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Three-dimensional (3D) structures are useful for studying the spatial structures and physical properties of
porous media. A 3D structure can be reconstructed from a single two-dimensional (2D) training image (TI)
by using mathematical modeling methods. Among many reconstruction algorithms, an optimal-based algorithm
was developed and has strong stability. However, this type of algorithm generally uses an autocorrelation
function (which is unable to accurately describe the morphological features of porous media) as its objective
function. This has negatively affected further research on porous media. To accurately reconstruct 3D porous
media, a pattern density function is proposed in this paper, which is based on a random variable employed
to characterize image patterns. In addition, the paper proposes an original optimal-based algorithm called the
pattern density function simulation; this algorithm uses a pattern density function as its objective function,
and adopts a multiple-grid system. Meanwhile, to address the key point of algorithm reconstruction speed,
we propose the use of neighborhood statistics, the adjacent grid and reversed phase method, and a simplified
temperature-controlled mechanism. The pattern density function is a high-order statistical function; thus, when all
grids in the reconstruction results converge in the objective functions, the morphological features and statistical
properties of the reconstruction results will be consistent with those of the TI. The experiments include 2D
reconstruction using one artificial structure, and 3D reconstruction using battery materials and cores. Hierarchical
simulated annealing and single normal equation simulation are employed as the comparison algorithms. The
autocorrelation function, linear path function, and pore network model are used as the quantitative measures.
Comprehensive tests show that 3D porous media can be reconstructed accurately from a single 2D training image
by using the method proposed in this paper.
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I. INTRODUCTION

Three-dimensional (3D) structures are useful for studying
the microstructure of porous media. However, owing to a
variety of factors, high-resolution 3D structures of porous
media cannot be obtained directly or easily. On the other hand,
computer technology and mathematical modeling methods
can reconstruct 3D structures from a single high-resolution
two-dimensional (2D) image under the 3D structures meeting
with stationarity [1]. In recent years, numerous studies have
been conducted to reconstruct complex 3D structures, and
many classical algorithms have emerged. However, each of
these algorithms has disadvantages in terms of meeting the
demands of accurate reconstruction.

An accurate reconstruction algorithm should include the
following three aspects. First, the statistical properties of
the reconstructed result, such as porosity, the autocorrelation
function, and linear path function, should be consistent with
the training image (TI). Second, the morphological features of
any slice of three orthogonal planes should be similar to those
of the TI. Third, the algorithm should have strong stability,
which refers to the ability to produce highly repeatable and
comprehensive reconstructed results for different types of
structures.

According to the reconstruction procedure, 3D reconstruc-
tion algorithms can be classified into two types: layer-by-layer
reconstruction using 2D images, or reconstruction from 3D
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space directly. In the former classification, the basic idea
is to stack a series of 2D images to form a 3D structure.
For this classification, typical algorithms include methods
proposed by Tahmasebi and co-workers [2,3] and Hajizadeh
and co-workers [4,5]. The key point of this classification
is controlling the continuity and variability among adjacent
layers. Gao et al. [6] proposed a three-step sampling algorithm
that can effectively solve the problem. However, the recon-
structed vertical morphological features are unsatisfactory and
postprocessing is generally required [4,5], because patterns are
only matched in the layer direction.

Optimal-based algorithms, such as simulated annealing
[7–9], hierarchical simulated annealing (HSA) [10], and
Gaussian random field [11–14], are the most typical algorithms
of the latter classification. The objective function is set first,
then the 3D structure is initialized according to the porosity
of the TI; finally, points with different phases are selected and
exchanged constantly until the reconstruction results gradually
converge to the objective function. To avoid the local optimum
in the iterative process, an annealing mechanism from a
metal smelting process was introduced into the algorithm.
Stability is the most significant advantage of this algorithm,
which ensures that the reconstructed results will have the
characteristics specified by the objective function when they
converge to it. The key point of this algorithm is determining
the objective function. Autocorrelation functions are generally
used as the objective function in hierarchical simulated
annealing. However, some works in the literature point out (and
experiments show) that autocorrelation functions are unable
to accurately describe the morphological features of complex
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images, because images that meet with a single autocorrelation
function may have vastly different morphologies.

