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Quantum discord length is enhanced while entanglement length
is not by introducing disorder in a spin chain
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Classical correlation functions of ground states typically decay exponentially and polynomially, respectively,
for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially
even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation
measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation
lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass
and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length
while quantum discord length increases significantly with the introduction of the quenched disorder.
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I. INTRODUCTION

Correlations are important in physical systems from a fun-
damental perspective as well as from an application-oriented
one [1–3]. Constituent subsystems of a physical system are
often interacting, and in such systems the correlations, whether
classical or quantum, between the constituent parts are almost
invariably decaying with distance between the parts. The
efforts to understand the sustainability of correlations in many
body systems as a function of lattice distance happens to be
crucial, since the low-temperature scaling of correlations is
expected to remain universal, irrespective of the microscopic
details of various materials governed by the same class of un-
derlying models. In case of gapped systems with short-ranged
interactions, using the Lieb-Robinson bounds [4], it can be
shown that two-site classical correlation functions, 〈OiOj 〉 −
〈Oi〉〈Oj 〉, decay exponentially with increasing lattice distance,
known as clustering of correlations [5,6], except when the
systems are critical, in which they decay polynomially, with
Oi and Oj being the observables at sites i and j , respectively.
However, it has been reported that in several physical systems,
quantum correlations, as qualified by entanglement, decay
much more rapidly in comparison to classical correlators, both
near and far from the quantum critical points. For example,
in the quantum XY model with transverse magnetic field,
entanglement can survive only up to the next nearest neighbor
[7], while in the Heisenberg model, it becomes vanishingly
small already after the nearest neighbor [8]. In comparison,
the information-theoretic measures like quantum discord (QD)
[9] and quantum work deficit (QWD) [10] can survive over a
longer distance [11,12] in the homogeneous XY spin chain. It
is important to note here that such spin models can be prepared
in the laboratories using current technologies [13–15].

Establishing finite quantum correlations between distant
parties is undoubtedly important to implement several quan-
tum information processing tasks in many body systems. In this
paper, we ask the following question: Is it possible to enhance
quantum correlation lengths, namely entanglement and QD
lengths, significantly by introducing defects in quantum spin
systems? We find that the answer is in the affirmative. Disorder
occurs unavoidably in real materials and can now also be
engineered artificially in, e.g., cold atom experiments [16].

Moreover, it was shown that there exists some models,
in which disorder plays a constructive role by enhancing
physical properties like magnetization, classical correlators,
and quantum correlations [17–19]. Such phenomena, known
as “order-from-disorder” or “disorder-induced order,” run
certainly contrary to the naive belief that impurity in the
systems can have only a debilitating effect.

In this work, we investigate the trends of quantum correla-
tion lengths for the ground states of 1D quenched disordered
anisotropic XY as well as XYZ spin models. Our results show
that although the entanglement lengths cannot be improved
or reduced by introducing disorder in the system, the lengths
of information-theoretic quantum correlation measures can be
substantially enhanced (specifically, more than doubled) in the
presence of impurities. The features remain unaltered in the
XYZ model for low values of the zz interactions. Higher values
of the zz interaction, however, interferes destructively with
the disordered couplings, to suppress the disorder-induced
enhancement in QD length. As a consequence of the fact that
QD remains finite between two arbitrary sites, we prove that
QD cannot satisfy a large class of monogamy relations for the
ground states of the homogeneous and disordered spin models
for sufficiently large systems.

The rest of the paper is arranged as follows. Section II
introduces the models under study and discusses the methods
involved in solving them. Section III reviews various quantum
correlation measures used in this work and introduces quantum
correlation lengths. The results for the disordered XY and
XYZ models are discussed in Secs. IV and V, respectively.
Finally, we summarize our results in Sec. VI.

II. MODELS AND METHODOLOGY

In this section, we briefly describe the models that we
use in this paper. Among the models described, note that
the homogeneous XY spin model is exactly solvable and the
analytic technique can be used to handle the corresponding
disordered model, while the XYZ spin model with and without
disorder cannot be solved analytically. We also present a brief
description of quenched averaging.
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A. Quenched disorder and averaging

The disorder in the system parameters are taken to be
“quenched.” That is, we assume that the time scale over which
the system dynamics of interest takes place is much smaller
compared to the time scale over which there is a change in
the particular set of parameters governing the disorder in the
system. In order to calculate the quenched averaged value of
a physical quantity, we need to perform the averaging over
the probability distribution of several realizations, each of
which corresponds to a fixed configuration of the system, after
calculating the value of the physical quantity for the fixed
configurations.

