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From single-file diffusion to two-dimensional cage diffusion and generalization of the totally
asymmetric simple exclusion process to higher dimensions
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A two-dimensional constrained diffusion model is presented and characterized by numerical simulations. The
model generalizes the one-dimensional single-file diffusion model by considering a cage diffusion constraint
induced by neighboring particles, which is a more stringent condition than volume exclusion. Using numerical
simulations we characterize the diffusion process and we particularly show that asymmetric transition probabilities
lead to the two-dimensional Kardar-Parisi-Zhang universality class. Therefore, this very simple model effectively
generalizes the one-dimensional totally asymmetric simple exclusion process to higher dimensions.
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I. INTRODUCTION

The relevance of the Kardar-Parisi-Zhang (KPZ) equa-
tion [1] for studying many different physical situations has
been widely acknowledged during the past two decades. Orig-
inally developed for modeling surface growth processes [2],
its relevance in many other fields continuously increases,
covering turbulence [3], domain-wall motion [4], colloidal
suspensions [5], and Macdonald processes in probability
theory [6], among many interesting physical, chemical, and
mathematical processes. Recent progress on the understanding
of KPZ processes has come from its link with random
matrix theory [7,8], which provides analytical asymptotic so-
lutions for height distribution functions [8–13]. This analytical
progress is largely achieved in 1 + 1 dimensions, while in order
to test and extend the theoretical concepts to higher dimensions
one has to rely on numerical simulations [14–24].

One of the key ideas that promoted theoretical progress on
the understanding of the KPZ equation is the formal mapping
between the one-dimensional KPZ equation and the totally
asymmetric simple exclusion process (TASEP), which can be
viewed as a process of strongly interacting biased diffusing
particles [25–27]. Within this approach, particles and holes
diffusing on a one-dimensional line correspond to positive and
negative slopes in a 1 + 1 fluctuating interface, providing a
direct link between particles density and an interface height
profile. In the hydrodynamic limit, the fully biased diffusion
of particles leads to nonlinear terms in the diffusion equation,
which in the related interface height problem corresponds
to a KPZ term [26]. Conversely, the symmetric case, also
called single-file diffusion process, belongs to the Edwards-
Wilkinson (EW) [28] universality class [29–31]. Besides the
fact that one-dimensional diffusion can be biased or not,
leading to KPZ or EW processes, it is fairly acknowledged
that volume exclusion is a key ingredient that allows mapping
growing interfaces onto diffusion processes. This restriction
means that two diffusing particles cannot occupy the same
site, which guarantees a continuity condition of the fluctuating
interface.
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Remarkably, this fruitful relationship between KPZ and
TASEP is mainly restricted to the one-dimensional case,
while it is clear that generalizing this relationship to higher
dimensions would provide important tools to further explore
KPZ and related processes. This is not a trivial step and
some attempts have already been reported in recent years.
In particular, two recent works can be considered as attempts
to extend the TASEP to higher dimensions. On one hand,
Tamm, Nechaev, and Majumdar [18] recently proposed a
layered zigzag model as a two-dimensional generalization of
TASEP and showed that the model belongs to the 2 + 1 KPZ
universality class. On the other hand, Odor and coworkers
developed a driven lattice-gas model, which can be mapped
onto a two-dimensional surface growth model composed of
octahedra belonging to the KPZ universality class [16,17,23].

We pursue the idea that asymmetric diffusion can lead to
KPZ processes and propose here a simple two-dimensional
diffusion model generalizing the single-file diffusion and
TASEP processes to higher dimensions. This generalization
not only relies on asymmetric diffusion but goes beyond
the simple volume exclusion restriction by identifying the
key ingredient for this nontrivial generalization: the cage
restriction. We then confirm through numerical simulations
that the scaling exponents of this simple two-dimensional
diffusion model are in agreement with those of EW and KPZ
universality classes for the symmetric and asymmetric cases,
respectively.