The model proposed by Okabe and Blunt [15,16] is one
typical method from the latter classification. To generate a 3D
structure from a 2D image, statistics measured on the XY plane
are transformed to the XZ and YZ planes with an assumption
of isotropy in orthogonal directions. At every voxel to be
assigned a pore or grain phase, three principal orthogonal
planes intersecting the voxel (XY, XZ, and YZ) are used to
locate conditioning data on these planes individually. The
probability of the phase at each voxel on the different planes is
estimated using single normal equation simulation (SNESIM).
The three measured probabilities are then weighted by the
amount of conditioning data on each plane to obtain a single
probability for the voxel. Finally, to generate a 3D structure,
the voxel phase is assigned based on this weighted probability.
The result provides favorable connectivity; however, some key
issues in this algorithm must be addressed: First, the criteria to
determine the probability weights of the three vertical sections
must be determined; second, the issue of SNESIM’s instability
in practical applications should be resolved [17–19].

Texture synthesis [20,21], a technique belonging to the
latter classification, has developed rapidly in recent years.
However, the reconstructed result only emphasizes visual sim-
ilarity with the TI, while consciously ignoring the consistency
of statistical properties.

Process-based reconstruction [22–26] also belongs to the
latter classification. It still has certain limitations; for example,
it requires substantial computer memory, and the required
computations are very intensive. In addition, because they
are based on actual physical processes, such models are not
sufficiently general, as they were developed for specific types
of porous media.

There have been other reconstruction algorithms, such
as Markov random fields [27,28], fast frequency-domain
transformation [29], discrete wavelet transformation algo-
rithms [30,31], and neural network algorithms [32]; however,
we will not discuss them here.

In order to reconstruct 3D porous media accurately, mor-
phological features are used as the target of the reconstruction,
and random variables are used to express the image patterns.
The pattern density function is then proposed to express the dis-
tribution of probabilities for all patterns. Accordingly, pattern
density function simulation (PDFSIM) is proposed. PDFSIM
is an optimal-based algorithm that employs a multiple-grid
system and uses a pattern density function as its objective
function.

The pattern density function is a high-order statistical
function; thus, when multiple-grid results converge in the
objective function, it ensures that the morphological features
of the reconstructed results will be similar to those of the TI,
and implies that statistical property trends, including porosity,
autocorrelation functions, and linear path functions, will be
consistent with the TI.

Four measures were adopted to increase reconstruction
speed. First, a relatively small template size (3×3 pixels)
was selected, based on the multiple-grid system. Second,
the neighborhood statistics method was proposed to calculate
the pattern density function of the 3D structure. Third, the
adjacent grid and reversed phase method was adopted to

select the exchange points. Fourth, the temperature-controlled
mechanism from the iterative process was simplified.

A 2D structure, battery materials, and core sample were
used to test the proposed algorithm; the autocorrelation
function, linear path function, and pore network model were
used to quantize the reconstructed results. HSA and SNESIM
were used to perform comparisons.

The remainder of the paper is organized as follows. The
concepts behind the pattern density function are described
in Sec. II. Section III presents the principles of PDFSIM.
Section IV describes experimental results and analysis. The
paper is summarized in Sec. V.

II. PATTERN DENSITY FUNCTION

A. Morphological features and patterns

Figure 1(a) shows a processed 2D slice selected from a 3D
Micro-CT core sample. The white pixels indicate oil storage
and are called the porous phase; black pixels indicate rock
and are called the rock phase. The global and local shapes
of an image are called morphological features. For example,
area A (a 25×25 rectangle) represents the oil cavity, and
area B (a 17×17 rectangle) represents the throat among the
cavities. These morphological features determine permeability
in oil extraction processes—thus, whether these morphological
features can be reconstructed successfully and stably, which is
a very important index to one reconstruction method.

The global morphological features of an image are com-
bined with local morphological features. A local morphologi-
cal feature is determined directly by the selection area, which
is called a template. A template is composed of N×N pixels;
N is typically odd. The center of the N×N area is called the
template center. After setting the template center at the center
of area B, a local morphological feature was extracted using
the 17×17 template, as shown in Fig. 1(b). Figure 1(c) shows a
local morphological feature extracted with the 9×9 template.

Figure 1(c) can be expressed as Fig. 2, in which one grid
indicates one pixel. A local morphological feature extracted
with a template is called a pattern. The entire image in
Fig. 2 is a single pattern obtained using the 9×9 template.
Any 3×3 area is a pattern that can be represented using
a 3×3 template, such as the A and B areas marked with
yellow rectangles. Therefore, a pattern is essentially a local
morphological feature of an image, and is the best measure
to express an image’s morphological features [33]. Different

FIG. 1. Morphological features of an image. (a) The core image;
(b) a local morphological feature extracted using the 17×17 template;
(c) a local morphological feature extracted using the 9×9 template.
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FIG. 2. Relationship between morphological feature and patterns.

patterns can be distinguished by coding, and all codes can
constitute one variable, P .

