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Survival of interacting diffusing particles inside a domain with absorbing boundary
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Suppose that a d-dimensional domain is filled with a gas of (in general, interacting) diffusive particles with
density n0. A particle is absorbed whenever it reaches the domain boundary. Employing macroscopic fluctuation
theory, we evaluate the probability P that no particles are absorbed during a long time T . We argue that the most
likely gas density profile, conditional on this event, is stationary throughout most of the time T . As a result, P
decays exponentially with T for a whole class of interacting diffusive gases in any dimension. For d = 1 the
stationary gas density profile and P can be found analytically. In higher dimensions we focus on the simple
symmetric exclusion process (SSEP) and show that − lnP � D0T Ld−2 s(n0), where D0 is the gas diffusivity,
and L is the linear size of the system. We calculate the rescaled action s(n0) for d = 1, for rectangular domains
in d = 2, and for spherical domains. Near close packing of the SSEP s(n0) can be found analytically for domains
of any shape and in any dimension.
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I. INTRODUCTION

Diffusive lattice gases serve as useful simplified models
of many stochastic spatiotemporal systems in nature. Among
them are diffusion-controlled chemical reactions: reactions
which occur quickly once the diffusing reagent particles
“find” each other in space. A simple but amazingly rich
model of this process, due to Smoluchowski [1], treats one
of the two reacting species as an immobile large-size minority.
Smoluchowski’s model allows one to calculate the expected
reaction rate (that is, the expected rate of absorption of a
random walker by a target). Statistics of fluctuations of this
rate have been the subject of numerous studies [2–6]. When
the majority molecules are treated as noninteracting random
walkers, the calculation of the effective reaction rate and its
fluctuation statistics boils down to calculating a single-particle
probability. Recently some progress has been also made in the
situation when the diffusing particles interact with each other
[7,8].

Here we extend this line of work by putting the walkers
inside a domain of which the boundary is the “target.” Suppose
that a gas of diffusing and, in general, interacting particles
with density n0 fills a d-dimensional domain �. Each particle
is absorbed immediately whenever it reaches the domain
boundary ∂�. This simple setting is a caricature of a host
of processes inside the living cell, where a molecule needs to
reach the cell membrane [9]. We assume that, on macroscopic
length and time scales, the average gas density inside the
domain, n(x,t), evolves according to a diffusion equation,

∂tn = ∇ · [D(n)∇n], (1)

with diffusivity D(n) that may depend on n. The boundary
condition at the absorbing domain boundary is

n(x ∈ ∂�,t) = 0. (2)

By solving Eqs. (1) and (2) for a given initial condition, such
as n(x,t = 0) = n0, and calculating the diffusion flux into the
domain boundary, one can find the expected number N̄ (T ) of
absorbed particles during time T . In individual realizations of
the underlying microscopic stochastic process, the number of
absorbed particles fluctuates around N̄ (T ), and it is interesting

to determine the fluctuation statistics. In this work we will
deal with an extreme limit of these statistics, corresponding
to the survival probability P(T ): the probability that not a
single particle hit the domain boundary by time T , which is
long compared to the characteristic diffusion time through the
domain. For noninteracting diffusing particles (we will call
them random walkers, or RWs), D(n) = D0 = const. In this
case one obtains [6]

− lnPRW � n0D0T V μ2
1, (3)

where V is the domain volume, and μ1 is the lowest positive
eigenvalue of the eigenvalue problem ∇2u + μ2u = 0 for
the Laplace operator inside the domain with the boundary
condition u(x ∈ ∂�) = 0. For a d-dimensional sphere of
radius R, Eq. (3) yields the well-known results

− lnPRW � n0D0T Rd−2fd, (4)

where

fd �

⎧⎪⎨
⎪⎩

π2

2 , d = 1,

πz2
1, d = 2,

4π3

3 , d = 3,

(5)

(6)

(7)

and z1 = 2.4048 . . . is the first positive root of the Bessel
function J0(z).

The exponential decay of PRW with time T , as described
by Eqs. (3) and (4), reflects the fact that, at long times,
the single-particle survival probability decays exponentially
with time. Indeed, for a single RW, the survival probability
distribution ρ1(x,t) inside the domain obeys the diffusion equa-
tion ∂tρ1 = D0∇2ρ1 with the absorbing boundary condition
ρ1(x ∈ ∂�,t) = 0 and a δ-function initial condition [5]. By
finding ρ1(x,t) and integrating it over the domain, one obtains
the single-particle survival probability as a function of time.
Its long-time asymptotic describes an exponential decay with
the decay rate corresponding to the lowest positive eigenvalue
μ1 of the Laplace operator. The gas survival probability PRW

is given by the product of the survival probabilities of all
independent particles inside the domain. What is left to arrive
at Eq. (3) is to go over to the continuum limit by replacing
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a discrete sum in the exponent of PRW by an integral. For
completeness, this procedure is presented in Appendix A.
As a result, the exponential long-time decay of the survival
probability holds, for the independent RWs, in all spatial
dimensions, as evidenced by Eq. (3).

An important finding that we report here is that the
exponential-in-time decay of the survival probability P holds
when the diffusing particles interact with each other, and
the single-particle picture breaks down. This nontrivial result
is a consequence of the fact that the optimal gas density
history, conditional on the long-time survival of all particles,
is almost stationary, in any spatial dimension. We show it
here by employing the macroscopic fluctuation theory (MFT)
[10]. For d = 1 the stationary MFT problem is soluble for
a whole family of interacting gases. In higher dimensions
the solution is in general unavailable. Here we focus on a
gas of particles interacting via exclusion, so as to describe,
e.g., diffusion-controlled chemical reactions in a crowded
environment of a living cell [11]. Specifically, we will study
the symmetric simple exclusion process (SSEP). In the SSEP
each particle can hop to a neighboring lattice site if that site
is vacant. If it is occupied, the move is not allowed [12]. For
the SSEP we obtain − lnP � D0T Ld−2 s(n0), where L is the
linear size of the domain [13]. We calculate the rescaled action
s(n0) for several domain shapes and in different dimensions.
As we show, s(n0) increases with the density n0 faster than
linearly; see Fig. 5 for d = 1, Fig. 7 for a rectangle in d = 2,
and Fig. 9 for a sphere in d = 3. In the MFT formalism s(n0)
diverges as n0 approaches unity, but this divergence is cured
when n0 is sufficiently close to unity where the MFT breaks
down.

The interior survival problem, considered here, has an
exterior analog that is known by the name “survival of the
target.” In the exterior problem a gas of particles surrounds
an absorbing domain from outside. As in the interior problem,
one is interested in the probability that no particle hits the
domain during time T . For the RWs the exterior problem
was extensively studied in the past [14–22]. Recently, the
theory has been extended to interacting diffusive gases: for
the survival probability [7] and in the more general context of
full absorption statistics [8]. As our present work, Refs. [7]
and [8] employed the MFT formalism. In contrast to the
interior problem, the optimal gas density history in the exterior
case becomes almost stationary only for d > 2. Furthermore,
there is a subtle but important difference in the stationary
MFT formulations of the interior and exterior problems, as we
explain in the following.