II. MODEL AND OBSERVABLES

We will first describe the model system and define some
useful observables. In order to illustrate how we generalize
to two dimensions the simple volume exclusion diffusion
process we will carry out a construction based on its correspon-
dence with its one-dimensional counterpart. The fundamental
observation is that in one dimension the implementation
of the volume exclusion principle has a simple but severe
consequence: Since a particle cannot diffuse to a site that
is already taken by a different particle, this implies, in one
dimension, that a particle is constrained to stay always in
the cage delimited by its two nearest neighbors, which we
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FIG. 1. Schematic representation of the cage diffusion constraint.
(a) Initial condition in one and two dimensions. Each particle is
located in sites a distance L apart in one dimension, while a sublattice
is used in two dimensions where particles form a π/4 rotated square
lattice of spacing

√
2L. The four initial nearest neighbors of particle

j are labeled as j1, j2, j3, and j4. (b) The cage diffusion constraint
is defined by the position of the nearest neighbors of a particle. In
two dimensions, the rectangle indicates the cage where particle j is
allowed to diffuse for the given configuration.

shall call the cage diffusion constraint. Therefore, volume
exclusion and cage constraint are equivalent in one dimension.
This seemingly obvious and inoffensive fact is crucial when
thinking on two-dimensional diffusion, where the volume
exclusion principle and the cage diffusion constraint are no
longer equivalent. The volume exclusion had been naturally
extended and widely studied in two dimensions [32–35].
However, the cage diffusion constraint in two dimensions is
more restrictive and, to the best of our knowledge, had not
been studied.

In order to present our two-dimensional diffusion model
based on the cage diffusion constraint, we present in Fig. 1
the one- and two-dimensional discrete realizations used for
numerical simulations. Figure 1(a) shows a uniform initial
condition. In one dimension N particles are located a distance
L apart on a discrete line of unitary spacing. The size of the
system is thus given by M = LN . The position of particle
j are given by xj = jL. In two dimensions, particles are

initially located in a c(2L × 2L) configuration over the square
lattice, thus forming a square lattice of particles separated a
distance

√
2L and rotated π/4 with respect to the underlying

lattice. The system size, i.e., number of available sites, is
now M2 = (LN )2. The four nearest neighbors of particle j

are labeled as j1, j2, j3, and j4 in the figure. Figure 1(b)
shows the definition of the cage diffusion constraint. Given
an arbitrary particle configuration, volume exclusion in one
dimension forces each particle to always stay within the
indicated cage, delimited by its two nearest neighbors. This
can be explicited by stating that the particle position xj

is restricted to the condition xj−1(t) < xj (t) < xj+1(t). In
two dimensions, volume exclusion would allow particles to
explore the system changing its surrounding neighbors over
the diffusion process without any confining cage. Therefore,
we define the cage diffusion constraint by imposing that each
particle is forced to stay within the cage defined by its four
initial nearest neighbors. The position of particle j is given by
rj (t) = xj (t)ex + yj (t)ey , where ex and ey are unitary vectors
on each direction, and it is constrained by those particles
identified as nearest neighbors in the initial condition. There-
fore, the cage diffusion constraint implies xj > (xj1,xj4), xj <

(xj2,xj3), yj > (yj1,yj2), and yj < (yj3,yj4), where a < (b,c)
means that a is smaller than the minimum between b and
c, and a > (b,c) means that a is larger than the maximum
between b and c. The relevant conditions imposed on particle
j by its neighbors positions are indicated as dashed lines in
Fig. 1(b), while the cage corresponding to particle j for this
configuration is indicated with a rectangle. Notice that the
cage restriction is directly linked to a particle label order
in the system, which states that once the initial condition is
given, each particle conserves full memory of the identity of
its nearest-neighbor particles.

Now that we have defined the geometrical diffusion
constraint of our model, we need to specify its dynamic
rules. We shall consider a diffusion process where a particle
in a given site of the square lattice randomly chooses an
attempt jump to one of its four neighbor sites. The transition
probabilities in the y direction are always symmetric, i.e.,
�+y = �−y = 1/4, while in the x direction we consider a
bias field h, i.e., �+x = 1/4 + h and �−x = 1/4 − h. The bias
field h is such that 0 � h � 1/4, with h = 0 and h = 1/4
corresponding to the symmetric and totally asymmetric (in
the x direction) diffusion cases, respectively. Summarizing, a
particle is picked at random, one of its four neighbor sites is
chosen with the defined transition probabilities, and if the cage
diffusion constrain is satisfied, the particle is moved to the new
site. The evolution of the system is given by the evolution of
the particle’s positions rj (t), where the unit of time t is given
by N jump attempts.