B. Multiple-grid system

Figures 1(b) and 1(c) show that the patterns extracted by
the larger template can depict the morphological feature much
more accurately. However, the number of patterns will increase
sharply as the size of the template increases. For example, a
template with a size of 3×3 will extract 23×3 = 512 patterns,
while 25×5 = 335 544 32 patterns can be extracted when a 5×5
template is used. The sharp increase in patterns will cause a
sharp increase in the number of calculations needed. This issue
can be effectively resolved by using a multiple-grid system
that enables small templates to obtain large morphological
features [16,17]. For example, Figure 3 shows a three-grid
system obtained using a 3×3 template. This system includes
sampling and reconstruction. The sampling process refers to
the sequence from the first grid to the third grid, and the
reconstruction process refers to the reverse sequence.

During reconstruction, the simulated data from the preced-
ing grid will be used as conditional data for the following grid,
in order to condition all corresponding areas in the following
grids. Using the example in Fig. 3, the 3×3 area in the third
grid will condition the 5×5 area in the second grid and the 9×9
area in the first grid. Analyzing the patterns in Fig. 3 reveals
that the 3×3 template can control the morphological feature of
a 9×9 area by using three grids. More generally, for M grids,
the area of size S

j
x×S

j
y at grid j controlled by Tx×Ty can be

expressed as follows:

Sj
x × Sj

y = [(Tx − 1)2M−j + 1] × [(Ty − 1)2M−j + 1]

j = 1,2, . . . ,M. (1)

To balance the speed and precision of the reconstruction
process, a relatively small template (3×3) is adopted in this
study. Thus, it must segment the TI into minimum size Gmin to

FIG. 3. Multiple-grid system.

obtain the morphological features effectively. Gmin represents
a grid in which there are no 3×3 regions belonging to a
phase while the TI is segmented from the original size to
a smaller one. This shows that all of the morphological
features can be completely expressed by the 3×3 template.
Different images will be segmented into different series, and
will usually exceed three grids. For example, the image shown
in Fig. 1(a) will be segmented into four grids, so the 17×17
area will be controlled nicely by the 3×3 template, according
to Eq. (1), and meanwhile the number of calculations will
not be increased sharply. This shows that the morphological
feature representing the throat [Fig. 1(b), size = 17×17] will
be depicted fully.

C. Pattern density function

By scanning an entire image with a size of Isize using a spe-
cific template, we can obtain all patterns pi (i = 1,2, . . . ,nmax)
and corresponding numbers Npi

. By using variable P to
express all patterns and f (pi) to express the probability of
pi , f (pi) can then be expressed in detail as follows:

f (pi) =

⎧⎪⎨
⎪⎩

Prob{P = pi} = Npi
/Isize∑

i Prob{P = pi} = 1

nmax = 2T 2
size

(i = 1,2, . . . ,nmax).

(2)
Tsize is the template size, and nmax is the maximum number of
patterns.

According to the probability theory described in [34,35],
Eq. (2) shows the distribution of probabilities for all patterns
in one image, which can be referred to as the pattern density
function. Figure 4(a) shows a processed battery materials
image; Fig. 4(b) is the same as Fig. 1(a). The two images
have visually different morphological features. Figure 4(c) also
shows that the pattern density functions of the two images are
obviously different; thus, pattern density functions can reflect
the morphological features of a specific image. Note that a
template with a size of only 2×2 is used in Fig. 4(c). This
smaller template was used to clarify the figure; the patterns
would have bonded together if the 3×3 template had been
used.

For an M grids system, pattern density function can be
expressed correspondingly as follows:

f
(
p

j

i

) =

⎧⎪⎪⎨
⎪⎪⎩

Prob
{
P j = p

j

i

} = N
p

j

i
/I

j
size∑

i Prob
{
P j = p

j

i

} = 1

nmax = 2T 2
size

(i = 1,2, . . . ,nmax; j = 1,2, . . . ,M). (3)

I
j
size is the size of grid j , and N

p
j

i
represents the number of

pattern p
j

i of variable P j in grid j . The pattern density function
is equivalent to the joint pattern density function consisting of
M variables; each variable has nmax values.