B. Quantum XY spin chain: Homogeneous and disordered
models

The general Hamiltonian for the quantum XY spin chain
with nearest-neighbor interactions in an external magnetic field
is given by

H = κ

{
N∑

i=1

Ji

4

[
(1 + γ )σx

i σ x
i+1 + (1 − γ )σy

i σ
y

i+1

]
−

N∑
i=1

hi

2
σ z

i

}
, (1)

where κJi are the coupling constants, κhi is the magnetic
field strength at the ith site, and γ is the anisotropy constant.
The constant κ has the units of energy, while Ji, hi, and γ are
dimensionless. Here σ j , for j = x,y,z, correspond to the Pauli
spin matrices. Moreover, we assume the periodic boundary
condition, i.e., �σN+1 = �σ1.

Using the Jordan-Wigner transformations [20], it is possible
to obtain the one- and two-site reduced density matrices for
the disorder case. First, we map the Pauli spin operators to
the spinless fermions via the Jordan-Wigner transformation,
so that the Hamiltonian in Eq. (1) becomes

H = κ

⎡⎣ N∑
i,j=1

c
†
i Aij cj + 1

2

N∑
i,j=1

(c†i Bij c
†
j+1 + H.c.)

⎤⎦. (2)

Here A and B are symmetric and antisymmetric real N × N

matrices, respectively, and are given by

Aij = −hiδij + Ji

2
δi+1,j + Jj

2
δi,j+1,

Bij = γ

2
(Jiδi+1,j − Jj δi,j+1),

with A1N = AN1 = JN and B1N = −BN1 = − γ

2 JN for the

cyclic boundary condition. Here the c
†
i ,ci are spinless

fermionic operators obtained via the Jordan-Wigner transfor-
mation. Note that the Hamiltonian in above Eq. (2) has a
correction term proportional to exp(−iπν) + 1, where ν is the
sum of number operators over the sites. But for large systems,
this correction term has a negligible contribution and we can
then treat this as a “c-cyclic” problem. Defining �T

k via the
eigenequation

(A − B)(A + B)�T
k = 	2

k�
T
k , (3)

with eigenvalue 	k and obtaining the corresponding 
k from
the equation


T
k = 	−1

k (A + B)�T
k , (4)

we can calculate the correlation matrix G, defined as

Gij = −
∑

k

ψkiφkj = −(�T �)ij , (5)

where � and � are the matrices φki and ψki , with φki (ψki)
being the ith element of �k (
k). Finally, one can show that the
magnetizations and two-point correlation functions of the zero-
temperature state can be easily obtained from the correlation
matrix G. We get mz

i = −Gii and mx
i = m

y

i = 0. The diagonal
correlations are given by

T xx
i,i+1 = Gi,i+1, (6)

T xx
i,i+1 = −Gi+1,i , (7)

T zz
i,i+1 = Gi,iGi+1,i+1 − Gi,i+1Gi+1,i , (8)

while all off-diagonal correlations vanish. The two-site re-
duced density matrix, ρij , of the ground state can be easily con-
structed from the one- and two-point correlation functions as

ρij = 1

4

[
I ⊗ I + mz

i (σ
z ⊗ I ) + mz

j (I ⊗ σ z)

+
∑

α=x,y,z

T αα
ij (σα ⊗ σα)

]
. (9)

C. Quantum XY Z spin glass

The general Hamiltonian for the quantum XYZ spin chain
with nearest-neighbor interactions in an external magnetic field
is given by

H = κ

(∑
i

{
Ji

4

[
(1 + γ )σx

i σ x
i+1 + (1 − γ )σy

i σ
y

i+1

]
+ �

4
σ z

i σ z
i+1

}
− h

2

∑
i

σ z
i

)
, (10)

where κJi , κh, and κ� are, respectively, the coupling constants
at the ith site, the magnetic field strength, and the nearest-
neighbor coupling strength for the zz interaction. Here γ is the
anisotropy constant. The constant κ has the units of energy,
while Ji, h, �, and γ are dimensionless. Here our interest
lies in the quenched averaged correlation lengths in the XYZ

spin chain. The homogeneous quantum XYZ spin chain can
be obtained from Eq. (10) by simply setting Ji = J for i =
1, . . . ,N .

The Hamiltonian for the quantum XY spin glass is obtained
by setting � = 0 in Eq. (10). The coupling strengths Ji

are randomly chosen from independently and identically
distributed (i.i.d.) Gaussian distributions with mean 〈J 〉 and
unit standard deviation.

Unlike the quantum XY disordered chain, one needs to
resort to numerical techniques for both the homogeneous XYZ

chain and the corresponding disordered system with random
coupling strengths. In order to investigate the ground state
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for the system characterized by the Hamiltonian in Eq. (10),
we employ the well-established numerical technique called
the density-matrix renormalization group (DMRG) method
[21]. After performing the standard infinite size DMRG,
several finite size DMRG sweeps are also carried out in
order to increase the accuracy of the calculations for the
inhomogeneous chain.