The natural observable to work with when studying diffu-
sion processes is the mean-squared displacement defined by

x2(t) = 1

N

∑
j

[�xj (t)]2 (1)

in the x direction, where �xj (t) = xj (t) − xj (0) gives the
displacement with respect to the initial position for the j

particle. An equivalent mean-square displacement can be
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defined for the y direction. The mean-square displacement
contains valuable information about the diffusion process. For
example, if x2(t) ∼ t the process is referred to as normal
diffusion and the proportionality factor gives the diffusion
constant. Deviations from this linear behavior correspond to
superdiffusion or subdiffusion whenever the time dependence
is stronger or weaker than linear. However, in order to
emphasize the relationship between diffusion processes and
EW and KPZ universality classes we will characterize the
dynamics of the diffusion process using the global roughness
of the system. In terms of the fluctuating interface the
global roughness measures average height deviations from its
mean value. Here, based on the harmonization approximation
to single-file diffusion processes [29–31], interface height
variables are indeed given by the displacement field �xj .
Therefore, the global roughness can be defined by

W 2
x (t) = 1

N

∑
j

[�xj (t) − 〈�x〉]2, (2)

where

〈�x〉 = 1

N

∑
j

�xj (t) (3)

gives the average center-of-mass displacement at time t . In
fact, the difference between the mean-square displacement,
Eq. (1), and the global roughness, Eq. (2), is that the latter
measures the fluctuations with respect to the center of mass
of the system. The roughness is expected to present the
usual scaling properties observed in the physics of growing
interfaces [2,36], described through the scaling relation

W 2
x (t) = N2αf

(
t

Nα/β

)
, (4)

with f (u) a scaling function such that

f (u) ∼
{

u2β for u � 1,

const. for u � 1.
(5)

Here, α is the roughness exponent characterizing how
the roughness asymptotically grows with the system size,
Wx(∞) ∼ Nα , and β is the growing exponent describing the
early time evolution of the global roughness, Wx(t) ∼ tβ . This
also implies the existence of a growing correlation length,
ξ ∼ tβ/α [2]. Notice that in our case we are using in the scaling
relation the number of diffusing particles as the size of the
system, and not the size of the underlying substrate, since the
particle index in the diffusion process becomes the spatial
dimension in the interface formulation, as can be realized
using the harmonization approximation to single-file diffusion
processes [29–31].

A useful quantity to unveil the manifestation of time-
dependent power-law behavior, as contained in Eqs. (4)
and (5), is an effective growing exponent defined through

βeff = 1

2

∂ ln W 2(t)

∂ ln t
. (6)

This effective exponent tends to a constant value for a well-
defined power-law behavior and thus can also be indicative of
systematic deviations from it.

III. RESULTS

In this section we shall present results from numerical
simulations of the two-dimensional diffusion model with the
cage diffusion constraint. We will first present the symmetric
h = 0 case, then we will focus on the asymmetric case, central
for our discussion, and we will finally show some interesting
anisotropic effects.

A. Two-dimensional symmetric diffusion

In order to expose the properties of our diffusion model,
we first analyze the behavior of a system with N = 64, L = 4
and without applied bias field, h = 0. Since our main goal is
to describe the diffusion problem in the framework of growing
surfaces, we shall first analyze diffusion in terms of the mean-
square displacement, its natural variable, and compare it with
the global roughness defined in Eq. (2), as shown in Fig. 2.

The mean-squared displacement shows at very small time
a lineal dependence on t , i.e., a normal diffusion process,
where the particles independently move without perceiving
its neighboring particles. Then, the system crosses over to a
subdiffusive regime signaled by the fact that each particle
gradually starts becoming aware of the presence of other
particles. More importantly, particles start feeling the cage
diffusion constraint, therefore diffusing weaker than linear.
Finally, in the third regime observed at long times, each
particle is aware of the cage felt by all other particles, therefore
indicating that a correlation length has reached the size of the
system. This last regime corresponds to the normal diffusion
of the center of mass of the system.

