite the Ising interaction
in the following form,

eKσσ ′ =
∑

s

WσsWσ ′s . (8)

By means of the factorization in Eq. (8), we can map the
square-lattice Ising model into a symmetric 16-vertex model,
where the local vertex weight is defined as

Ts s ′s ′′s ′′′ =
∑

σ

WσsWσs ′Wσs ′′Wσs ′′′ . (9)

In the upper-left-hand corner of Fig. 1, we have shown the
graphical representation of the vertex weight Ts s ′s ′′s ′′′ , where
the open circle denotes the Ising spin σ , which is summed up.
The four short bars around the Ising spin in Fig. 1 show the
halves of the bonds, where there are auxiliary spins s, s ′, s ′′,
and s ′′′ at the end of each short bar.

In case we consider a finite-size cluster with a rectangular
shape with free boundary conditions, we have to prepare a new
boundary Boltzmann weight,

Ps s ′s ′′ =
∑

σ

WσsWσs ′Wσs ′′ , (10)

and a corner Boltzmann weight,

Cs s ′ =
∑

σ

WσsWσs ′ . (11)

It should be noted that these boundary weights Ps s ′s ′′ and Cs s ′
are obtained by taking a partial trace for the vertex weight; we
have the relations

Ps s ′s ′′ =
∑

s ′′′ Ts s ′s ′′s ′′′∑
s ′′′ Wσs ′′′

(12)

and

Cs s ′ =
∑

s ′′s ′′′ Ts s ′s ′′s ′′′(∑
s ′′ Wσs ′′

)(∑
s ′′′ Wσs ′′′

) , (13)

where one can neglect the denominator when one is interested
in the critical singularity; the denominators just subtract a
regular function from the free energy of the system. In case
one needs fixed boundary conditions, it is sufficient to avoid
taking the configuration sum for σ in the rhs of both Eqs. (10)
and (11), and to set all the boundary spins to be either +1 or
−1 according to the condition. The vertex weights Ts s ′s ′′s ′′′ ,
Ps s ′s ′′ , and Cs s ′ are invariant under arbitrary permutation of
the indices.

There are various choices of the factorization of the bond
weight in Eq. (8). Instead of using the relation in Eq. (7), one
can introduce an asymmetric decomposition

W =
(√

cosh K,
√

sinh K√
cosh K, −√

sinh K

)
, (14)

where we have used the matrix notation for the weight Wσs .
This expression is often employed in the tensor network formu-
lations [19], which does not require any typical symmetry for
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local weights, as long as the numerical treatment is concerned.
In case this asymmetric factorization in Eq. (14) is employed,
one has to care about the order of the indices in Ts s ′s ′′s ′′′ [21].
In the following numerical calculation, we use a symmetric
factorization.

The fractal lattice we treat in this article is constructed
by a recursive joining process of the local tensors, which is
nothing but a vertex weight in Eq. (9) at the beginning. In
each extension process, we join 12 local tensors, as shown
in the middle of Fig. 1. In the joining process, we take the
configuration sum for those tensor indices inside the cluster,
leaving those on the border that become new tensor indices of
the extended tensor. Because of the fractal geometry, some of
the bonds inside the cluster are not connected with each other.
We also take the configuration sum for these dangling bonds,
and the process just changes the normalization of the partition
function by an amount of

∑
s

Wσs = 2 cosh K[2(cosh 2K)1/2]−1/2 (15)

for each, if we choose the definition of Wσs in Eq. (7). We
take the rescaling effect into account, although the rescaling is
not essential to the thermodynamic properties of the system,
in particular, to its critical singularity. In this manner, what we
are dealing with is the Ising model, where there are only spins
denoted by the open dots in Fig. 1.

At first, we have only four spins s, s ′, s ′′, and s ′′′ on
the outgoing bonds, and after n extensions of the system,
we have 4 × 2n border spins on the surface of the extended
cluster. The application of the HOTRG to this fractal system
is straightforward. The recursive structure of the lattice is
suitable for the repeated process of system extensions and
renormalization group transformations in the HOTRG method.
The partition function Zn(T ) of the system after n extensions
is obtained by a contraction of the extended tensors; we choose
the periodic boundary conditions to evaluate

Zn(T ) =
∑
ij

T
(n)
ij ij , (16)

where T
(n)
ijkl is the renormalized local tensor obtained after n

extensions.

III. NUMERICAL RESULTS

In order to simplify the numerical analysis, we choose the
parametrization J = kB = 1, and thus we have K = 1/T . In
the numerical calculation by means of HOTRG, we keep D =
24 states at most for block spin variables. We have verified that
the choice D = 24 is sufficient for obtaining the converged free
energy

Fn(T ) = −kBT ln Zn(T ) (17)

in the entire temperature region [22]. We treat the free energy
per site

f (T ) = lim
n→∞

Fn(T )

Nn

(18)

in the following thermodynamic analyses, where the rhs
converges already for n � 30.
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FIG. 2. The specific heat c(T ) per site in Eq. (19). Inset:
Numerical derivative of c(T ) with respect to temperature; a sharp
peak is observed at Tc ≈ 1.317.