III. QUANTUM CORRELATION MEASURES

The presence of quantum correlations between subsystems
of a composite system helps in realizing many quantum
information protocols. In order to explore these protocols, it
is necessary to quantify the quantum correlations involved.
In this work, we have mainly used two quantum correlations
measures, namely, concurrence and QD. They belong to two
different paradigms of quantum correlation; while the first cor-
responds to the entanglement-separability paradigm, the other
is in the information-theoretic one. In the following sections,
we briefly introduce both the quantum correlation measures
considered here. We then provide a short introduction of the
concept of quantum correlation length.

A. Concurrence

Concurrence [22] quantifies the amount of entanglement
present in an arbitrary two-qubit state. Given a two-qubit
density matrix, ρAB , the concurrence is defined as

C(ρAB) = max{0,λ1 − λ2 − λ3 − λ4}, (11)

where λi’s are the eigenvalues of the Hermitian matrix R =√√
ρρ̃

√
ρ and satisfy the order λ1 � λ2 � λ3 � λ4. Here ρ̃ =

(σy ⊗ σy)ρ∗(σy ⊗ σy), with ρ∗ being the complex conjugate
of ρ in the computational basis.

B. Quantum discord

In classical information theory, the amount of ignorance
about a probability distribution, pi , is quantified by the
Shannon entropy, defined as H ({pi}) = −∑

i pi log2 pi . The
mutual information between two classical random variables i

and j , having the marginal distributions {pi} and {pj }, can be
defined in two equivalent ways as

I({pij }) = H ({pi}) + H ({pj }) − H ({pij })
= H ({pi}) − H ({pi|j }), (12)

where {pij } and {pi|j } correspond to the joint probability
distribution of the variables i and j , and the conditional
probability distribution, respectively. In case of quantum
systems, the quantity

I(ρAB) = S(ρA) + S(ρB) − S(ρAB), (13)

for a two-party quantum system ρAB , can be argued to
quantify the total correlation present in the system where
S(σ ) = −tr[σ log2 σ ] and ρi , i = A,B are the local density
matrices of ρAB [23–25]. This quantity can be interpreted
as the quantized version of the first expression of the
classical mutual information in Eq. (12). To quantize the other
expression, we consider that a measurement is performed on
one party, say B, using a complete set of rank 1 projectors,

{Bi}, satisfying the relations BiBj = δijBi and
∑

i Bi = IB .
The postmeasurement ensemble is given by {pi,ρ

i
AB}, with

ρi
AB = (IA ⊗ Bi)ρ(IA ⊗ Bi) and pi = tr[(IA ⊗ Bi)ρAB(IA ⊗

Bi)], where IA is the identity operator on the Hilbert space
of the system with observer A. The corresponding quantum
conditional entropy is given by

S(ρA|B) = min
{Bi }

∑
i

piS(ρA|i), (14)

where ρA|i = trBρi
AB . The quantum version of the second

expression in Eq. (12) of classical mutual information then
reads

J (ρAB) = S(ρA) − S(ρA|B), (15)

which turns out to be inequivalent to the expression in Eq. (13)
and can be argued as a measure of classical correlation of the
state ρAB . Quantum discord [9] is defined as the difference
between these two inequivalent quantities and is given by

D(ρAB) = I(ρAB) − J (ρAB). (16)

In all the cases considered in this paper, the bipartite states
are X states [26] with |T xx

ij | � |T yy

ij |, for which an analytical
form of QD is available [27–30]. We have also checked the
claim numerically. When the measurement is performed by the
first party, i.e., on the ith spin of a two-party state ρij , the clas-

sical correlation is given by J (ρi,j ) = H2( 1+mz
i

2 ) − H2( 1+p

2 ),

with p =
√

(mz
i )

2 + (T xx
i,j )2, and H2(x) = −x log2 x − (1 −

x) log2(1 − x) being the binary entropy for 0 � x � 1.