Figures 5(a)–5(d) show four grids from Fig. 1(a); the pattern
density functions are shown in Fig. 5(e). Different morpho-
logical features are depicted in different grids. Morphological
features depicted in the larger grids (a and b) are the details of
pores; the morphological features depicted in smaller grids (c
and d) are the positions and contours of pores. Thus, during
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FIG. 4. Different images have different distributions of patterns.
(a) Battery materials image with a size of 128×128; (b) core image
with a size of 128×128; (c) distribution of patterns of the two images,
using a 2×2 template.

reconstruction, the positions and contours of the pores will
be simulated first in smaller grids, and the details of the
pores will be simulated later in larger grids. By considering
the pattern density functions, it can be seen that when all
grids in the reconstructed results tend to converge in the
objective functions, which are the pattern density functions of
the corresponding grids in the TI, the morphological features
and statistical properties of the reconstruction results will be
consistent with those in the TI.

III. PRINCIPLES OF PDFSIM

Pattern density function simulation (PDFSIM) is a type of
optimal-based algorithm, in which a pattern density function
is used as the objective function and a multiple-grid system is
adopted, and the reconstruction is an iterative process. After
each exchange, the difference between the pattern density
functions of the reconstructed results and the TI is calculated.
The pattern density function is equivalent to the joint density
function consisting of M variables when M grids are used,
and each variable has 2N×N = 512 values when the template
size is N×N = 3×3; thus, convergence is very rigorous and
speed is a very key point in PDFSIM. Neighborhood statistics,
the adjacent grid and reversed phase method, and a simplified
temperature-controlled mechanism are proposed to solve this
problem.

A. Neighborhood statistical method

When using a 2D image to reconstruct the 3D structure,
it is assumed that the 3D structure is isotropic [36–38]; thus,

FIG. 5. PDFs of the multiple-grid system. (a) First grid, with a size of 128×128; (b) second grid, with a size of 64×64; (c) third grid, with
a size of 32×32; (d) fourth grid, with a size of 16×16; (e) the pattern density functions of four grids, using a 2×2 template.
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FIG. 6. Eighteen changed patterns caused by two exchanged
points, using a grid with a size of 16×16.

the morphological features of the three principal orthogonal
planes can be represented by the 2D image. To reconstruct
the 3D structure, the method must calculate the difference
between the pattern density functions of the 2D image and the
three vertical planes of the reconstruction structure, and assign
the difference to the energy value E, as shown below:

E =
∑

p

|fTI(p) − f3Dx(p)| +
∑

p

|fTI(p) − f3Dy(p)|

+
∑

p

|fTI(p) − f3Dz(p)|. (4)

E indicates the difference between the reconstructed result
and TI; a lower E value indicates a smaller difference.
Considering an example with a 128×128 image and the
3×3 template, one grid requires 128×128×3×3 iterations to
calculate the pattern density function of the reconstruction
image only once by counting the patterns of the entire image;
512 iterations are then required to calculate E and transmit
the pattern density function. Typically, millions of iterations
are required to reconstruct one image, which makes PDFSIM
unsuitable in practice.

Fortunately, the largest number of changed patterns that are
caused by point exchanges for two 3×3 neighborhoods is 18, as
shown in Fig. 6. After the two points are exchanged, the white
and black centers of the unchanged patterns are assigned pixel
values of 255 and 0, respectively; the white and black centers
of changed patterns are assigned pixel values of 170 and 85,
respectively. Only the changed value of E must be calculated;
this requires 18×3×3 iterations to count the pattern density
functions, 18 iterations to calculate the value of E, and 18

FIG. 7. Schematic of adjacent grid and reversed phase method:
(a) 4×4 grid; (b) 8×8 grid expanded by (a) and added points.

FIG. 8. The results of core image reconstructed by temperature-
controlled mechanism and simplified temperature-controlled mech-
anism, respectively. (a) Core sample; (b) the result reconstructed by
temperature-controlled mechanism; (c) the result reconstructed by
simplified temperature-controlled mechanism.

iterations to transmit the pattern density functions. Hence, the
neighborhood statistical method can shorten the reconstruction
process by dozens of iterations and make PDFSIM usable
for reconstruction. D represents the changed neighborhood;
energy E can be expressed as follows:

E =
∑
p∈Dx

|fTI(p) − f3Dx(p)| +
∑
p∈Dy

|fTI(p) − f3Dy(p)|

+
∑
p∈Dz

|fTI(p) − f3Dz(p)|. (5)

B. Adjacent grid and reversed phase method (AGRPM)

The adjacent grid and reversed phase method is used to
select the exchange points, and is proposed based on two
considerations. First, with iterative deepening, the pores will
tend to aggregate. Second, in a multiple-grid system, the
simulated points on the former grid are used as the conditional
data on the current grid; this largely determines the value of
the surrounding points.