In the next section we formulate the MFT in the context
of the interior survival problem. In Sec. III we apply it to
the noninteracting RWs in one dimension, where P is known
[see Eqs. (4) and (5)]. In this case we can solve the full
time-dependent problem exactly. The solution shows that the
optimal density profile for this P is time independent for
most of the time. The full time-dependent solution will help
us identify the correct stationary formulation of the MFT
problem. In Sec. IV we apply this stationarity ansatz to an
arbitrary interacting diffusive gas in any dimension. This yields
a stationary equation which can be simplified further upon a
transformation of variable. In Sec. V we apply this procedure
to the SSEP. In Sec. V A we present exact results for the

SSEP in d = 1: for the stationary optimal density profile
and for the survival probability. We verify these results, in
the same section, by solving the full time-dependent MFT
problem numerically. In Sec. V B we solve the stationary
MFT problem for a rectangular domain, d = 2. In Sec. V C
we study, analytically and numerically, the SSEP survival in
spherical domains. In Sec. V D we identify a universal behavior
of the solution in the high-density limit of the SSEP: inside a
domain of any shape and in any dimension. Finally, in Sec. VI
we present a general solution of the gas survival problem in
d = 1 which holds for a whole family of interacting diffusive
gases. Section VII presents a brief discussion of our results.
For completeness, in Appendix A we calculate the survival
probability of a gas of RWs from the microscopic perspective.
Appendix B extends the one-dimensional solution of the MFT
equations for the RWs, presented in Sec. III, to an arbitrary
dimension and arbitrary domain shape.

II. MACROSCOPIC FLUCTUATION THEORY OF
PARTICLE SURVIVAL

The starting point of the MFT [10] is fluctuational hydro-
dynamics, a Langevin equation for the fluctuating gas density
q(x,t):

∂tq = ∇ · [D(q)∇q] + ∇ · [
√

σ (q) η(x,t)], (8)

where η(x,t) is a zero-average Gaussian noise, δ correlated
both in space and in time. Equation (8) provides an asymptot-
ically correct large-scale description of fluctuations in a broad
family of diffusive lattice gases [12]. At the level of fluctua-
tional hydrodynamics, a diffusive gas is fully characterized by
the diffusivity D(q) and an additional coefficient σ (q), which
comes from the shot noise and is equal to twice the gas mobility
coefficient [12]. For example, for the noninteracting RWs one
has D(q) = D0 = const and σ (q) = 2D0q, whereas for the
SSEP D(q) = D0 = const and σ (q) = 2D0q(1 − q) [12,13].

The MFT equations are essentially the saddle-point equa-
tions of the path-integral formulation, corresponding to the
weak-noise limit of Eq. (8) [10,23,24]. The MFT theory
employs the typical number of particles in the relevant region
of space as a large parameter. It allows one to calculate the
optimal path of the system: the most probable density history
conditional on a specified large deviation. If the large deviation
is described in terms of a spatial integral constraint, this
constraint can be accommodated via the Lagrange multiplier
formalism and provides a problem-specific boundary condi-
tion in time [24].

Suppose we are interested in the probability that N particles
are absorbed by the domain boundary by time T . (We will
ultimately consider the limit of N = 0). This defines an
integral constraint on the solution:∫

�

dx[n0 − q(x,T )] = N. (9)

The same type of constraint appears in the exterior problem
[7,8]. A similar constraint also appears in the problem of
statistics of integrated current through a lattice site during
a specified time [24–28]. Referring the reader to Ref. [24] for
a detailed derivation, we will only present here the resulting
MFT equations and boundary conditions.
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The MFT equations can be written as two coupled partial
differential equations for the optimal density field q(x,t) (the
“coordinate”) and the conjugate “momentum” density field
p(x,t):

∂tq = ∇ · [D(q)∇q − σ (q)∇p], (10)

∂tp = −D(q)∇2p − 1
2 σ ′(q)(∇p)2, (11)

where the prime denotes the derivative with respect to the
single argument. Equations (10) and (11) are Hamiltonian,

∂tq = δH/δp , ∂tp = −δH/δq . (12)

Here

H [q(x,t),p(x,t)] =
∫

�

dxH (13)

is the Hamiltonian, and

H(q,p) = −D(q)∇q · ∇p + 1
2σ (q)(∇p)2 (14)

is the Hamiltonian density. The absorbing boundary imposes
zero boundary conditions for q:

q(x ∈ ∂�,t) = 0. (15)

Since the values of q are fixed at the boundary, the conjugate
field p must vanish there [10,23,29]:

p(x ∈ ∂�,t) = 0. (16)

For the RWs and SSEP this boundary condition was derived
from the microscopic models [23,29]. Although a general
proof of Eq. (16) is unavailable [30], its validity has been
verified in many examples (see Refs. [7,8,10,28]).

The boundary conditions in time are the following. For the
density q we choose a deterministic initial condition

q(x ∈ �,t = 0) = n0. (17)

The boundary condition in time for p(x,t = T ) follows from
the integral constraint (9), accounted for via a Lagrange
multiplier [24]:

p(x ∈ �,t = T ) = λ,
(18)

p(x ∈ ∂�,t = T ) = 0,

where the Lagrange multiplier λ is ultimately set by the
constraint (9). The zero-absorption limit N = 0, that we
are interested in here, corresponds to the limit of λ → +∞
[7,8,28]. In this limit the particle flux to the boundary vanishes
at all times 0 < t < T .

Once the MFT equations with the proper boundary con-
ditions are solved, we can calculate the action S that yields
− lnP up to a pre-exponential factor:

− lnP � S =
∫ T

0
dt

∫
�

dx(p∂tq − H)

= 1

2

∫ T

0
dt

∫
�

dx σ (q) (∇p)2. (19)

III. MFT OF RANDOM WALKERS IN ONE DIMENSION:
TIME-DEPENDENT SOLUTION AND STATIONARY

ASYMPTOTIC

A one-dimensional domain can be set to be an interval
of length 2R, centered at the origin. For the RWs the MFT
equations become

∂tq = D0∂
2
x q − 2D0∂x(q∂xp), (20)

∂tp = −D0∂
2
xp − D0(∂xp)2. (21)

The boundary conditions in space are

q(|x| = R,t) = 0, (22)

p(|x| = R,t) = 0. (23)

The boundary conditions in time are

q(x,t = 0) = n0, (24)

p(x,t = T ) = λ θ (R − |x|), (25)

where θ (. . . ) is the Heaviside step function.
As many other large-deviation problems for the RWs,

the problem (20)–(25) is exactly soluble using the Hopf-
Cole transformation Q = qe−p and P = ep, defined by the
generating functional∫ R

−R

dx F1(q,Q) =
∫ R

−R

dx[q ln(q/Q) − q]. (26)

In the new variables the Hamiltonian density is

H(q,p) = −D0∂xQ∂xP, (27)

and the action can be expressed using only the initial and final
states of the system (see the Appendix of Ref. [28]),

− lnP � S =
∫ T

0
dt

∫ R

−R

dxD0q(∂xp)2 (28)

=
∫ R

−R

dx[Q(P ln P − P + 1)]
∣∣T
0 . (29)

The transformed MFT equations are fully decoupled:

∂tQ = D0∂
2
xQ, (30)

∂tP = −D0∂
2
xP, (31)

and the transformed boundary conditions are

Q(|x| = R,t) = 0, (32)

P (|x| = R,t) = 1, (33)

and

Q(x,t = 0) = n0

P (x,t = 0)
, (34)

P (x,t = T ) = 1 + (eλ − 1)θ (R − |x|). (35)
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The solution of the antidiffusion equation (31) backward in
time is obtained by integrating the “final” condition (35) with
Green’s function G(x,x ′,T − t), where

G(x,x ′,t) = 1

R

∞∑
n=1

sin

[
πn(x + R)

2R

]

× sin

[
πn(x ′ + R)

2R

]
e
− π2n2D0 t

4R2 . (36)

The integration yields

P (x,t) = 1 + (eλ − 1)
∫ R

−R

dx ′G(x,x ′,T − t)

= 1 + (eλ − 1)g(x,T − t), (37)

where

g(x,t) =
∫ R

−R

dx ′G(x,x ′,t)

=
∞∑

n=0

4

π (2n + 1)
sin

[
π (2n + 1)(x + R)

2R

]
e
− π2(2n+1)2D0 t

4R2 .