C. Quantum correlation length

As mentioned earlier, our primary aim is to investigate
quantum correlation lengths in quenched disordered XY and
XYZ spin models. Conventionally, the classical correlation
length, ξC , associated with the classical correlation function,
C, can be defined as ξ−1

C = lim|i−j |→∞
(−loge〈Ci,j 〉)

|i−j | , where Ci,j

is a classical correlation function between the sites i and
j . However, as we discuss in subsequent sections, if we
wish to characterize the many-body systems by using the
corresponding quantum correlation lengths, it is useful to
define the same as follow. For arbitrary homogeneous spin
systems, let us first define the quantum correlation length. If
the quantum correlation (QC), Qi,j , between the ith and j th
spins behaves as

Qi,j = a + be
− |i−j |

ξQ , (17)

then ξQ denotes the Q length, with a, b being arbitrary
constants. It turns out that for concurrence, a = 0 since
pairwise concurrence always vanishes at large distance. For
quenched disordered systems, the QC length for the quenched
averaged two-site QC measures, if the latter behaves as in
Eq. (17), will be denoted by ξ〈Q〉. Note that this is different
from the concept of localizable entanglement, the amount of
entanglement that can be concentrated between two parties
through measurements performed on the rest of the parties
[31] (see also [32–34]).
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IV. ENTANGLEMENT AND DISCORD LENGTHS IN
ANISOTROPIC XY MODEL

In order to make a comparison between the disordered and
homogeneous systems, we fix the means of the distributions
of the disordered parameters in the disordered systems to be
identical to the corresponding parameters of the homogeneous
system. In particular, the quenched averaged physical quantity,
Qav(〈a〉,〈b〉, . . . ), corresponds to the disordered system with
disordered parameters a,b, . . . having means 〈a〉,〈b〉, . . . ,
respectively. The corresponding physical quantity for the
homogeneous system is then Q(〈a〉,〈b〉, . . . ), where the
values of the system parameters a,b, . . . are kept constant
at 〈a〉,〈b〉, . . . , respectively.

In the case of the homogeneous XY model, the ground state
is multipartite entangled except at J/h = 1/

√
1 − γ 2, which

is known as the factorization point [35,36]. At this point, the
ground state is doubly degenerate and both the degenerate
states are factorized as a tensor product of quantum states
corresponding to all the individual spins. Since we have taken
the ground state to be a pure symmetric state by taking equal
superposition of both the degenerate ground states, the two
spin entanglement here vanishes at this point, while QD may
have a nonzero value.

A. Anisotropic quantum XY spin glass: Entanglement length vs
discord length

Let us first consider the quantum XY spin glass with N

sites. All considerations are for the pure symmetric ground
state. For site-independent coupling constants Ji = J for
i = 1, . . . ,N , the system becomes the homogeneous quantum
XY spin chain, which is exactly solvable via successive
applications of the Jordan-Wigner, the Fourier, and the
Bogoliubov transformations [20,37,38]. The corresponding
disordered systems can also be handled up to relatively large
system sizes by using the same transformations and one can
obtain the one- and two-point correlation functions to generate
the two-site reduced density matrix, using which one can
eventually compute quantities like the concurrence and QD
[39,40].

1. Entanglement length

We compare the two-site concurrence between the sites i

and j of the homogeneous system, described by H (J,h), with
the quenched two-site concurrence between the same sites for
the XY spin-glass system with 〈J 〉/h = J/h. From Fig. 1, we
notice that the concurrence for the homogeneous XY model
vanishes for |i − j | � 3, while in the disordered system it goes
to zero for |i − j | � 4, implying no significant enhancement
or deterioration due to randomness. To compare entanglement
lengths between systems with and without disorder, we find
that, for example, with 〈J 〉/h = 0.5, ξ〈C〉 = 0.69 in the
disordered case, whereas ξC = 0.50 for the homogeneous one.
The numerical simulations seem to indicate the following:
Away from criticality, the values of concurrence, for all pairs
(i,j ), are higher in the disordered system as compared to
the corresponding homogeneous system, signaling order from
disorder [17–19] as depicted in Figs. 1(a) and 1(d). The roles
are reversed as we approach the quantum critical point [see

FIG. 1. Entanglement length in quantum XY spin glass vs the
homogeneous XY model. In each panel, the blue squares denote
the quenched averaged concurrence, 〈Ci,j 〉, between sites i and j ,
plotted against the lattice distance r = |i − j |, for the quantum XY

spin glass for 〈J 〉/h = 0.5 (a), 0.9 (b), 1.1 (c), and 1.5 (d). The red
circles denote corresponding homogeneous systems. The dotted and
solid lines show the exponential fits for disordered and homogeneous
systems, respectively. The vertical axis denotes the concurrences,
while the horizontal ones denote the lattice distances. Here N = 50
and γ = 0.5. For the disordered case, the number of realizations of
the random coupling is taken to be 104, for the quenched averaging.
The lines are exponential fits and the obtained data at integer values
of r . The vertical axis are measured in ebits, while the horizontal axis
are in lattice length units.

Fig. 1(b)], except when the factorization point is also nearby
[see Fig. 1(c)] (cf. [35,36]).