First, the point that is simulated on the former grid is set as
the center point of the neighborhood (a 3×3 domain in a 2D
structure, or a 3×3×3 domain in a 3D structure) of the current
grid. If the center point is white, the black points randomly
arranged on the current grid are selected as the exchange points
belonging to this neighborhood; accordingly, if the center point
is black, the white points are selected as the exchange points.

The method is shown in Fig. 7. Grid (b) with a size of 8×8
is expanded by grid (a) with a size of 4×4. The simulated
white and black points in grid (a) are assigned pixel values of
255 and 0, respectively. The white and black points selected
for exchanging on grid (b) are assigned pixel values of 150
and 100, respectively. The white and black points not selected
for exchanging on grid (b) are assigned pixels values of

TABLE I. The remnants E of the results reconstructed by
PDFSIM TM and PDFSIM STM.

Remnants E

First grid Second grid Third grid Fourth grid

PDFSIM TM 0.5% 1.7% 4.6% 6.4%
PDFSIM STM 0.6% 1.9% 4.7% 6.3%
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TABLE II. The time cost of the results reconstructed by different
methods.

Times (s)
PDFSIM TM 56
PDFSIM STM 15
HSA 20
SNESIM 20

200 and 50, respectively. The periodic boundary condition
is considered. Only 36 points are selected from the 48 added
random points by using this method. With iterative deepening,
the number of points that can be selected as exchange points
decreases constantly as the polymerization and speed of
convergence rapidly accelerate. Experiments prove that this
method can significantly improve reconstruction speed.

C. Simplified temperature-controlled mechanism

After each exchange, it is necessary to calculate the changed
energy �E, which is the value used for accepting the new state.
EOR and E indicate the energy before and after exchanging,
respectively; �E can be expressed as follows.

�E = EOR − E. (6)

In order to prevent the local optimum in the iterative
operation, the HSA introduces the temperature-controlled
mechanism (TM), which is the Metropolis criterion [7,8]:

p(�E) =
{

1, �E � 0
exp(−�E/T ), �E > 0 . (7)

T indicates the current temperature of the reconstruction
structure. However, the temperature-controlled mechanism
greatly decelerates the iteration. To accelerate the iterative
procedure, a type of simplified temperature-controlled mech-
anism (STM) is adopted in this study, in which a temperature-
controlled mechanism is only used at the minimum grid and
the remaining grids are not considered. Thus, the acceptance

criterion of the remaining grids can be expressed as follows:

p(�E) =
{

1, �E � 0

0, �E > 0
. (8)

Two reasons can support this view. First, the experi-
ments indicate that local optimization can easily occur in
the minimum grid. Second, the simulated points on the
former grid, which are arranged as the conditional data on
the current grid, can prevent local optimization effectively.
Figure 8 shows the results reconstructed by the PDFSIM
based on temperature-controlled mechanism (PDFSIM TM)
and simplified temperature-controlled mechanism (PDFSIM
STM), respectively. Tables I and II show the remnants of E and
the time cost of the two methods. A 3.4 GHz Intel machine was
used in these experiments. The experimental results show that
the simplified temperature-controlled mechanism can greatly
increase reconstruction speed and does not significantly affect
reconstruction of the random structure. Meanwhile, the two
methods can accurately reconstruct the morphological features
of the throat, which are marked with yellow rectangles in
Figure 1(a).

D. 3D reconstruction procedure

Before reconstruction, the TI should be segmented into
multiple grids and two calculations must be performed. First,
the pattern density function of every TI grid is calculated and
then assigned as the objective function of the corresponding
reconstruction grid. Second, the porosity of every TI grid
is calculated, and then used as the objective porosity of the
reconstruction grid.

The reconstruction begins with the smallest grid, in which
all data are arranged randomly according to the objective
porosity. Two points with different phases are randomly
selected, and the difference between the pattern density
functions of the reconstruction grid and TI grid is calculated
according to formulas (5) and (6). The exchange state will
then be accepted according to formula (7). Using continuous

TABLE III. The procedure of PDFSIM.