The global roughness, similar to the mean-square displace-
ment, shows three regimes with the same crossover times.
Within the framework of growing interfaces the independent
normal diffusion, subdiffusive, and center-of-mass diffusion
regimes would correspond to random deposition of particles
on a substrate, correlated growth of the surface, and roughness
saturation, respectively. The difference is that in the long-time
regime the global roughness gets rid of the center-of-mass
diffusion and therefore saturates at a system size dependent

FIG. 2. Comparison between the mean-square displacement x2(t)
and the global roughness W 2(t) for symmetric diffusion, h = 0, for
a system with N = 64 and L = 4. The dashed blue lines indicate
normal diffusion regimes.
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value, as indicated in Eq. (4). Consequently, we have shown
that the global roughness contains basically the same informa-
tion than the mean-square displacement regarding the different
diffusion regimes.

Based on the relationship between single-file diffusion
and one-dimensional EW processes [31], we expect that the
roughness behavior presented above for our two-dimensional
diffusion model can be described within the two-dimensional
EW universality class. Since the upper critical dimension
of the EW equation is dc = 2, it is then expected that,
instead of a power-law behavior, the global roughness would
logarithmically depend on time and system size as [37]

W 2(t) = D

2πν
ln

[
N

a
f̃

(
νt

N2

)]
, (7)

where D is a white-noise intensity, ν is an effective stiffness,
N is the system size, and a is a lattice spacing giving a
short-range cutoff. In this last equation, f̃ (̃u) ∼ ũ1/2 for ũ � 1
and f̃ (̃u) ∼ const. for ũ � 1, corresponding to W 2

x ∼ ln t and
W 2

x ∼ ln N , respectively. From the information gathered for
the one-dimensional case we expect the noise intensity D

to be related to the diffusion probabilities and the effective
stiffness ν to be related to the density of particles, given by
1/L2 [18,31].

Figure 3 shows the dynamic global roughness in lin-log
scale corresponding to systems with L = 4 and different
number of particles N . Since the diffusion is isotropic, the
same behavior is observed for W 2

y . One can observe that when
increasing N a well-defined logarithmic regime, W 2

x ∼ ln t , is
developed, as emphasized by the straight line in Fig. 3. After
this subdiffusive regime, a saturation of the global roughness
is reached. Furthermore, the saturation values also exhibit
a logarithmic dependence on the size of system, as shown
in Fig. 4. Therefore, the evolution of the global roughness
shows that our two-dimensional symmetric model with the
cage diffusion constraint belongs to the Edwards-Wilkinson
universality class in its critical dimension.

FIG. 3. Evolution of the global roughness corresponding to the
symmetric h = 0 case for a system with average distance L = 4 and
different number of particles N , as indicated in the key. The lin-log
scale is used to stress the logarithmic dependence on time as indicated
by the continuous straight line.

FIG. 4. System size dependence of the saturation value of the
global roughness, W 2

x (∞), for the symmetric diffusion case and
L = 4. The linear behavior in lin-log scale indicates a logarithmic
dependence, W 2

x (∞) ∼ ln N .

B. Two-dimensional asymmetric diffusion and KPZ processes

Now we shall show that a finite value of the bias field h

induces KPZ characteristics to the two-dimensional diffusion
process. Figure 5 shows the change from two-dimensional
EW to two-dimensional KPZ behavior when the field is
increased. We can observe that regardless the value of the
bias field the three regimes are still present, i.e., independent
normal diffusion, subdiffusion, and center-of-mass diffusion.
On one hand, for h = 0, the diffusion process corresponds
to the two-dimensional Edwards-Wilkinson process, as we
showed in the previous section. On the other hand, for h =
0.25, corresponding to totally asymmetric diffusion in the x
direction, we can note that the logarithmic subdiffusive regime
is no longer present and instead a purely power-law behavior
is observed, as emphasized by the continuous straight line in
Fig 5. This power-law behavior for h = 0.25 and L = 4 can
be observed for system sizes larger than N = 32. Intermediate
values of field allow us to observe the systematic change
of behavior between both universality classes. Furthermore,

FIG. 5. Evolution of the global roughness W 2
x (t) for a system with

N = 256, L = 4 and different bias field intensities h, as indicated.
The continuous straight line corresponds to a power-law behavior
W 2 ∼ t2β with a growing exponent β = 0.247(1) corresponding to a
two-dimensional KPZ process.
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FIG. 6. Evolution of the global roughness W 2
y (t) in lin-log scale

for a system with N = 256, L = 4 and different bias field intensities
h, as indicated. The continuous straight line corresponds to a
logarithmic behavior as expected for a two-dimensional EW process.

measuring the slope of the data between t = 50 and t = 2000
for h = 0.25, we obtain the value β = 0.247(1) for the growing
exponent, in agreement with previous numerical estimates
for two-dimensional KPZ processes [16,17,19]. Since a finite
field value breaks the symmetry between x and y directions,
the behavior of W 2

y is shown in Fig. 6 for completeness.
Fluctuations in the transverse direction to the field can be still
characterized by a two-dimensional EW process, W 2

y (t) ∼ ln t ,
as emphasized by the straight line in Fig. 6.