Figure 2 shows the temperature dependence of the specific
heat per site

c(T ) = ∂

∂T
u(T ), (19)

where u(T ) is the internal energy per site

u(T ) = −T 2 ∂

∂T

f (T )

T
, (20)

and the temperature derivatives are performed numerically.
There is no singularity in c(T ) around its maximum. One
might find a weak nonanalytic behavior at Tc ≈ 1.317, which is
marked by the dotted line in the figure; the numerical derivative
of c(T ) with respect to temperature (plotted in the inset) has a
sharp peak at the critical temperature Tc. It is, however, difficult
to determine the critical exponent α precisely, because of the
weakness in the singularity; as shown in the figure, c(T ) around
Tc is almost linear in T , and therefore α is nearly zero.

Figure 3 shows the spontaneous magnetization per site
m(T ), which is obtained by inserting a σ -dependent local
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FIG. 3. The spontaneous magnetization per site m(T ). Inset: The
power-law behavior below Tc = 1.31716.
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FIG. 4. Decay of the singular values after n = 8 extensions.

weight

T̃s s ′s ′′s ′′′ =
∑

σ

σWσsWσs ′Wσs ′′Wσs ′′′ (21)

into the system. Since the fractal lattice is inhomogeneous, the
value is weakly dependent on the location of the observation
site, but the critical behavior is not affected by the location; we
choose a site from the four sites that are in the middle of the
12-site cluster shown in Fig. 1. The numerical calculation by
HOTRG captures the spontaneous magnetization m(T ) below
Tc since any tiny round-off error is sufficient for breaking the
symmetry inside the low-temperature ordered state. Around
the transition temperature, the magnetization satisfies a power-
law behavior

m(T ) ∝ |Tc − T |0.0137, (22)

where the precision of the exponent is around 2%, which can
be read out from the inset of Fig. 3 as a tiny deviation from the
linear dependence (the dashed lines) in m(T )1/β near Tc.

As a byproduct of the numerical HOTRG calculation,
we can roughly observe the entanglement spectrum [23],
which is the distribution of the eigenvalue ωi of the density
matrix that is created for the purpose of obtaining the block
spin transformation. Since the effect of environment is not
considered in our implementation of the HOTRG method, the
eigenvalue ωi = λ2

i is obtained as the square of the singular
values λi in the higher-order singular value decomposition
applied to the extended tensors. Figure 4 shows ωi at T = Tc
in decreasing order. The decay is rapid, and therefore a further
increase of the number of block-spin states from D = 24 to
a larger number does not significantly improve the precision
in Zn; the difference in f (Tc) between D = 8 and D = 16
is already of the order of 10−6. It should be noted that the

eigenvalues are not distributed equidistantly in a logarithmic
scale; the corner double line structure is absent [24,25].

IV. CONCLUSIONS AND DISCUSSIONS

We have investigated the Ising model on the fractal lattice
shown in Fig. 1 by means of the HOTRG method. The
calculated specific heat c(T ) suggests that the model shows
a second-order phase transition. Qualitatively speaking, the
presence of weak singularity in the specific heat agrees with
the result of the ε expansion, which shows the increasing nature
of the critical exponent in c(T ) with respect to the space
dimension d [6]. The calculated spontaneous magnetization
m(T ) also supports the second-order phase transition with the
exponent βfractal ≈ 0.0137, which is smaller by one order of
magnitude than the critical exponent βsquare = 1/8 = 0.125 of
the square-lattice Ising model.

The fractal structure of the lattice modifies the entanglement
spectrum from that on the square lattice explained by the corner
double line picture [24,25]. Since each corner is missing in
the fractal structure in Fig. 1, short-range entanglement is
almost filtered out in the process of the renormalization group
transformation. This may be the reason why we do not need
many degrees of freedom for the renormalized tensors. The
situation is similar to the entanglement structure reported in
the tensor network renormalization [26–31].

The lattice geometry of the fractal lattice can be modified
in several ways. For example, one can alternate the system
extension process of the fractal for the purpose of modifying
the Hausdorff dimension; for every odd n, the extension with
12 vertices shown in Fig. 1 is performed, and for even n,
the normal extension with 16 vertices on the square lattice is
performed. Alternatively, one can also modify the basic cluster,
in such a manner as introducing a 6 × 6 cluster where four
corners are missing, etc. It is also worth considering a three-
dimensional fractal lattice, and applying the HOTRG method
as it was done for the cubic-lattice Ising model [19]. These
modifications do not spoil the applicability of the HOTRG
method while the numerical requirement is heavier than the
current research. An analysis of quantum systems on a variety
of fractal lattices is another possible extension [32,33]. These
further studies may clarify the role of entanglement in the
universality of the phase transition in both regular and fractal
lattices.
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