(1) Calculate the min grid Gmin and the max grid Gmax;
(2) for (G = Gmin; G! = Gmax; G + +)
(3) Initialize the grid G, treated differently according to the Gmin and others:
(4) Set the energy limit EG to exit cycle.
(5) Calculate the energy E of the reconstructing 3D structure:
(6) while (E > EG)
(7) Select the exchanging points sets setw and setb according to AGRPM;
(8) Set loop times Tl = min(Sw,Sb);
(9) for (T = Tl ; T ! = 0; T − −)
(10) Select the exchanging points pw and pb randomly from setw and setb, respectively.
(11) Calculate the changed energy �E according to neighborhood statistical method.
(12) if (�E < 0)
(13) Exchange the points pw and pb, and preserve the new pattern density function;
(14) else
(15) Cancel the exchanged points pw and pb, and recover the pattern density function.
(16) End 9.
(17) End 2.
(18) The 3D structure is produced and the procedure is finished.
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FIG. 9. The results of a 2D artificial image reconstructed by
different methods. (a) Original image; (b) the result reconstructed
by HSA; (c) the result reconstructed by SNESIM; (d) the result
reconstructed by PDFSIM; (e) an E-type image composed by 90
results reconstructed by PDFSIM.

iteration, the pattern density function of the reconstruction grid
will gradually converge in the objective function. When the
grid is simulated, all data will be arranged at the corresponding
location in the next grid and set as the conditional data. All
operations are the same as before, except for the accepting
condition defined in formula (8). When the iteration exits from
the largest grid, the entire reconstruction process is complete.
Additional details about the algorithm are shown in Table III.

IV. RESULTS AND DISCUSSION

A. 2D reconstruction

In order to display the results reconstructed by PDFSIM, an
artificial structure consisting of concentric rings was selected
to represent a certain complex structure, as shown in Fig. 9(a).
The results produced by HSA and SNESIM are provided
for comparison. SNESIM used a template size of 9×9; its
minimum number of repetitions was five. The conditions used
by HSA and PDFSIM specified an acceptance probability of
0.5 in the first exchange; this probability was used to set the
initial temperature. They also specified that the temperature
would decrease by 1%.

Comparing the results in Figs. 9(b)–9(d), which were
reconstructed by HSA, SNESIM, and PDFSIM, respectively,
it is clear that PDFSIM can reconstruct morphology more
accurately than the other solutions. Figure 9(e) is an E-type
image composed of 90 results reconstructed by PDFSIM; this
image can be used to indicate the stability of an algorithm. The
E-type image can reproduce the TI clearly, which indicates that
PDFSIM has strong stability.

B. 3D reconstruction using a 2D image of battery material

Figure 10(a) shows a processed microstructure image of
the compound NiO-CeO2 (which is commonly used as battery
material) under 1250 °C; the image has a resolution of 10 μm.
Figures 10(b)–10(d) show the 3D results reconstructed by
HAS, SNESIM, and PDFSIM, respectively. The reconstruct-
ing conditions are consistent with 2D reconstruction.

In order to display the morphological features of the
3D structure’s three orthogonal planes, the 2D slices of the
XY, XZ, and YZ planes of the 3D reconstructed results are
shown in Fig. 11 for comparison. Experiments show that
the morphological features of the XY, XZ, and YZ planes
from the 3D results reconstructed by HSA, such as those
shown in (a)–(c), are consistent but not ideal. The XY plane
of the 3D results reconstructed by SNESIM, which is based
on the layer-by-layer method, can reproduce morphological
features such as (d) accurately. However, because it uses an
asymmetric process, the morphological features of the XZ
and YZ planes are insufficient; examples are shown in (e)
and (f). The morphological features of all three planes can
be reconstructed accurately by PDFSIM, as shown in (h)–(j).

In order to quantify the morphological difference between
the TI and the results reconstructed by the different methods,
Table IV shows the differences between the pattern density
functions of the TI and the methods’ reconstruction results
for three orthogonal planes in three grids. To differentiate the
reconstruction, the 5×5 template is used here. The statistics
data in the table also indicate that the morphological features of
PDFSIM’s reconstruction results show the highest similarity
to the TI, and that the morphological features of the three
orthogonal planes are consistent.