The change of behavior between two-dimensional EW and
two-dimensional KPZ processes driven by the value of h can
be further explored using the effective growing exponent βeff ,
as shown in Fig. 7 for the same data presented in Fig. 5. For
the symmetric h = 0 case βeff exhibits a 1/ ln t behavior in
accordance with the logarithmic time evolution of W 2

x . As
the bias field increases this behavior gradually disappears
and finally when h = 0.25 the effective growing exponent
develops a plateau around βeff = 0.24. For bias field values
0 < h < 0.25, the effective growing exponent βeff shows an
intermediate behavior that, due to finite size effects, does not
develop neither the 1/ ln t nor the plateau limits.

FIG. 7. Effective growing exponent corresponding to the data
presented in Fig. 5. The horizontal continuous line corresponds to the
β value extracted for h = 0.25 in Fig. 5.

FIG. 8. System size dependence of the saturation value of the
global roughness W 2

x (∞) for h = 0.25. The straight line shows a
fit with a power-law W 2

x (∞) ∼ N 2α , which gives α = 0.395(2), in
agreement with a two-dimensional KPZ process.

Finally, Fig. 8 shows, for h = 0.25, the dependence of
the saturation value of the global roughness, W 2

x (∞), on
the system size N . Assuming that values for the roughness
saturation are in agreement with the scaling hypothesis given
by Eq. (4), the roughness exponent α can be obtained from
the slope of the log-log plot, which then gives α = 0.395(2).
This value agrees with previous numerical results for the two-
dimensional KPZ universality class [16,17,19]. Therefore, our
numerical estimates for the growing and roughness exponents,
β = 0.247(1) and α = 0.395(2), show that totally asymmetric
diffusion with the cage diffusion constraint belongs to the
two-dimensional KPZ universality class, i.e., generalizing
the TASEP to higher dimensions, which is the central result
of the present work.

C. One-dimensional crossover

As a by-product of the two-dimensional diffusion process
presented here, we show now some results concerning how
an anisotropic variation of the size of the system can induce a
change on the universality class of the diffusion process. Until
now we have been working with isotropic systems whose
linear size is given by M = LN . We set the average distance
L = 4 and keep the size Mx = LNx fixed while the size in the
transverse direction is changed as the number of particles Ny

is reduced, i.e., My = LNy . This would then induce a change
between different universality classes through a dimensional
crossover.

Figure 9 shows the change of behavior from two-
dimensional EW to one-dimensional EW behavior when Ny

is decreased in the symmetric diffusion case h = 0. For
the isotropic Ny = Nx system the diffusion process belongs
to the two-dimensional EW universality class in its critical
dimension and presents then a logarithmic time dependence.
When Ny is reduced, a crossover to one-dimensional EW
behavior is observed, as indicated by the appearance of
power-law behavior with growing exponent β = 1/4 [2]. For
intermediate values of Ny the presence of a crossover length
separating one- and two-dimensional behavior is manifested.
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FIG. 9. Evolution of the global roughness W 2
x (t) for a system with

average distance L = 4 and under anisotropic conditions with Nx =
256 and different values of Ny , as indicated. The symmetric diffusion
case h = 0 is shown, which presents a crossover from logarithmic to
power-law behavior when Ny is reduced.

When the bias field is turned on at h = 0.25 in the x

direction, one expects a crossover from two-dimensional KPZ
to one-dimensional KPZ behavior when Ny decreases, as
shown in Fig. 10. In this case the power-law behavior changes
its growing exponent from the two-dimensional value β =
0.247, as extracted from Fig. 5, to the exact one-dimensional
KPZ value β = 1/3 [2].

This shows that this simple two-dimensional diffusion
model with the cage constraint can be further exploited to
study many aspects of the crossover between EW and KPZ
processes and its dependence on the dimension of the system.