(38)

Evaluating P (x,t = 0) from Eq. (37) and using Eq. (34), we
obtain the initial condition,

Q(x,t = 0) = n0

1 + (eλ − 1)g(x,T )
,

for the diffusion equation (30). The solution of the latter
equation is

Q(x,t) = n0

∫ R

−R

dx ′ G(x,x ′,t)
1 + (eλ − 1)g(x ′,T )

. (39)

Transforming back to q and p, and taking the zero-absorption
limit of λ → ∞, we obtain

q(x,t) = n0g(x,T − t)
∫ R

−R

dx ′ G(x,x ′,t)
g(x ′,T )

, (40)

v(x,t) = ∂xp = ∂x ln g(x,T − t), (41)

− lnP � −n0

∫ R

−R

dx ln g(x,T ). (42)

We are interested in the long-time limit, T � R2/D0. A
close inspection of the exact relations (36) and (38) reveals
an important feature that plays a crucial role in our further
analysis. For D0t/R

2 � 1 and D0(T − t)/R2 � 1, that is,
outside of narrow boundary layers (in time) of typical width
R2/D0 around t = 0 and t = T , the functions G(x,x ′,t) and
g(x,T − t) are well approximated by their lowest modes,
n = 1 and n = 0, respectively:

G(x,x ′,t) � 1

R
cos

(πx

2R

)
cos

(
πx ′

2R

)
e
− π2D0 t

4R2 , (43)

g(x,T − t) � 4

π
cos

(πx

2R

)
e
− π2D0(T −t)

4R2 . (44)
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FIG. 1. The exact time-dependent optimal density profile (40)
showing the formation of a stationary solution for D0 = 1, T = 10,
and n0 = 0.5. Upper panel: the density profiles at times t = 0 (solid
line), t = 0.001 (dashed line), t = 0.05 (dotted line), t = 1.5, 6, and
8.5 (three indistinguishable solid lines), and t = T = 10 (dash-dotted
line). The lower panel shows q(x = 0,t) versus time. The narrow
boundary layers at t = 0 and t = T are clearly seen.

Plugging these approximations into Eqs. (40) and (41), we
obtain time-independent expressions:

q(x) = 2n0 cos2
(πx

2R

)
, (45)

v(x) = − π

2R
tan

(πx

2R

)
. (46)

That the density profile q(x,t) is stationary most of the time is
clearly seen in Fig. 1, which shows the time-dependent solution
at different times. Notice also that it is the momentum density
gradient v(x,t) = ∂xp, and not the momentum density p(x,t)
itself, that stays almost stationary. This is in contrast to the
exterior survival problem in d > 2. There the density profile
is also almost stationary, but it is the momentum density, and
not only its gradient, that is almost stationary [7].

Using Eqs. (44) and (42), we obtain the leading-order term
of the long-time survival probability:

− lnP � n0
π2D0T

2R
, (47)

which is simply the action evaluated for the stationary solutions
(45) and (46) on the entire interval 0 < t < T . This result
agrees with Eqs. (4) and (5), as to be expected. Note that the
stationary approximation remains accurate even when D0t/R

2

and D0(T − t)/R2 are of order unity. This is because the
subleading terms in Eqs. (40)–(42) include a large factor 2π2

in the exponent. This explains the narrowness of the boundary
layers on Fig. 1, where D0T/R2 = 10.
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Therefore, at sufficiently long times, the leading-order
contribution to the survival probability of the RWs inside a
domain with an absorbing boundary comes from stationary
solutions for q and v = ∂xp. The stationary solution for v

solves the equation

∂tv = ∂x(−D0∂xv − D0v
2), (48)

which is obtained by differentiating Eq. (21) in x.
The stationarity of the optimal density profile, which gives

the leading-order contribution to the survival probability, is not
unique to the one-dimensional case. We prove in Appendix B
that this property holds for the RWs in any dimension and in
an arbitrary domains.

Now let us revisit the problem for RWs in one dimension
by directly looking for stationary solutions of Eqs. (20) and
(48). Setting the mass flux in Eq. (20) to zero, we end up with
the following set of ordinary differential equations, which we
will call stationary MFT equations:

q ′(x) = 2qv, (49)

v′(x) = −v2 − 
, (50)

where 
 is a yet unknown integration constant. Note that, for
the exterior problem, a similar constant vanishes [7]. This
mathematical difference between the internal and external
problems is crucial. Although its effect on the solution is
immediate, its physical interpretation is somewhat elusive.

After plugging Eq. (49) into Eq. (50) we obtain a single
second-order equation

q ′′ − (q ′)2

2q
+ 2
q = 0, (51)

which needs to be solved subject to the boundary condition
(22) and a normalization condition, following from mass
conservation, ∫ R

−R
dx q(x)

2R
= n0. (52)

To solve Eq. (51) we make a transformation of variable

q(x) = u2(x) (53)

and obtain a harmonic oscillator equation for u(x):

u′′ + 
u = 0. (54)

The solution is u = B sin [
√


(x + x0)], where B and x0 are
integration constants. The boundary conditions,

u(|x| = R,t) = 0, (55)

set x0 = R and 
 = m2π2/(4R2), where m = 1,2, . . . . Im-
posing the mass conservation (52), we obtain a family of
solutions, parameterized by m:

qm(x) = 2n0 sin2

[
mπ (x + R)

2R

]
. (56)

The corresponding v solutions, calculated from Eq. (49), are
the following:

vm(x) = mπ

2R
cot

[
mπ (x + R)

2R

]
. (57)

Now we can calculate the action from Eq. (19):

− lnPm � Sm =
∫ T

0
dt

∫ R

−R

dxD0qmv2
m

= m2n0
π2D0T

2R
. (58)

As we know from the full time-dependent solution, only
the “fundamental mode,” m = 1, is selected by the actual
dynamics [see Eqs. (45) and (46)]. Not surprisingly, this
solution has the minimum action [see Eq. (58)]. We argue
that the same feature (selection of the lowest stationary mode)
holds for the RWs in all spatial dimensions (see Appendix B).
Furthermore, it also holds for a whole class of interacting
diffusive gases. In the next section we derive stationary MFT
equations for an arbitrary diffusive gas. We then solve them for
the SSEP and support our findings by a numerical solution of
the full time-dependent MFT equations for the SSEP in d = 1.