Note that although the panels in Fig. 1 are plotted for system
size N = 50, we have checked that increasing system size does
not change the behavior of the entanglements and hence the
entanglement lengths for both disordered and homogeneous
systems.

2. Discord length

We now show that QD length behaves in a qualitatively dif-
ferent way than the entanglement length both in homogeneous
and disordered systems. To investigate it, we divide the entire
range of 〈J 〉/h (for the spin-glass system, which is the same as
J/h for the homogeneous system) into three portions, namely
0 < 〈J 〉/h < λc, 〈J 〉/h > λc, and the neighborhood of λf ,
with λc and λf being the quantum critical and the factorization
points of the homogeneous system, respectively. Since we
investigate the system by varying 〈J 〉/h, the factorization
point lies always in the second region and hence the behavior
of discord length in the second region discussed below is
excluding the neighborhood of factorization point. The whole
discussion will be carried out for γ = 0.5 and hence the
factorization point is λf = 1.1547. The quantitative feature
remain unchanged for other values of γ .

Case when 〈J 〉/h < λc = 1. In the homogeneous system,
QD Di,j , decays exponentially as in Eq. (17) [11,12]. In
the XY spin-glass model, QD also decays exponentially, but
with a different decay rate. As an exemplary case, let us
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FIG. 2. All considerations here are the same as in Fig. 1, except
that QD is considered instead of concurrence and that the former is
measured in ebits.

consider 〈J 〉/h = 0.5 for which the quenched averaged QD

of the XY spin-glass model behaves as 〈Di,j 〉 = a + be
− r

ξ〈D〉 ,
with a = 1.4 × 10−3, b = 0.20, ξ〈D〉 = 1.36, while a = 4.1 ×
10−3, b = 0.18, ξD = 0.56, for the homogeneous XY model,
implying ξ〈D〉 = 2.4ξD . Therefore, unlike entanglement, we
observe significant enhancement of discord length in the
disordered system as also depicted in Fig. 2. The increment of
length by introducing randomness in the system can therefore
only be viewed for QC measures which are different from
entanglement. Moreover, we find that in this region, 〈Di,j 〉 >

Di,j , exhibiting thereby an order-from-disorder phenomenon.
Case when 〈J 〉/h > λc = 1. In this antiferromagnetic

phase, QD saturates to a constant value and hence indicates
long-range order in the system even in the thermodynamic limit
as also predicted in Refs. [11,12]. For example, if one fixes
J/h as 1.5, QD of the XY model without disorder behaves
as in Eq. (17) with a = 0.093, b = 0.115, and ξD = 0.80.
Note that we chose J/h = 1.5 since we are interested in the
behavior of discord length which is far from λf , which is
1.1594 in this case. In the XY spin-glass model, quenched
averaged QD again shows long-range order. Specifically,
after an initial decay, it saturates to a constant value. We
find ξ〈D〉 = 1.21 > ξD = 0.80 for 〈J 〉/h = 1.5, although the
order-from-disorder phenomenon is absent [see Fig. 2(d)].

Neighborhood of λf = 1/
√

1 − γ 2. At the factorization
point, QD remains constant for all pairs of (i,j ) for the
homogeneous system and hence ξD goes to ∞ for all nontrivial
b. In contrast, discord length is finite in the disordered case.
Therefore, at the factorization point, ξD > ξ〈D〉. The decrement
of discord length due to disorder can also be observed in
the vicinity of the factorization point. Hence, enhancement
of discord length is seen in the entire region of 〈J 〉/h except
at the neighborhood of the factorization point.

As a by-product, in both the homogeneous and the disor-
dered systems, we can prove that QD does not follow any
monogamy relation [41] for arbitrary N , in any of the three
regions [42]. Quantitatively, for a given N -party state ρ1,...,N ,
a bipartite QC measure Q is said to be monogamous, with the

N 6
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N 50

1.8 2.2 2.6 3
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log N
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g
Ξ D
N

D
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0

0.03
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r

D

FIG. 3. Scalings of QD length for the 1D quantum XY spin glass.
We plot the quenched averaged QD on the vertical axis against lattice
distance on the horizonal one for different values of N . In the main
figure, the vertical axis is in bits, while the horizontal one is in lattice
length units. In the inset, the unit of the horizontal and vertical axes
are, respectively, logarithms of the total numbers of lattice sites and
of lattice length. The logarithms are with base e.

party 1 as the “nodal observer,” ifQ(ρ1:2,...,N ) �
∑N

i=2 Q(ρ1i),
where Q(ρ1:2,...,N ), and Q(ρ1i) are, respectively, the QC in the
1 : rest and the 1 : i bipartition. Suppose, if possible, that the
QD of the ground state satisfies monogamy. That would imply
1 � D(ρ1,...,N ) �

∑
D(ρ1i) � · · · � ND(ρ1N ). The first and

the last inequalities are due to the fact that each local system
is a qubit and D(ρ12) � D(ρ13) � D(ρ1N ), respectively. As
argued, D(ρ1N ) can tend to a nonzero constant as N → ∞, in
both the homogeneous and the disordered systems. Therefore,
in the thermodynamic limit, ND(ρ1N ) → ∞, giving us a
contradiction. Since D(ρ1N ) can have a nonzero value for
large N , it is easy to see that any monogamy-type relations
would be violated for QD for those states for sufficiently large
N [43,44]. In particular, a similar argument will imply that
also the squares of QD also cannot be monogamous for these
states with sufficiently large N [45].

It is also interesting to check the behavior of discord length
with different N . We observe that the behavior of QD freezes
for N � 50 and hence we can safely assume that the results
obtained for N = 50 will mimic those of an infinite spin chain
(see Fig. 3). Therefore, we take ξN=50

〈D〉 = ξ∞
〈D〉 and we find that

ξ〈D〉 scales as N−0.932.

B. Random field quantum XY spin chain

Here we consider an N -site quantum XY spin chain with
uniform nearest-neighbor exchange interactions, Ji = J , but
with field strengths, hi , randomly chosen from i.i.d., the
Gaussian probability distributions with mean 〈h〉, and unit
standard deviation. In the corresponding homogeneous system,
hi assumes a constant value, 〈h〉, at each site. Again we
consider the pure symmetric ground state.

The panels of Figs. 4 and 5 illustrate the features of concur-
rence and QD, respectively, for different choices of 〈h〉, against
r . We find that the physics remain qualitatively unchanged
in the random field XY chain if one compares with the XY

spin glass model. We observe that disorder, in general, does
not help in establishing long-range entanglement, while it can
significantly increase the other QC length, specifically discord
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FIG. 4. Entanglement length in random field quantum XY spin
chain vs homogeneous XY chain for J/〈h〉 = (a) 0.67, (b) 0.91, (c)
1.1, and (d) 2.0. All considerations, except for the model considered
and for the fact that the different panels are now for different values
of J/〈h〉, remain the same as in Fig. 1.

length, almost everywhere in the parameter space except near
the factorization point. As observed for the XY spin–glass
model, although discord length gets enhanced due to disorder,
the value of quenched averaged QD decreases in the region
J/〈h〉 > 1. On the other hand, the value of entanglement
increases in this region, showing a complementarity between
the two types of QC measures.

V. ENTANGLEMENT LENGTH AND DISCORD LENGTH
IN XY Z SPIN GLASS

Our results showed that even though the disorder-driven
systems are only minimally benefited in terms of the enhance-
ment in concurrence length, a noteworthy endowment occurs
in discord length. It is natural to inquire whether the findings
are generic in one dimensional systems. Specifically, one can

FIG. 5. All considerations here are the same as in Fig. 4, except
that QD is considered instead of concurrence and that the former is
measured in ebits.

FIG. 6. The homogeneous and disordered XYZ models. Scaling
of entanglement as a function of distance for the homogeneous
and disordered spin chains with N = 24 and γ = 0.5 for 〈J 〉/h =
(a) 0.5 and (b) 1.5. The vertical axes denote the concurrences, while
the horizontal ones denote the lattice distances. The up and down
triangles correspond to the homogeneous system with � = 0.1 and
� = 0.5, respectively. The circles and the squares correspond to
the disordered system for � = 0.1 and � = 0.5, respectively. The
solid and dotted lines show exponential fits for different cases.
For the disordered case, the number of random realizations taken
is 8000.

extend the analysis to the disordered quantum XYZ spin glass
[see Eq. (10)].

In order to obtain the ground state of the XYZ spin chain,
we employ the DMRG technique [21], which is best suited
for studying the spin chains with open boundary conditions in
order to achieve high accuracy1 [46]. However, with the open
boundary condition, the drawback is that the measurement
of the observables on the fringes would experience boundary
effects. In order to investigate the correlations encapsulated
between two sites, we consider the central spin on the (N/2)th
site and another site which is positioned at a distance r from
the (N/2)th site, but is still far from the boundary.

We notice that in the homogeneous system, increasing
� raises the concurrence length for 〈J 〉/h < 1, while there
is no notable change in the length, when 〈J 〉/h > 1 (see
Fig. 6). The situation is true also when disorder in introduced
in the system. However, the disordered system fares better
than the homogeneous system in the region 〈J 〉/h > 1
compared to that of the 〈J 〉/h < 1 for higher values of
�. Similar to the XY model, QD behaves quite differently
than entanglement in the XYZ model with small values of
�, essentially mimicking the results obtained for the XY

model. Enhancements of discord length are observed both
in 〈J 〉/h < 1 and 〈J 〉/h > 1 regions in the presence of
disorder.

