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Probability-current analysis of energy transport in open quantum systems
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We introduce a probability-current analysis of excitation energy transfer between states of an open quantum
system. Expressing the energy transfer through currents of excitation probability between the states in a site
representation enables us to gain key insights into the energy transfer dynamics. In particular, the analysis yields
direct identification of the pathways of energy transport in large networks of sites and quantifies their relative
weights, as well as the respective contributions of unitary dynamics, coherence, dephasing, and relaxation and
dissipation processes to the energy transfer. It thus provides much more information than studying only excitation
probabilities of the states as a function of time. Our analysis is general and can be readily applied to a broad range
of dynamical descriptions of open quantum system dynamics with coupling to non-Markovian or Markovian
environments.
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I. INTRODUCTION

In the description of electronic excitation energy transport
in systems of coupled sites—such as molecular aggregates,
biological and artificial light-harvesting systems, coupled
quantum dots—knowledge about the contributions of the dif-
ferent processes involved is important both for understanding
and modeling of the energy transport mechanisms in nature,
as well as for design of artificial and biomimetic systems that
enable efficient transport. The key processes involved in the
energy transfer that are essential for this analysis are unitary
dynamics, dephasing, and relaxation and dissipation. It has
been found that the right balance between these processes
can enable highly efficient, directed energy transport [1–4].
Another key aspect in the investigation of design-function
relationships in natural and artificial light-harvesting systems
is the identification of the specific pathways of energy transport
in large networks of sites and the quantification of their
relative weights [4–9]. In such systems and for open quantum
systems in general, it has long been appreciated that coherent
dynamics play a role in the overall energy transfer, and the
coherent features of transport have been intensively studied in
a broad range of open quantum systems [10–18]. In recent
years, experimental evidence for long-lasting coherence in
biological photosynthetic systems obtained from ultrafast
spectroscopies has also sparked questions and discussions
about the contribution of coherence to the energy transport
that drives photosynthesis [16,18–28].

To address these aspects of energy transfer in natural and
artificial systems, we introduce here an analysis in which the
energy transfer between the states of an open quantum system
is expressed through excitation probability currents. In this
paper the analysis is carried out in a site basis consisting
of states in which the excitation is localized on single sites.
This is the most convenient basis for applying the probability
current analysis to spatial energy transport, which is the focus
of a subsequent paper [4]. However, we emphasize that the
excitation probability current analysis itself is general and
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independent of basis. It is thus applicable to description of
excitation transport in any basis.

Describing excitation or charge transport by means of
probability currents is commonly encountered in a number
of situations in condensed matter [29–31] and in electron
transfer reactions [32]. However, such a description is usually
not applied in the study of light-harvesting systems, where
energy transfer has instead usually been evaluated in terms
of time-dependent populations of excited states (see, e.g.,
Refs. [6,16,22,33–38]). For such systems, and for other
systems, a large amount of additional information about the
system dynamics in terms of pathways, etc., can be gained
from an analysis of the probability currents. This is also
demonstrated in a companion paper [4], where the analysis
developed in this paper is applied to numerical simulations
investigating excitation energy transfer and design-function
relationships in the Photosystem II protein complex that drives
photosynthesis in higher plants.

In our analysis, we obtain the probability currents from a
continuity equation for the excitation probability of the sites.
Since the total excitation probability inside the (open) system
is usually conserved, such a treatment based on continuity
equations and probability currents is widely applicable. In this
paper we show that this analysis enables us to address the
following tasks in a straightforward manner:

(1) Calculate the excitation probability currents between
the individual sites, i.e., their direction and magnitude, thus
revealing the pathways of transport. This can be performed for
a large, complicated network of sites, where the excitation of
the sites couples to either a Markovian or a non-Markovian
environment.

(2) Quantify the respective contributions of unitary dynam-
ics, dephasing, and relaxation and dissipation to the currents.

(3) Quantify the contribution of coherence (versus the
contribution of populations) to the currents, i.e., to the energy
transfer.

Here we shall understand coherence to be quantified by the
off-diagonal elements of the system’s density matrix in the
basis under consideration. The system’s density matrix can
be obtained from a quantum master equation or other kinds of
quantum dynamical equations such as (stochastic) Schrödinger
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equations, and can be transformed to study populations and
coherences in different bases. For the probability-current
analysis, this flexibility of the density matrix also allows us
to obtain the currents between states in the desired basis. As
noted above, in this work we employ the site basis in order
to study the spatial transport of energy. While the currents
between individual sites can be obtained from a density matrix
approach, they may not be evident from an (effective) rate
equation approach, such as generalized Förster transfer, that
provides only the time-dependent populations of effective
delocalized states, but no explicit coherence.