IV. STATIONARY MFT EQUATIONS FOR AN ARBITRARY
DIFFUSIVE GAS IN ARBITRARY DIMENSION

We start with the general MFT equations (10) and (11).
Taking the gradient of Eq. (11), we obtain

∂tv = ∇[−D(q)∇ · v − 1
2 σ ′(q)v2], (59)

where v = ∇p. Now we look for time-independent solutions,
q(x) and v(x) of Eqs. (10) and (59). Equation (59) yields

∇ · v = − 1
2 σ ′(q)v2 − 


D(q)
, (60)

where 
 is an integration constant to be determined later. In
its turn, Eq. (10) yields a zero divergence of the mass flux, so
that the mass flux is a solenoidal vector field. In the survival
problem, this vector field must have a zero normal component
to the domain boundary. Using these two properties one can
show (see Appendix A of Ref. [31]) that the minimum of the
action is achieved when this vector field vanishes identically.
Therefore, we arrive at the equation

∇q = σ (q)v
D(q)

. (61)

Essentially, this equation states that, for the optimal profile, the
fluctuation contribution to the flux exactly counterbalances the
deterministic flux. Expressing v from here and plugging it into
Eq. (60), we obtain a closed equation for q:

∇ ·
[

D(q)√
σ (q)

∇q

]
+ 


√
σ (q)

D(q)
= 0, (62)

so that D(q) and σ (q) only enter through the combination
D/

√
σ . We now introduce a transformation q = f (u) that

satisfies the equation

D[f (u)]√
σ [f (u)]

f ′(u) = 1. (63)

Performing the integration (and assuming that the integral
converges), we can define the function f (u) implicitly:∫ f

0
dz

D(z)√
σ (z)

= u. (64)
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As a result of this transformation, Eq. (62) becomes

∇2u + 
f ′(u) = 0. (65)

The boundary condition for u is the same as for q = f (u):

u(x ∈ ∂�) = 0. (66)

An additional constraint on u(x) comes from the mass
conservation: ∫

�
dxf (u)

V
= n0. (67)

Nonlinear equations similar to Eq. (65) appear in a host of
physical problems. Probably the best known is the equation
for stream function of an ideal incompressible fluid in two
dimensions, where −
f ′(u) is the vorticity [32–34]. Although
the original time-dependent MFT problem has a unique
solution, the stationary problem, defined by Eqs. (65)–(67),
may have multiple solutions, and we will need to address
the ensuing selection problem. We already encountered this
feature in the previous section, dealing with the RWs.

The stationary formulation makes it possible to deduce
the scaling of the optimal density profile, and of the survival
probability, with the linear system size L. We note that Eq. (65)
remains invariant upon rescaling of x by L, and of 
 by

√
L.

In the rescaled coordinates Eqs. (66) and (67) become

u(x ∈ ∂�̃) = 0, (68)∫
�̃

dxf (u)

Ṽ
= n0, (69)

where �̃ is the rescaled domain, and Ṽ is its volume. Extracting
v from Eq. (61), substituting it in Eq. (19), and using Eq. (63),
we obtain a simple expression for the action in terms of the
new variable u:

− lnP � S = T Ld−2

2

∫
�̃

dx[∇u(x)]2, (70)

where u is the solution of the rescaled problem. As we can
see, the Ld−2 scaling, previously observed for the RWs [see
Eq. (4)], holds for a whole class of interacting gases. In
particular, lnP is independent of L for d = 2.

We can also see how the survival probability depends on the
diffusivity and mobility of the gas. Suppose that we can express
D(q) and σ (q) as D(q) = D0D̃(q) and σ (q) = D0σ̃ (q),
where D0 = D(n0), and D̃,σ̃ are dimensionless functions of
the dimensionless density q. Then, from Eq. (64) we have
u = √

D0 F (q), where F is a dimensionless function of q

determined solely by D̃ and σ̃ . Using this relation in Eq. (70),
we obtain

− lnP � S = D0T Ld−2s(n0), (71)

where s(n0) is a dimensionless function determined by the
domain shape and is specialized for each model only via D̃

and σ̃ . Comparing Eq. (71) with Eq. (4), we see that the particle
interaction manifests itself only in the rescaled action s(n0).
The same feature has been observed for the exterior survival
problem [7].

For the RWs Eq. (64) yields f = u2/(2D0), while Eq. (65)
becomes the Helmholtz equation,

∇2u + (
/D0) u = 0, (72)

which admits analytical solutions for domains of simple
shapes. In one dimension this equation coincides, up to a
redefinition of 
, with Eq. (54) of the previous section.

Let us return to Eq. (65). For interacting diffusive gases
the function f (u) is nonlinear. Still, Eq. (65) can be solved
analytically in one dimension, and we will exploit this
fact in Sec. VI. In higher dimensions such a general so-
lution is unavailable. Quite a few particular solutions, in
different geometries, have been found for special choices
of nonlinear f (u) [33–37]. Among them there is the case
of f (u) ∼ sin u, when Eq. (65) becomes a stationary sine-
Gordon equation. Fortunately, this particular case describes
the well-known simple symmetric exclusion process (SSEP).
As many other lattice gases, the SSEP behaves in its dilute
limit as RWs, so that f (u → 0) ∼ u. Therefore, we will
demand that the nonlinear solution for the SSEP cross over
at low densities to the (fundamental mode) of the Helmholtz
equation (72).

V. SSEP: A STATIONARY SINE-GORDON EQUATION

Substituting D(q) = 2D0q and σ (q) = 2D0q(1 − q) into
Eqs. (64) and (65), we arrive at the stationary sine-Gordon
equation,

∇2U + C sin U = 0, (73)

where U = √
2/D0 u, C = 
/D0, and

q = f (u) = sin2

(
U

2

)
. (74)

The survival probability is given by

− lnP � S = T Ld−2

2

∫
�̃

dx[∇u(x)]2

= D0T Ld−2s(n0), (75)

where

s(n0) = 1

4

∫
�̃

dx[∇U (x)]2. (76)

We will now solve Eq. (73) in several geometries.

A. SSEP survival on an interval

As we show in Sec. VI, the one-dimensional case is exactly
soluble in quadratures for any diffusive gas for which a
stationary solution exists. In this section we find the explicit
solution for the SSEP. For d = 1 Eq. (73) coincides with the
equation of mathematical pendulum:

d2U

dx2
+ C sin U = 0. (77)

As for the RWs in Sec. III, we set our domain to be a
segment of length 2R centered about the origin. With the
coordinate rescaling, presented at the end of Sec. IV, we can
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FIG. 2. A plot of n0(ν) from Eq. (81).

set L= R = 1, whereas Eqs. (68) and (69) become

U (|x| = 1) = 0, (78)∫ 1

−1
dx sin2

(
U

2

)
= 2n0. (79)

The general solution of Eq. (77) can be written as

U (x) = 2 arcsin{√ν sn[
√

C(x + x0),ν]}, (80)

where sn(. . . ) is the Jacobi elliptic sine function (see, e.g.,
Ref. [38]), whereas ν and x0 are integration constants. The
boundary condition (78) sets x0 = 1 and C = m2K2(ν), where
K(ν) is the complete elliptic integral of the first kind, and m =
1,2 . . . . The parameter ν is uniquely determined by Eq. (79),
which gives, for any m,

1 − E(ν)

K(ν)
= n0, (81)

where E(ν) is the complete elliptic integral of the second
kind. The plot of n0 versus ν is shown in Fig. 2. As one can
see, there is a one-to-one mapping between 0 < n0 < 1 and
0 < ν < 1.

What is left is to select the correct stationary solution out
of the family of solutions parameterized by m = 1,2, . . . .
We note that in the dilute limit of the SSEP the solution
must coincide with that for the RWs. This argument, and
the action minimization, select the fundamental mode m =
1. Substituting U in (74), we arrive at the stationary q

profile:

q(x) = ν sn2 [K(ν)(x + 1),ν] = ν
cn2 [K(ν)x,ν]

dn2 [K(ν)x,ν]
, (82)

where cn(. . . ) and dn(. . . ) are Jacobi elliptic functions. This
solution is shown by the solid line in the upper panel of Fig. 3.