IV. SUMMARY AND OUTLOOK

We have presented here a simple model generalizing the
TASEP to two dimensions with the aim of recovering a two-
dimensional KPZ process. We have shown that the key ingredi-
ent in this generalization is not volume exclusion but a stringent

FIG. 10. Evolution of the global roughness W 2
x (t) for the totally

asymmetric case h = 0.25 for a system with L = 4 and under
anisotropic conditions Nx 	= Ny with Nx = 256 and different Ny

values, as indicated. The observed power law, W 2
x ∼ t2β , changes its

growing exponent from β = 0.247 to β = 1/3 when Ny decreases.

cage diffusion constraint that keeps perfect memory of the sur-
rounding neighbors of each particle over the diffusion process.

In the symmetric diffusion case the model is within the two-
dimensional EW universality class, therefore presenting an
anomalous subdiffusion regime with logarithmic time depen-
dence. When the transition probabilities become asymmetric
the logarithmic diffusion regime crosses over to a power-law
regime within the two-dimensional KPZ universality class.
In the totally asymmetric case our model generalizes the
TASEP problem to two dimensions. Generalization to higher
dimensions is straightforward. For example, in the three-
dimensional case a body-centered cubic lattice can be used
as initial condition, with the particles in the corner of the
cube defining the cage for the subsequent diffusion of the
particle in the center of the cube. Both the simple formulation
of the model and the fact that moderate system sizes suffice to
obtain scaling exponents make this model a good candidate to
determine exponents in higher dimensions.

A few further comments are pertinent at this point. First, it
has been shown through the relation between one-dimensional
single-file diffusion and the EW equation that the effective
stiffness associated to the diffusion process is proportional to
the density of particles [29–31]. In our two-dimensional model,
the slope of the logarithmic time-dependence of the roughness
is inversely proportional to the stiffness, as in Eq. (7), and in-
creases with the average separation between particles, thus also
supporting that the effective stiffness of the diffusion process
is proportional to the density. Furthermore, the effective KPZ
parameter λ is also expected to depend on density, as shown
in Ref. [18] using a coarse-grained hydrodynamic description
of a similar two-dimensional model.

Second, though the initial condition we used to define our
model and to obtain numerical results seems to be rather
arbitrary, any initial condition would work as long as the initial
set of neighbors of each particle is kept fixed during the whole
diffusion process. For instance, we expect that a random initial
condition could also be used. In this case the neighbors could
be identified at the very beginning in order to construct and
sustain a closed-cage constraint for each particle.

Finally, it is worth stressing that the link between diffusion
processes (single-file diffusion, TASEP) and growing interface
equations (EW, KPZ), for example using the roughness to char-
acterize the diffusion processes, implies that a well-defined
correlation length is growing inside the system of diffusing
particles, as it occurs in the growing interface. This correlation
length establishes how each particle perceives the fluctuations
and surrounding environments of all other particles. Therefore,
the cage constraint and its relation to EW and KPZ processes
could be relevant in other diffusion processes, like in glass
formers or complex fluids, where the origin of growing
correlation lengths is still under debate. For example, the
strict cage constraint can be relaxed by supplementing the
model with a finite probability to jump between neighboring
cages, as already treated in one-dimensional systems [38].
This would mimic relaxation processes due to cage diffusion
and jumps between different cages, as observed in glass
formers [39,40], possibly implying KPZ growing length scales
below the average caging timescale.

In conclusion, the two-dimensional diffusion model with
cage constraint presented here provides a versatile and easy-to-

012134-6



FROM SINGLE-FILE DIFFUSION TO TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 93, 012134 (2016)

implement model to study different aspects of KPZ processes
in higher dimensions.

ACKNOWLEDGMENTS

This work was partially supported by CONICET (Ar-
gentina) under Projects No. PIP11220090100051, No.

PIP11220120100250CO, and No. PIP112-20110100615;
Universidad Nacional de San Luis (Argentina) under Project
No. 322000; and the ANPCyT (Argentina) under Project No.
PICT-2013-1678. The numerical work was done using the
BACO parallel cluster located at Instituto de Fı́sica Aplicada,
Universidad Nacional de San Luis-CONICET, San Luis,
Argentina.

[1] M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lett. 56, 889
(1986).
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