Our treatment is applicable to the tight-binding and
Holstein-like models—whether described as open or closed
quantum systems—that are typically used for modeling
excitation transfer systems of the form of biological or
artificial light-harvesting systems [39–44]. In the probability-
current framework, we obtain formulas for the contribution of
the different processes—coherence, dephasing, relaxation—to
the currents (i.e., to the excitation energy transport) from the
evolution equation for the system’s density matrix. Inserting
the elements of the time-dependent system density matrix into
these formulas, where the matrix elements are obtained either
from a numerical simulation or a tomographic reconstruction
from experimental measurements, one can then numerically
evaluate the contributions to the currents for specific model
situations.

In the following, we first briefly review the description of
energy transport in an open quantum system by means of a
non-Markovian quantum master equation (Sec. II). This will
provide the underlying dynamical basis for our probability-
current analysis. Then, in the main part of the paper in
Sec. III, we introduce our probability-current analysis, where
we express the energy transport through probability currents
and derive the different contributions of unitary evolution,
dephasing, and relaxation to the currents based on the quantum
master equation. Using this framework, we then explicitly
analyze the contribution of coherence to the energy transport.
To illustrate the interplay between the probability current and
the coherence, we analyze the dynamical equations for the
case of a Markovian environment, for which the equations
are particularly simple and yield useful general insights. A
quantitative analysis for a (33-site) system with a more general
non-Markovian environment is given in Ref. [4]. Throughout
the paper we shall illustrate the analysis with application to
the case of electronic energy transport, but we emphasize that
the formalism is quite general and can be readily applied to
other forms of energy transfer. Concluding remarks are given
in Sec. IV.

II. QUANTUM MASTER EQUATION DESCRIPTION
OF ENERGY TRANSFER

In this section we briefly outline the quantum master
equation approach to generating the open quantum system
dynamics that constitute the focus of the probability-current
analysis in Sec. III.

Energy transport is often described by means of an open
quantum system approach in order to be able to treat the large
number of degrees of freedom involved in the dynamics. In this
description, the problem is divided into three components—the

“system” degrees of freedom that are most relevant for the
energy transport, other “environmental” degrees of freedom,
and the “system-environment coupling.”

For example, in electronic energy transport, the system
may be the set of ground and excited electronic states of
the sites supporting the excitations, while the vibrational
degrees of freedom (commonly termed a “bath”) constitute
the environment and the electron-vibration coupling consti-
tutes the system-environment interaction [42,45]. In many
important electronic energy-transfer processes, the energy is
carried by molecular electronic excitations that are coupled to
intramolecular and/or intermolecular vibrational modes. Thus,
in pigment-protein complexes in photosynthetic systems, the
electronic excitation of the molecular pigments is coupled to
internal vibrational modes of the molecules and to vibrational
modes of the protein scaffold in which the pigments are
embedded [46,47]. This coupling to vibrations is often crucial
in the design-function relationship of such biological systems,
since it induces dephasing and vibrational relaxation, which
help to efficiently direct the energy transport to a target location
(in photosynthesis the energy might be directed from an
antenna complex to a reaction center complex), where the
energy is trapped and transformed [1,4,37,48]. It is therefore
important to include such vibrational degrees of freedom in the
modeling and simulation of the excitation transport, in order
to take these important dephasing and relaxation effects into
account.

In this open quantum system approach one then solves an
effective evolution equation in the small space of the system
degrees of freedom, where the system degrees of freedom are
treated explicitly and the environment degrees of freedom are
taken into account only implicitly. This approach makes even
large networks of sites numerically manageable [38,49]. One
widely used class of effective evolution equations derived from
an open quantum system approach is represented by quantum
master equations. These describe the time evolution of a
reduced density matrix of the system, which formally corre-
sponds to tracing out the environment degrees of freedom in the
density matrix of the total problem (see, e.g., [22,45,50–53]).
In simulations of molecular electronic energy transfer, the
reduced density matrix may contain just the electronic degrees
of freedom, i.e., where formally the partial trace over the
vibrational degrees of freedom was carried out [6,42,54],
or alternatively, both the electronic and selected vibrational
degrees of freedom [55], where the latter are chosen to reflect
the most strongly coupled or resonant vibrations.