We can also calculate v(x) = ∂xp from the one-dimensional
version of Eq. (61). Going back to the physical (nonrescaled)
coordinate x, we obtain

v(x) = −K(ν) sn
[K(ν)(x)

R
,ν

]
dn

[K(ν)(x)
R

,ν
]

R cn
[K(ν)(x)

R
,ν

] . (83)

FIG. 3. Formation of a stationary optimal density profile of the
SSEP in one dimension (see also Fig. 4). (Upper panel) Solid
line: stationary density profile (82). Symbols: density profiles found
numerically for D0 = 1 and t = 6, 12, and 18 (indistinguishable).
Dotted line: numerical profile at t = T = 24. Dashed line: the
initial condition q(x,0) = n0 = 0.5. (Lower panel) q(x = 0,t) found
numerically; the narrow boundary layers at t = 0 and t = T = 24
are clearly seen. The analytical result for s from Eq. (85) is
s = 3.513 7 . . . . The numerical result from Eq. (19) is 3.545.

Notice that v(x) � ∓(R − |x|)−1 as x → ±R, in the same way
as in the exterior survival problem [7]. The v(x) profile from
Eq. (83) is shown by a solid line in Fig. 4.

Having found the stationary profile of q (or U ),
we can evaluate the survival probability from Eqs. (75)

FIG. 4. Formation of a stationary optimal profile of v(x,t) for
the SSEP in one dimension (see also Fig. 3). Solid line: the
stationary profile (83). Symbols: numerical profiles at t = 4, 12, and
18 (indistinguishable). Dotted line: numerical profile at t = 0. The
parameters are D0 = 1, n0 = 0.5, and T = 24.
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FIG. 5. Solid line: the rescaled action s(n0) from Eqs. (81) and
(85). Dashed line: the RW asymptotic (86). Dotted line: the high-
density asymptotic (87). Symbols: s(n0) computed from the numerical
solution of the time-dependent MFT equations.

and (76):

− lnP � D0T

4R

∫ 1

−1
dx (Ux)2

= D0T

R

∫ 1

−1
dx K2(ν) ν cn2 [K(ν)(x + 1),ν]

= D0T s(ν)

R
, (84)

where

s(ν) = 2K2(ν)

[
E(ν)

K(ν)
+ ν − 1

]
. (85)

Equations (81) and (85) determine the rescaled action s =
s(n0) in a parametric form. The low- and high-density
asymptotics of s(n0) are the following:

s(n0) �
{

π2n0
2 , n0 � 1,

2
1−n0

, 1 − n0 � 1.

(86)

(87)

The low-density asymptotic coincides with that for the RWs
[see Eqs. (4) and (5)]. The high-density asymptotic formally
diverges as n0 approaches 1. This divergence, however, is cured
when n0 becomes very close to 1, as explained below in this
section. Figure 5 shows a plot of s(n0), alongside with the
asymptotics (86) and (87).

Also shown in Fig. 5 are numerical results obtained by
solving the full time-dependent MFT equations (10) and (11)
for the SSEP in one dimension, using the boundary conditions
in time (17) and (18). The numerical solution was obtained
with a modified version of the iteration algorithm used in
Ref. [7] for the exterior problem. Figures 3 and 4 show the
time-dependent numerical solutions for q and v, respectively,
at different times. Apart from narrow boundary layers at

t = 0 and t = T , the solutions are very close to the analytical
stationary solution. The numerically evaluated rescaled action
s(n0), shown in Fig. 5, is also in very good agreement with the
analytical results.

Now let us return to the high-density limit where the MFT
action (87) tends to diverge. As 1 − n0 � 1, or 1 − ν � 1,
we can approximate sn z = tanh z + O(1 − ν), and K(ν) �
(1 − n0)−1. As a result,

U (x) � 2 arcsin

[
tanh

(
1 − |x|

δ

)]
, (88)

where δ = 1 − n0 � 1. The resulting density profile q =
sin2 (U/2) describes two kinks, with characteristic width
δ = 1 − n0 � 1, located close to the ends of the interval:

q(x) � tanh2

(
1 − |x|

δ

)
. (89)

The action mostly comes from the kinks, and each kink
contributes �1/δ to the action, leading to the asymptotic
(87). Now we will see how the apparent divergence of the
action (87) at n0 → 1 is cured. The MFT is only expected
to apply when the length scales that it describes are much
greater than the lattice constant a. Restoring all units, we can
express the kink width as δ × R = (1 − an0)R. The MFT is
valid when this quantity is much greater than a, that is, when
1 − an0 � a/R. On the other hand, exactly at close packing,
n0 = 1/a, the survival probability of the SSEP is equal to
the product of probabilities P1,2 that each of the particles
adjacent to the boundary does not hit the boundary during
time T . Each of these probabilities is P1,2 = exp(−D0T/a2),
so the total survival probability is equal to exp(−2D0T/a2)
and is of course finite. As one can see, the crossover between
the macroscopic result, lnPMFT � −2D0T/[aR(1 − an0)],
and the microscopic result, lnP = −2D0T/a2, occurs at
1 − an0 ∼ a/R, when the MFT breaks down.

As we will see in the following sections, the kink solution
(89) plays an important role in the high-density behavior of
the stationary solutions in higher dimensions, in domains
of different shapes. An apparent divergence of S at n0 → 1
also appears there (see below), and it is also cured at the
microscopic level.

B. SSEP survival inside a rectangle

Here we will solve the stationary sine-Gordon equation
(73) inside a rectangular domain with dimensions Lx and
Ly . After rescaling the coordinates, the dimensions of the
rectangle become 1 and � = Ly/Lx , in the x and y directions,
respectively. The equation must be solved with zero boundary
conditions, whereas Eq. (69) reads

1

�

∫ 1

0
dx

∫ �

0
dy q = 1

�

∫ 1

0
dx

∫ �

0
dy sin2

(
U

2

)
= n0.

(90)

As we explain shortly, an infinite family of solutions to
this problem can be obtained by the method of “generalized
separation of variables” [34]. In the dilute limit, one of
these solutions coincides with the fundamental mode of the
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Helmholtz equation (72),

U = 4
√

n0 sin (πx) sin
(πy

�

)
, (91)

obeying the zero boundary conditions and the normalization
condition (90), where one should replace sin(U/2) by U/2.
We argue, therefore, that this solution yields the true stationary
optimal density profile.

The generalized separation of variables employs the ansatz

U (x,y) = 4 arctan [f (x)g(y)], (92)

which yields two uncoupled equations for f and g (see
Ref. [34] for a detailed derivation):

(f ′)2 = nf 4 + mf 2 + k, (93)

(g′)2 = kg4 − (m + C)g2 + n, (94)

where m,n, and k are arbitrary parameters. Each of Eqs. (93)
and (94) describes conservation of energy of an effective
classical particle in a potential. As one can see, the particle
motion is confined, and the resulting solution exhibits the
correct low-density asymptotic (91) if and only if −C <

m < 0, n > 0, k > 0, and (m + C)2 > 4kn. In this regime
of parameters the solutions for f and g are elliptic functions
[38]:

f =
√ −mν1

n(ν1 + 1)
sn

[√ −m

ν1 + 1
(x + c1),ν1

]
, (95)

g =
√

(m + C)ν2

k(ν2 + 1)
sn

[√
m + C

ν2 + 1
(y + c2),ν2

]
, (96)

where c1 and c2 are the integration constants of the first-order
equations (93) and (94), and the constants ν1 and ν2 are given
by m, n, and k via the relations

ν1

(1 + ν1)2
= kn

m2
, (97)

ν2

(1 + ν2)2
= kn

(m + C)2
. (98)

Imposing the zero boundary condition we obtain√ −m

(1 + ν1)
= 2m1K(ν1), (99)√

m + C

(1 + ν2)
= 2m2K(ν2)

�
, (100)

c1 = c2 = 0, (101)

where m1 and m2 are positive integers. Similarly to the one-
dimensional case, we must put m1 = m2 = 1. Now we can
solve Eqs. (97)–(100) for ν1 and obtain an expression for fg

in terms of ν1 alone:

fg = (ν1ν2)1/4 sn[2K(ν1)x,ν1]sn

[
2K(ν2)y

�
,ν2

]
, (102)

where ν1 and ν2 are related by the equation

K(ν2)4ν2 = [K(ν1)�]4ν1. (103)
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FIG. 6. The stationary optimal density profile q(x,y) from
Eq. (104), corresponding to the SSEP survival in a rectangle with
aspect ratio � = 0.7 and n0 � 0.67.