However, in the region 〈J 〉/h < 1, the advantage of discord
length obtained in the XY spin glass over the corresponding
homogeneous system is faded out with increase of the zz

interaction. For fixed 〈J 〉/h, with the increase of �, the
discord length decreases in the disordered system. This is
illustrated in Table I, where we consider a chain of 24 spins. See
also Fig. 7.

1This work has been developed by using the DMRG code released
within the “Powder with Power” project.
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TABLE I. Comparison of discord length for both the homo-
geneous and the disordered systems in quantum XYZ model for
different values of 〈J 〉/h and �/h, with N = 24.

�/h = 0.1 �/h = 0.5

〈J 〉/h = 0.5 ξD = 0.64 ξD = 4.05
ξ〈D〉 = 1.26 ξ〈D〉 = 0.86

〈J 〉/h = 1.5 ξD = 1.04 ξD = 0.68
ξ〈D〉 = 1.26 ξ〈D〉 = 0.73

VI. CONCLUSION

In summary, we have studied the effects of disorder on QC
lengths in spin chains. The paradigmatic models considered
are XY spin glass in which coupling strengths are chosen
randomly, the XY spin chain with random field, and the
XYZ model with random xx and yy couplings. We find that
entanglement length shows neither significant reduction nor
enhancement with the introduction of disorder in the system.
In sharp contrast, the discord length is significantly higher in
the XY disordered models in comparison to the corresponding

FIG. 7. All considerations here are the same as in Fig. 6, except
that QD is considered instead of concurrence and that the vertical
axes are measured in bits.

homogeneous ones. The results remain unchanged in the XYZ

model for low values of the zz interaction.
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012131-7