As a dynamical model for electronic excitation energy
transport in a system of coupled sites, we consider here a
quantum master equation of the form

∂tρ(t) = P[ρ(t)] = −i[H,ρ(t)] + Lnonunitary[ρ(t)], (1)

describing the time evolution of the electronic reduced density
matrix ρ(t) of a system composed of a finite number of sites
each possessing two electronic states, with initial condition
ρ0. Here H is the system Hamiltonian that contains the
energies of the sites and the couplings between these. (Here
and throughout the paper we set � ≡ 1.) The first term in
Equation (1) describes the unitary dynamics of the system.
The second term describes the nonunitary contribution to the
system dynamics due to interaction of the system with the

012128-2



PROBABILITY-CURRENT ANALYSIS OF ENERGY . . . PHYSICAL REVIEW E 93, 012128 (2016)

environment. We shall restrict our attention here to the density
matrix components in the single excitation sector, which is
spanned by the states |n〉, where |n〉 is the state in which only
site n is excited and all other sites are in the ground state. The
probability to find the electronic excitation localized on site n

at time t is then given by

ρnn(t) = 〈n|ρ(t)|n〉. (2)

Transport of electronic excitation energy between the sites
following an initial injection of a single excitation into the
system will manifest itself in the time-dependent behavior of
these excitation probabilities ρnn(t) of the sites.

We assume that the nonunitary term of Eq. (1) is a sum of
two contributions, one of dephasing and one of dissipation and
relaxation between electronic states due to the coupling to the
environment:

Lnonunitary[ρ(t)] = LDephas[ρ(t)] + LRelax[ρ(t)]. (3)

We shall realize Eq. (1) by a time-convolutionless, non-
Markovian quantum master equation [50–53,56], which are
well suited to describe energy transfer in molecular systems
where the electronic excitation couples to non-Markovian vi-
brational modes of the environment [38,54]. In this description
the dephasing contribution can be written in the form

LDephas[ρ(t)] =
∑

n

[
LD

n ρ(t)AD
n

†
(t) + AD

n (t)ρ(t)LD
n

†

−LD
n

†
AD

n (t)ρ(t) − ρ(t)AD
n

†
(t)LD

n

]
, (4)

with LD
n = |n〉〈n| the system operator coupling electronic

excitation of site n to the environment and AD
n (t) a time-

dependent auxiliary operator. The operators AD
n (t) follow a

separate evolution equation that is independent of the density
matrix ρ(t), which captures the non-Markovian influence
of the environment (see Refs. [4,53,54]). We note that the
non-Markovian coupling to the environment described by
Eq. (4) not only induces dephasing, but can also induce
vibrational relaxation [55]. In the remainder of the paper
we shall nevertheless continue to refer to the term Eq. (4)
as “dephasing,” in order to distinguish it from the electronic
relaxation described below, which constitutes direct relaxation
of the system degrees of freedom.

Electronic dissipation and relaxation between electronic
states is analogously described by the operator

LRelax[ρ(t)] =
∑
l,n�=l

[
LR

nlρ(t)AR
nl

†
(t) + AR

nl(t)ρ(t)LR
nl

†

−LR
nl

†
AR

nl(t)ρ(t) − ρ(t)AR
nl

†
(t)LR

nl

]
, (5)

with system coupling operators LR
nl = |l〉〈n| describing relax-

ation from a state |n〉 to a state |l〉, and time-dependent auxiliary
operators AR

nl(t) that similarly include the non-Markovian
effects of the coupling to the environment.

In the Markovian limit, where the correlation time of the
environment is assumed to be short compared to the relevant
system time scales of the dynamics, both the time-dependent
auxiliary operators for dephasing and relaxation become

independent of time [53]:

AD
n (t) → 1

2γ D
n LD

n , (6)

AR
nl(t) → 1

2γ R
nlL

R
nl, (7)

with system-environment coupling parameters γ D
n and γ R

nl ,
respectively. In this limit, the non-Markovian quantum
master equation Eq. (1) becomes the well-known Markovian-
Lindblad equation [53], as can be seen by inserting Eqs. (6)
and (7) into Eqs. (4) and (5), respectively.