Now we use mass conservation (90), where we substitute

q = sin2

(
U

2

)
= 4(fg)2

[1 + (fg)2]2
. (104)

Thus all the constants are determined implicitly. The survival
probability is given by Eq. (75), which we can rewrite as

− lnP � S = D0T

4

∫ 1

0
dx

∫ �

0
dy [(∂xU )2 + (∂yU )2]

= D0T s(n0,�). (105)

As to be expected from Eq. (71), the resulting probability
is independent of the system size, but it strongly depends
on the gas density. Figure 6 shows a two-dimensional plot
of q(x,y) for n0 = 0.67 and � = 0.7. Figure 7 depicts
s(n0,� = 1) versus n0, alongside with the low- and high-
density asymptotics that we will now discuss.
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FIG. 7. Solid line: the rescaled action for a square vs n0 from
Eqs. (90) and (105) with � = 1. Dashed line: the RW asymptotic
(107). Dotted line: the high-density asymptotic (110).
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1. Dilute gas, n0 � 1

In the dilute limit, n0 � 1, our results coincide with those
for the RWs. Indeed, by virtue of Eq. (90), U must be much
smaller than 1 in this limit. Therefore, fg must be also small,
and we can approximate U � 4fg, and q � 4f 2g2. Now, from
Eq. (90), there must be ν1,ν2 � 1. Therefore, as in the one-
dimensional case, we can put sn(. . . ,ν) � sin(. . . ) and K(ν) �
π/2 in the expression for U . Further, Eq. (103) yields in this
limit ν2 � ν1�

4. The remaining constant ν1 � n0/�
2 is found

from Eq. (90). As a result, we arrive at the correct asymptotic
(91). The optimal density profile in the dilute limit, back in the
original coordinates, is

q � 4n0 sin2

(
πx

Lx

)
sin2

(
πy

Ly

)
. (106)

The survival probability is given by Eq. (105) with

s(n0,�) = π2n0

(
� + 1

�

)
. (107)

The survival probability is maximum when the rectangle is a
square.

2. Near close packing, 1 − n0 � 1

When n0 is close to 1, the gas density is close to 1
everywhere except in narrow boundary layers of the size δ =
1 − n0 along the boundary. From Eq. (104), fg is close to 1. As
ν1 and ν2 are also close to 1, K(ν1) and K(ν2) diverge as n0 →
1. In this limit Eq. (103) yields K(ν2) � K(ν1)�. The explicit
n0 dependence can be obtained with the help of Eq. (90):
2K(ν1) � (1 + �)(�δ)−1, and 2K(ν2) � (1 + �)(δ)−1. Using
the asymptotic sn z � tanh z, we obtain in the leading order:

fg � tanh

[
(1 + �)x

�δ

]
tanh

[
(1 + �)y

�δ

]

= tanh
[ (1+�)x

�δ

] + tanh
[ (1+�)y

�δ

] − 1

tanh
[ (1+�)(x+y)

�δ

] . (108)

This asymptotic is valid for x < 1/2 and y < �/2; it can
be extended to the other three quarters of the rectangle by
obvious reflections. Away from the domain corners we can
replace tanh(. . . ) in the denominator of Eq. (108) by unity.
Using the resulting “approximate product rule” in Eq. (104),
we obtain, after some algebra, the “kink” asymptotic of q(x,y)
away from the domain corners,

q � tanh2

[
2(1 + �)x

�δ

]
tanh2

[
2(1 + �)y

�δ

]
, (109)

where x < 1/2 and y < �/2, and reflected formulas in the
other three rectangle quarters. These asymptotics describe
kinks with the characteristic width  = �δ/[2(1 + �)]. By
analogy with one dimension, the action per unit length
along the boundary is, in the leading order, 1/. Multiplying
this expression by the perimeter 2(1 + �), we extract the
asymptotics

s(n0,�) � 4

1 − n0

(
� + 1

�
+ 2

)
. (110)

Again, the survival probability is maximum when the rectangle
is a square.

3. Very long rectangle, � � 1

Here, sufficiently far from the edges y = 0 and y = �,
U (x,y) is almost independent of y and close to the one-
dimensional solution (80). Therefore, the rescaled action
s(n0,�) is approximately equal to

s(n0,� � 1) � 2�s1d (n0), (111)

where s1d(n0) is described by Eqs. (81) and (85). The factor
� is due to additional integration along y, and the factor 2
appears because the one-dimensional result (85) was obtained
for a segment of length 2, not 1.

C. SSEP survival inside a sphere

Here the stationary optimal density profile depends only on
the radial coordinate r , and Eq. (73) becomes

∇2
r U + C sin U = 0, (112)

where ∇2
r U (r) = Urr + (d − 1)Ur/r is the radial Laplacian

in d dimensions. Upon the coordinate rescaling r → r/R, we
need to solve the stationary sine-Gordon equation (112) inside
a sphere of unit radius. The boundary conditions, and the
normalization condition, are

U ′(r = 0) = U (r = 1) = 0, (113)

d

∫ 1

0
drrd−1q(r) = d

∫ 1

0
drrd−1 sin2

(
U

2

)
= n0. (114)

Then, from Eqs. (75) and (76), we obtain − lnP � S =
D0T Rd−2s(n0), where

s(n0) = �d

4

∫ 1

0
drrd−1(Ur )2, (115)

and �d is the surface area of the d-dimensional unit sphere.
In the absence of a general analytic solution of Eq. (112)
for d > 1, one can solve this equation numerically and also
explore analytically the low- and high-density limits.

The first-order term of the density expansion of s(n0)
corresponds to the RWs (see Appendix B). The next, n2

0
term can be obtained by treating the q2 term of the MFT
Hamiltonian of the SSEP perturbatively, similarly to how it
was done in the exterior problem [7]. For example, for d = 3
the resulting correction is

δs(n0) = 4π

∫ 1

0
dr r2q2

RW(r)v2
RW(r), (116)

where qRW(r) and vRW(r) are the stationary optimal profiles
for the RWs, given by Eqs. (B24) and (B25) of Appendix B.
Evaluating the integral, we obtain δs(n0) = α n2

0, where

α = 8π4

27
[2 Si (2π ) − Si (4π )] = 38.794 5 . . . ,

and

Si (z) =
∫ z

0

sin t

t
dt
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is the sine integral function. The resulting low-density asymp-
totic, for d = 3, is

s(n0) � 4π3

3
n0 + α n2

0. (117)

Near close packing, 1 − n0 � 1, the gas density q(r) drops
from a value close to 1 to zero in a narrow boundary layer, of
width O(δ) near the sphere r = 1. Correspondingly, U (r) =
2 arcsin

√
q(r) rapidly drops from a value close to π to zero.