C. 3D reconstruction using a 2D image of core

In this section, one 3D Micro-CT core sample, with a size
of 128×128×128 pixels and a resolution of 10 μm, is used for
further testing. The sample does not exhibit much variability.

FIG. 10. Three-dimensional reconstructed results of the battery material. (a) Two-dimensional training image; (b) the result reconstructed
by HSA; (c) the result reconstructed by SNESIM; (d) the result reconstructed by PDFSIM.

012140-7



GAO, TENG, HE, ZUO, AND LI PHYSICAL REVIEW E 93, 012140 (2016)

FIG. 11. Morphological features of three orthogonal planes of 3D reconstructed results. (a–c) The slices of XY, XZ, and YZ planes of the
3D result reconstructed by HSA; (d–f) the slices of XY, XZ, and YZ planes of the 3D result reconstructed by SNESIM; (g–i) the slices of XY,
XZ, and YZ planes of the 3D result reconstructed by PDFSIM.

One 2D image from this 3D sample is selected as the TI,
as shown in Fig. 12(a). It has a porosity of 0.252, consistent
with the porosity of 0.246 in the 3D sample. The 2D image

TABLE IV. The morphological difference between TI and recon-
structed results.

First grid Second grid Third grid

HSA XY plane 12.1% 18.5% 21.7%
XZ plane 13.6% 17.5% 22.3%
YZ plane 12.2% 17.1% 22.5%

SNESIM XY plane 3.6% 7.1% 8.8%
XZ plane 13.2% 24.1% 31.4%
YZ plane 14.3% 24.4% 30.1%

PDFSIM XY plane 2.2% 3.7% 7.3%
XZ plane 2.2% 3.6% 6.0%
YZ plane 1.8% 3.5% 6.4%

has the typical morphological features of the 3D sample, and
its low-order statistics characteristics are consistent with the
3D sample. The reference Micro-CT samples are shown in
(b) and (c), and the reconstructed results are shown in (d)
and (e). By observing its appearance, it is evident that the
morphological features of the reconstructed 3D result exhibit
perfect similarity with the Micro-CT sample.

The autocorrelation function and linear path function were
selected to further quantify the reconstructed result. The void-
void (pore-pore) autocorrelation function is defined by

R(r) = 〈[I (u) − φ][I (u + r) − φ]〉
φ − φ2

, (9)

where the averaging is over all locations u within the volume,
and I (u) is an indicator function such that I (u) = 1 if r is in
the pore space, and I (u) = 0 otherwise. The porosity is sim-
ply φ=〈I (u)〉. The comparisons between the autocorrelation
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FIG. 12. Three-dimensional reconstructed results of the core. (a) Two-dimensional training image; (b) 3D structure of Micro-CT sample;
(c) the perspective image of Micro-CT sample; (d) reconstructed result; (e) the perspective image of reconstructed result.

FIG. 13. Comparison of autocorrelation functions, in (a) the x direction, (b) the y direction, and (c) the z direction.
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FIG. 14. Comparison of linear path functions, in (a) the x direction, (b) the y direction, and (c) the z direction.

functions of Micro-CT and the reconstructed results are shown
in Fig. 13.

The linear path function, also called the multiple-points
connectivity probability, characterizes the local connectivity of
the pores. This quantity is the probability that a line segment lr
of length r is entirely in pore space. In practice, the probability
is estimated only along three orthogonal directions of a 3D
structure. The normalized linear path function can be defined
by

L(r) = Prob{I (u) = 1, I (u + 1) = 1, . . . ,I (u + r) = 1}
φ

,

(10)
where u is the outset of the line segment lr , I (u) is an
indicator function such that I (u) = 1 if u is in the pore
space, and I (u) = 0 otherwise. The porosity is φ = L(0). The
comparisons between the lineal path functions of Micro-CT
and the reconstructed results are shown in Fig. 14.

Figures 13 and 14 show that the low-order statistics
properties of the reconstructed results are very consistent
with the related samples, although PDFSIM does not use
these functions as the reconstructing condition. As mentioned
previously, this occurs because the pattern density function is a
high-order statistical function, which implies these low-order
statistical functions.