III. PROBABILITY-CURRENT ANALYSIS
OF ENERGY TRANSFER

We now develop the analysis of probability currents for
dynamics generated by the non-Markovian quantum master
equation description of the previous section.

Energy transfer between the sites occurs when the electronic
excitation is transferred between the sites, driven by the
intersite coupling. Since the overall excitation probability in
the system is conserved,

∑
n ρnn(t) = 1, even if the system is

open (i.e., it couples to an environment and ρ(t) is identified
with the reduced density matrix of the system), and a continuity
equation holds:

∂tρnn(t) =
∑
l �=n

jln(t), (8)

where jln(t) is the net probability current at time t that
transports excitation probability from a site l to site n, i.e.,
the net flow of probability along the link between the two
sites, with dimensions 1/time [57]. When jln(t) is positive,
excitation is transported from site l to site n, while when jln(t)
is negative, there is transport from site n to site l. These currents
can be identified with the energy transfer between the sites.
(We note that instead of the probability currents considered in
the present work, others have considered energy currents to
quantify excitation energy transfer [58]. However, this can be
problematic in open systems, since the energy inside an open
system is not a conserved quantity, and therefore there is no
corresponding continuity equation.)

By making use of the additivity of currents jln(t) between
the sites, we may also calculate the currents between subcom-
plexes that consist of a number of sites. Specifically, the current
JAB(t) between a subcomplex A and a subcomplex B is given
by

JAB(t) =
∑
l∈A

∑
n∈B

jln(t). (9)

Similar to the currents between sites, when the current
JAB(t) > 0, there is a net flow from A to B, and when
JAB(t) < 0, there is a net flow from B to A.

We now analyze the energy transfer dynamics given by the
quantum master equation Eqs. (1)–(5) of Sec. II in terms of
these probability currents. We find that this quantum master
equation leads to changes of the site populations in time given
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by

∂tρnn(t) = −i〈n|[H,ρ(t)]|n〉 + 〈n|LDephas(ρ(t))|n〉
+〈n|LRelax(ρ(t))|n〉

=
∑
l �=n

2Hln Im(ρln(t)) +
∑
l �=n

0

+
∑
l �=n

2 Re
{〈l|(ρ(t)AR

ln

†
(t) − AR

nl(t)ρ(t)
)|n〉}.

(10)

Here Hln = 〈l|H |n〉 are the intersite couplings, which may be
assumed to be real. Comparing Eq. (10) with the continuity
equation Eq. (8), shows that the population currents from sites
l to sites n (l �= n) are

jln(t) = j
Unitary
ln (t) + j

Dephas
ln (t) + jRelax

ln (t), (11)

with

j
Unitary
ln (t) = 2Hln Im[ρln(t)],

j
Dephas
ln (t) = 0, (12)

jRelax
ln (t) = 2 Re

[∑
k

ρlk(t)AR
ln,nk

∗
(t) − AR

nl,lk(t)ρkn(t)

]
.

The currents are seen to be a sum of three contributions, which
we label by the corresponding terms in the quantum master
equation: a unitary term, a dephasing term, and an electronic
relaxation term. These terms can be expressed in terms of
the coherences between the sites, ρln(t), and the populations
of the sites, ρnn(t). AR

nl,lk(t) = 〈l|AR
nl(t)|k〉 are the site-basis

matrix elements of the time-dependent auxiliary operators
AR

nl(t) describing relaxation between states n and l (∗ denotes
complex conjugation). Given a system density matrix ρ(t) and
the relaxation auxiliary operators AR

nl(t), one can then use
Eq. (12) to calculate the currents between the sites at all times.
We now discuss the three different contributions to the total
current.

A. Unitary term

Equation (12) shows that the unitary contribution to the
total current, j

Unitary
ln (t), is caused entirely by the coherence

between the sites, in particular by the imaginary components
of this. This is an important result, since it shows that
without coherence the unitary contribution to the spatial energy
transfer would be zero. As might be expected, this contribution
is proportional to the intersite couplings Hln. While this
unitary contribution does not explicitly depend on the diagonal
elements of H , i.e., the energies of the sites, it does implicitly
depend on the site energies through the time evolution of
the coherence. The above result for the unitary contribution
j

Unitary
ln (t) is well known for closed quantum systems; see,

e.g., Ref. [29].
An important property of this unitary contribution j

Unitary
ln (t)

is that, because the coherence ρln(t) is limited by the Cauchy-
Schwarz inequality for the coherence and population of a
density matrix ρ(t),

|ρln(t)|2 � ρll(t) ρnn(t), (13)

the unitary contribution to the current is also bounded:∣∣jUnitary
ln (t)

∣∣ = 2|HlnIm[ρln(t)]|
� 2|Hln|

√
ρll(t) ρnn(t) − {Re[ρln(t)]}2. (14)

Thus, the larger the real component of the coherence between
two sites, the more limited is the unitary current between these
sites.