As a result, we can neglect the first-derivative term in the
radial Laplacian. This brings us back to the equation Urr +
C sin U = 0 that we considered in Sec. V A. The boundary
conditions (113) are also the same as in the one-dimensional
case [see Eq. (78)]. The only difference is in the normalization
condition, Eq. (114), which introduces the factor d. As a result,

U (r) � 2 arcsin

{
tanh

[
d(1 − r)

1 − n0

]}
(118)

and

q(r) = sin2

(
U

2

)
� tanh2

[
d(1 − r)

1 − n0

]
. (119)

Using Eq. (118), we obtain the high-density asymptotic

s(n0) = �d

4

∫ 1

0
drrd−1(Ur )2 � d�d

1 − n0
. (120)

In particular, for d = 3,

s3d (n0) � 12π

1 − n0
, 1 − n0 � 1. (121)

For an arbitrary density n0 Eq. (112) can be solved
numerically, either by the shooting method or by artificial
relaxation. Examples of such solutions for d = 3 are shown in
Fig. 8. Figure 9 shows the numerically found s3d (n0), alongside
with the asymptotic (117), its linear term only, and asymptotic
(121).

D. SSEP survival in arbitrary domains near close packing

Consider a domain of arbitrary shape, in any dimension.
As n0 approaches 1, the stationary optimal density field q

1

2
3
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1.0

r
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FIG. 8. Stationary optimal density profiles for the SSEP survival
inside a sphere, d = 3. Solid lines: profiles, obtained by numerically
solving Eq. (112) with three different values of C, corresponding to
three different values of n0, and using Eq. (74). Curve 1: C = 10.4
and n0 � 0.027. Dotted line: the asymptotic profile (B24). Curve 2:
C = 20 and n0 � 0.31. Curve 3: C = 300 and n0 � 0.82. Dashed
line: the asymptotic profile (118).
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FIG. 9. Solid line: the rescaled action s(n0) for a sphere, d = 3,
vs n0, obtained by numerically solving Eq. (112) and using Eq. (115).
Also shown are the low-density asymptotic (117) (dash-dotted line)
and its linear term (dashed line). Dotted line: the high-density
asymptotics (121).

stays very close to 1 across most of the domain, and drops
to 0 in a narrow boundary layer of characteristic width δ =
1 − n0 along the domain boundary. The density derivatives
in the directions parallel to the boundary are negligibly
small compared to the density derivative across the boundary.
Therefore, we can approximate the Laplacian in Eq. (73) by a
one-dimensional one, ∂2U/∂r2

⊥, where r⊥ is a local coordinate
normal to the domain boundary. As a result, the problem
becomes effectively one dimensional, and the solution of
Eq. (73) is a one-dimensional kink, q(x) � tanh2 (

√
C r⊥) (we

set r⊥ to vanish at the boundary). The action, Eq. (75), mostly
comes from the boundary layer. In the leading order, the action
per unit surface across the boundary is equal to

√
C. The total

action is therefore Ã
√

C, where Ã is the rescaled domain’s
surface area.

√
C is determined by the mass conservation:√

C � Ã/(Ṽ δ), where Ṽ is the rescaled domain’s volume.
The final result is

− lnP � S � D0T Ld−2 Ã2

Ṽ (1 − n0)
= A2D0T

V (1 − n0)
. (122)

This expression is in agreement with our high-density results
(87), (110), and (120).

VI. SURVIVAL OF A GENERAL DIFFUSIVE
GAS ON AN INTERVAL

For a general diffusive gas in one dimension the stationary
density profile and the survival probability can be found
in quadrature. Indeed, for arbitrary D(q) and σ (q) in one
dimension, Eq. (65) reads

u′′ + 
f ′(u) = 0, (123)

where f (u) is defined by Eq. (64). By virtue of the scaling
properties of the problem, it suffices to solve Eq. (123) on the
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interval |x| < 1, with the same additional conditions for u as
stated in Eqs. (78) and (79) for U . Equation (123) describes
the motion of an effective classical particle with unit mass
(u is the “particle coordinate,” x is “time”) in the potential
V (u) = 
f (u). Let us denote the particle energy by 
ν.
Energy conservation yields a first-order equation:

u′ = ±
√

2
[ν − f (u)]. (124)

Solving it with the boundary condition u(x = −1) = 0, we
obtain ∫ u

0

dh√
ν − f (h)

=
√

2
 (x + 1). (125)

Changing the integration variable to z = f (h) and using
Eq. (63), we obtain∫ q

0
dz

D(z)√
(ν − z)σ (z)

=
√

2
 (x + 1). (126)

Now we demand that q = ν at x = 0, and express 
 through ν:


 = 1

2

[∫ ν

0

dz D(z)√
(ν − z) σ (z)

]2

. (127)

An additional condition comes from mass conservation:

2n0 =
∫ 1

−1
q(x)dx = 2

∫ ν

0
q

dx

dq
(q) dq

= 2
∫ ν

0
dq

q D(q)√
2
(ν − q)σ (q)

. (128)

Equations (127) and (128) yield the dependence of n0 on ν:

n0(ν) =
∫ ν

0 dq
qD(q)√

(ν−q)σ (q)∫ ν

0 dq
D(q)√

(ν−q)σ (q)

. (129)

Now we can evaluate the survival probability:

− lnP � T

2R

∫ 1

−1
dx

(
du

dx

)2

. (130)

By virtue of Eq. (124) and the definition q = f (u), we obtain

− lnP � 
T

R

∫ 1

−1
[ν − q(x)]dx = 2
T (ν − n0)

R
, (131)

where we have again used
∫ 1
−1 q(x)dx = 2n0. Using Eq. (127),

we can rewrite Eq. (131) as

− lnP � T

R
s(n0), (132)

where the rescaled action s = s(n0) is given in a parametric
form by the equation

s(ν) =
[∫ ν

0

dq D(q)√
(ν − q) σ (q)

]2

[ν − n0(ν)] (133)

and Eq. (129). When specialized to the SSEP, Eqs. (126) and
(133) yield (82) and (85), respectively.

With these general results at hand, we can investigate the
survival properties of a whole class of diffusive gases with
known D(q) and σ (q) in one dimension, on the condition that
the integral in the denominator of Eq. (129) converges.

VII. CONCLUSIONS AND DISCUSSION

We dealt in this work with the survival of a gas of interacting
diffusive particles inside a domain with an absorbing boundary.
Employing the MFT formalism, we evaluated the long-time
survival probability of the gas and its optimal density history
conditional on the survival. We found that this optimal
density history is stationary during most of the process. As
a consequence, the survival probability decays exponentially
in time, inside domains of any shape in all dimensions. As we
showed, the solution of the long-time survival problem reduces
to solving a nonlinear Poisson equation, where the nonlinear
term is determined by D(q) and σ (q). In one dimension,
this problem is soluble exactly for a whole class of diffusive
gases. For the SSEP the nonlinear Poisson equation becomes a
stationary sine-Gordon equation, and we solved it in different
geometries and dimensions.

The dilute limit of the SSEP corresponds to noninteracting
random walkers (RWs), where the problem reduces to finding
the lowest positive eigenvalue μ1 of the Laplace operator
inside the domain [6] [see Eq. (3)]. Near close packing
the problem becomes effectively one dimensional and can
be approximately solved for any domain shape and any
dimension. What is the optimal domain shape, for a fixed
number of particles and fixed volume of the domain, that
maximizes the chances of long-time survival? Interestingly,
both in the dilute limit of the SSEP and near close packing,
the optimal domain shape is the sphere. Indeed, in the dilute
limit the minimum value of μ1 is achieved for the sphere, as
guaranteed by the Rayleigh-Faber-Krahn theorem [39,40]. In
its turn, near the close packing, the sphere is the minimizer of
the surface area A at fixed volume [see Eq. (122)]. A natural
conjecture is that the sphere maximizes the survival probability
of the SSEP at any gas density, but we do not have a proof.
For a general diffusive gas we do not know the minimizing
domain shape.