To comprehensively test the spatial characteristics and
relative permeability for the two-phase flow of the recon-
structed 3D results, we used the pore-throat networks model

proposed by Dong and Blunt [39], who used the maximal ball
algorithm to extract the sizes of the pores and throats from the
structure of a porous medium. This algorithm was developed to
extract topologically disordered networks of pores and throats
with parametrized geometry and interconnectivity, shown
as Fig. 15. Table V compares some important parameters
of the pores and throats in the pore network model from
the Micro-CT sample of carbonate rock and 20 continuous
reconstructed results. The two sets of results agree well—
almost all parameters of the reconstructed porous media are
in accordance with the Micro-CT of the porous media. In

FIG. 15. Pore-throat network model. (a) The pore-throat network
model of Micro-CT; (b) the pore-throat network model of recon-
structed result.
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TABLE V. Some important parameters of the pore and throat in the pore network.

Micro-CT Mean Proportion of standard deviation

Number of pores 1132 1232 1.1%
Number of throats 3207 3234 0.9%
Shape factor 0.030 0.030 0.0%
Size of pore radius (m) 1.68×10−5 1.67×10−5 0.6%
Size of throat radius (m) 7.45×10−6 7.32×10−6 0.7%
Volume of pore (m3) 3.88×10−13 3.70×10−13 1.3%
Volume of throat (m3) 2.33×10−14 2.25×10−14 2.2%
Radius size ratio of pore and throat 0.308 0.308 1.2%
Coordination number 5.668 5.25 7.1%
Effective permeability (mD) 1570 1275 6.2%

particular, the shape factor of the reconstructed result, which
indicates the rate of the area and the perimeter of the pores
slice [40], is equal to that of Micro-CT at every instance.
Furthermore, the reconstructed results exhibit strong stability.

The two-phase flow test included a two-step procedure.
During the primary flooding, the pore network is assumed to
be strongly wetted by the wetting phase (by water in water-oil
systems, oil in oil-gas systems, or oil in the carbonate rock),
with a receding contact angle of 0° and an advancing contact
angle of 0°. During the secondary flooding, the receding
contact angle was set to 50° and the advancing contact angle
was set to 60°. The oil and water densities were assumed to be
900 and 1000 kg/m3, respectively, and the water-oil surface
tension was assumed to be 3×102 N/m; the oil and water vis-
cosities were assumed to be 1.05×103 and 1.0×103 kg/(m s),
respectively. The computed results for both the reconstructed
result and the Micro-CT sample are presented in Fig. 16. The
agreement between the two 3D structures is excellent. This
provides strong evidence that the reconstructed result has a
very similar microstructure to that of Micro-CT.

Comprehensive experiments show that the method pro-
posed in this paper can accurately reconstruct complex 3D
structures of porous media from a single 2D training image.

V. CONCLUSION

To accurately reconstruct the morphological features of 3D
porous media using a single 2D training image, the pattern

density function and pattern density function simulation are
proposed in this paper. Further, to increase the algorithm’s
reconstructing speed, neighborhood statistics, the adjacent
grid and reversed phase method, and a simplified temperature-
controlled mechanism are also proposed.

Three sets of experiments were used to comprehensively
test the proposed algorithm. In the first set of experiments,
one artificial structure was processed using 2D reconstruction
to facilitate a direct visual comparison. In the second set of
experiments, a 2D image of a type of battery material was used
to reconstruct a 3D structure, which shows the same effect
as the three orthogonal planes of a 3D reconstructed result.
A Micro-CT core sample was used in the third experiment.
Additional measures, including the autocorrelation function,
linear path function, and the pore network model, were used to
qualify the reconstruction results. Comprehensive tests show
that morphological features of a TI can be reconstructed
accurately, and that the low-order statistics of the reconstructed
results are perfectly consistent with the TI; moreover, the
algorithm has strong stability.

Several experiments demonstrate that the algorithm pro-
posed in this paper performs well when the 2D training image
is a sample of a stationary random 3D structure. While the
2D training image is restricted to a limited domain and the
morphological features of the 3D structure cannot be obtained
thoroughly, the reconstructed results are unsatisfactory. Be-
sides, a small size template (3×3 pixels) is used in this paper
considering the reconstruction speed, but to precisely describe

FIG. 16. Relative permeability curves of the 3D micro-CT image and the 3D reconstructed result. (a) Drainage and (b) imbibition.
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the morphological features with much larger size a larger
template is needed.

Considering its accuracy, we believe that the algorithm
proposed in this paper can be used for practical applications.
The method also has potential applications in the reconstruc-
tion of a wide variety of anisotropic systems, some of which
will be studied and reported on in the near future. Improving

the algorithm’s reconstruction speed will also require further
research.
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