This analysis of the unitary contribution illustrates the
important complementary roles that the imaginary and the
real components of the coherence play in the spatial energy
transfer. While the imaginary component of the coherence
constitutes the actual transport current, the real component
does nevertheless have a constraining effect on the energy
transfer. Because of these two different roles, it can be useful
to study the real and imaginary components of the coherence
involved in energy transfer dynamics separately. In Sec. III G
we do this explicitly for the special case of system-environment
coupling in the Markovian limit.

B. Dephasing term

In Eq. (11), the dephasing term of the current is zero,
regardless of the specific form of the dephasing, i.e., the spe-
cific behavior of the time-dependent auxiliary operators AD

n (t)
that describe the non-Markovian influence of the coupling
to the environment. (Here we have assumed that 〈n|l〉 = δnl ,
i.e., the states are orthonormal.) This finding is important,
because it means that the dephasing does not influence the
currents and hence the energy transfer explicitly. Thus, in a
model that only includes unitary dynamics and non-Markovian
dephasing, but no electronic relaxation between some or all
of the sites—a model often applied [6,54,59]—the currents
between the respective sites would be given entirely by the
unitary contribution j

Unitary
ln (t). Nevertheless, Eq. (4) shows

that the dephasing termLDephas[ρ(t)] does act on the coherence
between the sites, via the terms

〈l|LDephas(ρ(t))|n〉 = 〈l|[ρ(t)AD
l

†
(t) − ρ(t)AD

n

†
(t)

−AD
l (t)ρ(t) + AD

n (t)ρ(t)
]|n〉 (1 − δln). (15)

Thus, the dephasing term can, e.g., cause the coherence to
decay. As a consequence of this, the dephasing can indirectly
influence the unitary contribution j

Unitary
ln (t) to the current that

is driven by the coherence, and thus implicitly influence the
energy transport. Since the action of the dephasing terms on the
coherence depends on the time-dependent auxiliary operators
AD

n (t), the precise way in which coherence is influenced by
these terms will depend on the details of the non-Markovian
dynamics of the environment.

In the Markovian limit, however, the action of the dephasing
terms on the coherence is simple. Here AD

n (t) → 1
2γ D

n LD
n

[Eq. (6)] and the dephasing is described by Lindblad terms

〈l|LDephas
Lindbl [ρ(t)]|n〉 = − 1

2

(
γ D

l + γ D
n

)
ρln(t) (1 − δln). (16)

These simply cause the coherences between the sites to decay
on a time scale given by the coupling parameters γ D

n . In
the Markovian limit, dephasing will therefore diminish or
inhibit the unitary contribution j

Unitary
ln (t) that is driven by the
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coherence. It is well known that for dephasing fast compared
to the other timescales of the dynamics, the energy transfer is
inhibited (Quantum Zeno effect) [1].

C. Relaxation term

Equation (12) shows that the third term, jRelax
ln (t), the

contribution of electronic relaxation to the total current,
depends on both the coherences and populations of the
sites and on the time-dependent auxiliary operators. The
contribution of this term to the total current can therefore
have a complicated dependence on the interplay of electronic
coherence and populations with the environment.

In the Markovian limit, the situation is again relatively
simple. Inserting AR

nl(t) → 1
2γ R

nlL
R
nl [Eq. (7)] into the jRelax

ln (t)
term of Eq. (12), yields the Markovian relaxation contribution

j
Relax,Lindbl
ln (t) = γ R

lnρll(t) − γ R
nlρnn(t). (17)

This contribution has the character of a purely classical rate
equation (see, e.g., Ref. [60]), in which γ R

ln specifies the rate of
electronic relaxation transport from a state |l〉 to a state |n〉 and
γ R

nl the rate for the reverse process. This relaxation contribution
to the excitation transfer relies entirely on the populations;
coherence between the sites does not enter into this process.
Since this contribution does not depend on coherence between
the sites, it will not be destroyed by site dephasing. Such
Markovian Lindblad terms for electronic relaxation and dissi-
pation have been used together with non-Markovian dephasing
terms in quantum master equations describing both energy
transfer and trapping in pigment-protein systems [3,4,22,59].