It would be interesting to apply our approach to the “narrow
escape problem,” where there is a small hole in the reflecting
boundary of the domain. The survival probability [41] and the
mean escape time [42] of a single RW in this system have
been extensively studied. The MFT formalism can give an
interesting insight into fluctuations in the escape of interacting
particles.

Another interesting extension would address the full ab-
sorption statistics: evaluating the probability that a specified
number of particles are absorbed by time T . An exterior variant
of this problem has been recently considered, for the SSEP, in
Ref. [8].

Finally, we emphasize that stationarity of the optimal gas
density profile is a major simplifying factor in the large-
deviation problem we have considered here. Cases of time
independence of the optimal gas density history are also
encountered in other large-deviation settings in lattice gases
[7,8,43–45], and they are intimately related to the “additivity
principle” put forward by Bodineau and Derrida [45].
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APPENDIX A: SURVIVAL PROBABILITY OF RANDOM
WALKERS FROM A MICROSCOPIC PERSPECTIVE

For completeness, we present here a brief microscopic
derivation of the survival probability of a gas of noninteracting
random walkers (RWs) inside a domain �. This quantity can
be obtained from a single-particle survival probability:

− lnP(T )RW = −
∑

i

ln g(xi ,T ), (A1)

where g(xi ,T ) is the survival probability up to time T of
a particle initially positioned at xi , and the sum is over
all particles. Therefore, one needs to calculate g(xi ,T ) and
perform the summation.

1. Calculating g(xi ,T )

The single-particle survival probability g(xi ,T ) is given by
the expression

g(xi ,T ) =
∫

�

dx ρ1(x,T ,xi), (A2)

where ρ1(x,t,xi) is the probability distribution of the particle
position, given its (deterministic) initial position at xi . This
probability distribution obeys the diffusion equation [2–5]

∂tρ1 = D0∇2ρ1, (A3)

with the absorbing boundary condition

ρ1(x ∈ ∂�,t) = 0. (A4)

The initial condition is

ρ1(x,t = 0) = δd (x − xi), (A5)

where δd is the d-dimensional Dirac δ function. The solution
to Eq. (A3) is the Green’s function of the diffusion equation:

ρ1(x,t,xi) = G(x,xi ,t) =
∞∑

n=1

�n(x)�n(xi)e
−μ2

nD0t . (A6)

Here �n and μn are the normalized eigenfunctions and
eigenvalues of the eigenvalue problem ∇2u + μ2u = 0 for
the Laplace operator inside the domain with the boundary
condition u(x ∈ ∂�) = 0. We order the eigenvalues by their
magnitude μ1 < μ2 < μ3 < . . . . Plugging Eq. (A6) into
Eq. (A2) one obtains [6]

g(xi ,T ) =
∫

�

dx G(x,xi ,t)

=
∞∑

n=1

�n(xi)
∫

�

dx �n(x)e−μ2
nD0T . (A7)

2. Evaluating the sum in Eq. (A1)

When the number of particles in the domain � is very large,
the sum in (A1) can be approximated by the integral

− lnP(T )RW � −n0

∫
�

dx′ ln[g(x′,T )]. (A8)

Furthermore, at times much longer than the characteristic dif-
fusion time, the infinite sum in Eq. (A7) can be approximated
by its first term:

g(x,T ) � �1(x)
∫

�

dx′�1(x′)e−μ2
1D0T . (A9)

Plugging this approximation into Eq. (A8), we obtain the long-
time asymptotic of the survival probability presented in Eq. (3).

APPENDIX B: SOLVING THE MFT EQUATIONS FOR THE
RWS IN HIGHER DIMENSIONS

The one-dimensional solution, presented in Sec. III, can
be generalized to any simply connected domain in arbitrary
dimension. Consider the MFT equations (10) and (11) for the
RWs:

∂tq = ∇ · [D0∇q − 2D0q∇p], (B1)

∂tp = −D0∇2p − D0(∇p)2. (B2)

The Hamiltonian density is

H(q,p) = −D0∇q · ∇p + D0q(∇p)2. (B3)

The absorbing boundary conditions are described by Eqs. (15)
and (16). The boundary conditions in time are given by
Eqs. (17) and (18).

As in one dimension, we solve the problem using the
Hopf-Cole transformation Q = qe−p and P = ep, with the
generating functional∫

�

dxF1(q,Q) =
∫

�

dx[q ln(q/Q) − q]. (B4)

In the new variables the Hamiltonian density is

H(q,p) = −D0∇Q · ∇P, (B5)

and, again, the action can be expressed through the initial and
final states of the system:

− lnPRW � S =
∫ T

0
dt

∫
�

dxD0q(∇p)2 (B6)

=
∫

�

dx[Q(P ln P − P + 1)]
∣∣T
0 . (B7)

The transformed MFT equations are decoupled:

∂tQ = D0∇2Q, (B8)

∂tP = −D0∇2P. (B9)

The transformed boundary conditions, in space and in time,
are

Q(x ∈ ∂�,t) = 0, (B10)

P (x ∈ ∂�,t) = 1, (B11)

Q(x,t = 0) = n0

P (x,t = 0)
, (B12)

and

P (x,t = T ) =
{
eλ, x ∈ �

1. x ∈ ∂�
(B13)
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Solving the antidiffusion equation (B9), we obtain

P (x,t) = 1 + (eλ − 1)g(x,T − t), (B14)

where g is defined in Eq. (A7). Evaluating P (x,t = 0), we
obtain the initial condition for the diffusion equation (B8):

Q(x,t = 0) = n0

1 + (eλ − 1)g(x,T )
.

The resulting solution of Eq. (B8) is

Q(x,t) = n0

∫
�

dx′ G(x,x′,t)
1 + (eλ − 1)g(x′,T )

. (B15)

Now we calculate the action using Eq. (B6). After some alge-
bra, and taking the zero-absorption limit of λ → ∞, we arrive
at Eq. (A8), which describes the continuum approximation of
the exact microscopic result (A1). Transforming back to q and
p, and taking the limit of λ → ∞, we obtain

q(x,t) = n0g(x,T − t)
∫

�

dx′ G(x,x′,t)
g(x′,T )

, (B16)

v(x,t) = ∇p = ∇ ln g(x,T − t). (B17)

Being interested in long times, we observe that, out-
side the boundary layers of width L2/D0 around t =
0 and t = T , one can approximate the expressions
Eqs. (A7) and (A6) by the first terms of the corresponding
series:

G(x,x′,t) � �1(x)�1(x′)e−μ2
1D0t , (B18)

g(x,T − t) � �1(x)
∫

�

dx′�1(x′)e−μ2
1D0(T −t). (B19)

This approximation yields the stationary solution

q(x) = n0V �2
1 (x), (B20)

v(x) = ∇p = ∇�1(x)

�1(x)
, (B21)

whereas − lnP is given by Eq. (3).
When � is a circle of radius R (d = 2), we obtain

q(r) = n0J
2
0

(
z1r
R

)
J 2

1 (z1)
, (B22)

v(r) = − z1J1
(

z1r
R

)
R J0

(
z1r
R

) r̂, (B23)

where J0(z) and J1(z) are Bessel functions, and z1 =
2.404 8 . . . is the first positive root of J0(z). The survival
probability is described by Eqs. (4) and (6).

When � is a sphere of radius R (d = 3), the stationary
solution is

q(r) = 2n0R
2 sin2

(
πr
R

)
3r2

, (B24)

v(r) =
[

π

R
cot

(πr

R

)
− 1

r

]
r̂, (B25)

and the survival probability is described by Eqs. (4)
and (7).
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