http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.1103/PhysRevLett.76.4656
http://dx.doi.org/10.1103/PhysRevLett.76.4656
http://dx.doi.org/10.1103/PhysRevLett.76.4656
http://dx.doi.org/10.1103/PhysRevLett.76.4656
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.90.047901
http://dx.doi.org/10.1103/PhysRevLett.90.047901
http://dx.doi.org/10.1103/PhysRevLett.90.047901
http://dx.doi.org/10.1103/PhysRevLett.90.047901
http://dx.doi.org/10.1103/PhysRevA.68.022312
http://dx.doi.org/10.1103/PhysRevA.68.022312
http://dx.doi.org/10.1103/PhysRevA.68.022312
http://dx.doi.org/10.1103/PhysRevA.68.022312
http://dx.doi.org/10.1103/PhysRevLett.93.040503
http://dx.doi.org/10.1103/PhysRevLett.93.040503
http://dx.doi.org/10.1103/PhysRevLett.93.040503
http://dx.doi.org/10.1103/PhysRevLett.93.040503
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1016/S0034-4877(06)80014-5
http://dx.doi.org/10.1016/S0034-4877(06)80014-5
http://dx.doi.org/10.1016/S0034-4877(06)80014-5
http://dx.doi.org/10.1016/S0034-4877(06)80014-5
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1103/PhysRevLett.91.207901
http://dx.doi.org/10.1103/PhysRevLett.91.207901
http://dx.doi.org/10.1103/PhysRevLett.91.207901
http://dx.doi.org/10.1103/PhysRevLett.91.207901
http://dx.doi.org/10.1103/PhysRevLett.71.4287
http://dx.doi.org/10.1103/PhysRevLett.71.4287
http://dx.doi.org/10.1103/PhysRevLett.71.4287
http://dx.doi.org/10.1103/PhysRevLett.71.4287
http://dx.doi.org/10.1103/PhysRevLett.81.5932
http://dx.doi.org/10.1103/PhysRevLett.81.5932
http://dx.doi.org/10.1103/PhysRevLett.81.5932
http://dx.doi.org/10.1103/PhysRevLett.81.5932
http://dx.doi.org/10.1103/PhysRevA.59.169
http://dx.doi.org/10.1103/PhysRevA.59.169
http://dx.doi.org/10.1103/PhysRevA.59.169
http://dx.doi.org/10.1103/PhysRevA.59.169
http://dx.doi.org/10.1103/RevModPhys.83.33
http://dx.doi.org/10.1103/RevModPhys.83.33
http://dx.doi.org/10.1103/RevModPhys.83.33
http://dx.doi.org/10.1103/RevModPhys.83.33
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/s00220-006-0030-4
http://dx.doi.org/10.1007/s00220-006-0030-4
http://dx.doi.org/10.1007/s00220-006-0030-4
http://dx.doi.org/10.1007/s00220-006-0030-4
http://dx.doi.org/10.1038/416608a
http://dx.doi.org/10.1038/416608a
http://dx.doi.org/10.1038/416608a
http://dx.doi.org/10.1038/416608a
http://dx.doi.org/10.1103/PhysRevA.69.062314
http://dx.doi.org/10.1103/PhysRevA.69.062314
http://dx.doi.org/10.1103/PhysRevA.69.062314
http://dx.doi.org/10.1103/PhysRevA.69.062314
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1103/PhysRevLett.89.180402
http://dx.doi.org/10.1103/PhysRevLett.89.180402
http://dx.doi.org/10.1103/PhysRevLett.89.180402
http://dx.doi.org/10.1103/PhysRevLett.89.180402
http://dx.doi.org/10.1103/PhysRevLett.90.100402
http://dx.doi.org/10.1103/PhysRevLett.90.100402
http://dx.doi.org/10.1103/PhysRevLett.90.100402
http://dx.doi.org/10.1103/PhysRevLett.90.100402
http://dx.doi.org/10.1103/PhysRevA.71.062303
http://dx.doi.org/10.1103/PhysRevA.71.062303
http://dx.doi.org/10.1103/PhysRevA.71.062303
http://dx.doi.org/10.1103/PhysRevA.71.062303
http://dx.doi.org/10.1103/PhysRevA.71.062307
http://dx.doi.org/10.1103/PhysRevA.71.062307
http://dx.doi.org/10.1103/PhysRevA.71.062307
http://dx.doi.org/10.1103/PhysRevA.71.062307
http://dx.doi.org/10.1103/PhysRevA.80.022108
http://dx.doi.org/10.1103/PhysRevA.80.022108
http://dx.doi.org/10.1103/PhysRevA.80.022108
http://dx.doi.org/10.1103/PhysRevA.80.022108
http://dx.doi.org/10.1103/PhysRevA.82.012106
http://dx.doi.org/10.1103/PhysRevA.82.012106
http://dx.doi.org/10.1103/PhysRevA.82.012106
http://dx.doi.org/10.1103/PhysRevA.82.012106
http://dx.doi.org/10.1016/j.physleta.2012.03.029
http://dx.doi.org/10.1016/j.physleta.2012.03.029
http://dx.doi.org/10.1016/j.physleta.2012.03.029
http://dx.doi.org/10.1016/j.physleta.2012.03.029
http://dx.doi.org/10.1103/PhysRevB.89.054410
http://dx.doi.org/10.1103/PhysRevB.89.054410
http://dx.doi.org/10.1103/PhysRevB.89.054410
http://dx.doi.org/10.1103/PhysRevB.89.054410
http://dx.doi.org/10.1142/S0217979213450306
http://dx.doi.org/10.1142/S0217979213450306
http://dx.doi.org/10.1142/S0217979213450306
http://dx.doi.org/10.1142/S0217979213450306
http://dx.doi.org/10.1088/0953-4075/38/9/013
http://dx.doi.org/10.1088/0953-4075/38/9/013
http://dx.doi.org/10.1088/0953-4075/38/9/013
http://dx.doi.org/10.1088/0953-4075/38/9/013
http://dx.doi.org/10.1002/prop.200610325
http://dx.doi.org/10.1002/prop.200610325
http://dx.doi.org/10.1002/prop.200610325
http://dx.doi.org/10.1002/prop.200610325
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1016/j.physrep.2008.09.003
http://dx.doi.org/10.1016/j.physrep.2008.09.003
http://dx.doi.org/10.1016/j.physrep.2008.09.003
http://dx.doi.org/10.1016/j.physrep.2008.09.003
http://dx.doi.org/10.1103/RevModPhys.76.1037
http://dx.doi.org/10.1103/RevModPhys.76.1037
http://dx.doi.org/10.1103/RevModPhys.76.1037
http://dx.doi.org/10.1103/RevModPhys.76.1037
http://dx.doi.org/10.1103/PhysRevLett.98.130404
http://dx.doi.org/10.1103/PhysRevLett.98.130404
http://dx.doi.org/10.1103/PhysRevLett.98.130404
http://dx.doi.org/10.1103/PhysRevLett.98.130404
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature11406
http://dx.doi.org/10.1038/nature11406
http://dx.doi.org/10.1038/nature11406
http://dx.doi.org/10.1038/nature11406


SADHUKHAN, ROY, RAKSHIT, PRABHU, SEN(DE), AND SEN PHYSICAL REVIEW E 93, 012131 (2016)
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