D. Energy-transfer analysis in basis of system
Hamiltonian eigenstates

For the above analysis we have considered the elements of
the system density matrix in the basis of states |n〉 representing
local excitations of the sites. Another basis of interest is the
one given by the eigenstates of the system Hamiltonian, i.e.,
H |kμ〉 = Eμ|kμ〉. Using the unitary transformation between
site and energy bases, |n〉 and |kμ〉, respectively, we have
ρln(t) = ∑

μλ a
μ

l aλ
n

∗
ρ̃μλ(t), where ρ̃μλ(t) = 〈kμ|ρ(t)|kλ〉 and

a
μ

l ≡ 〈l| kμ〉. The unitary term of the population currents in
Eq. (12) is then given by

j
Unitary
ln (t) = 2Hln

∑
μ,λ �=μ

a
μ

l aλ
n Im[ρ̃μλ(t)], l �= n, (18)

where we have assumed that the Hamiltonian H is real and
symmetric so that its eigenvectors can be chosen to be real,
and thus the coefficients a

μ

l are real. Equation (18) shows that
in the energy eigenbasis |kμ〉 the energy transfer is entirely
driven by the imaginary parts of the coherences, just as was
found above in the site basis |n〉.

E. Quantifying the contribution of coherence to energy transfer

The above analysis has shown that in the absence of
electronic relaxation, excitation transfer during a time interval
�t depends entirely on the coherence between the sites, given
by the off-diagonal elements of the density matrix ρ(t) in this
time interval. According to Eq. (12), this constitutes the unitary

contribution j
Unitary
ln (t) to the current. If this site coherence

is zero, there will be no excitation transfer during this time
interval.

We can quantify the contribution of coherence to the energy
transfer, i.e., to the currents jln(t), by writing the currents as
a sum of the two contributions of the populations of the sites
and the coherence between the sites,

jln[ρ(t)] = j
pop
ln [ρd(t)] + j coher

ln [ρnd(t)]. (19)

Here the first term contains the diagonal elements of the density
matrix at time t in the site basis (populations) and the second
term contains the off-diagonal elements (coherences), i.e.,
ρ(t) = ρd(t) + ρnd(t). This partitioning is possible because
the propagator P of the evolution equation Eq. (1) is linear
in ρ(t). The same partitioning can be applied to the changes
∂tρnn(t) of the populations of the sites, which are just the sums
of the currents to/from the sites [see Eq. (8)]:

∂tρnn(t) =
∑
l �=n

j
pop
ln [ρd(t)] +

∑
l �=n

j coher
ln [ρnd(t)]

= 〈n|P[ρd(t)]|n〉 + 〈n|P[ρnd(t)]|n〉. (20)

Here the contributions of population and coherence can be
readily calculated by (numerically) applying the propagator
P of the evolution equation Eq. (1) to the diagonal and off-
diagonal part of a given density matrix ρ(t) at each point in
time, respectively.

In the situation of non-Markovian dephasing combined
with Markovian electronic relaxation and dissipation that was
described above [see Eq. (17)], we have the simple partitioning

j coher
ln [ρnd(t)] = j

Unitary
ln (t) and

j
pop
ln [ρd(t)] = j

Relax,Lindbl
ln (t), (21)

since the unitary contribution contains only coherence, the
contribution of the electronic relaxation contains only popula-
tions, and the dephasing contribution is zero.

The above analysis shows that in the absence of electronic
relaxation, energy transfer requires coherence. We note that
there are other dynamical models commonly applied to
describe energy transfer in which coherence is not explicitly
present, e.g., the (generalized) Förster method or other meth-
ods using classical master equations (rate equations) [9,61],
yet the system Hamiltonian matrix elements Hln do appear
in the rate parameters, distinct from the relaxation rates.
This is not a contradiction to the aforementioned result that
coherence is essential for the occurrence of energy transfer
(in the absence of transfer via electronic relaxation between
the sites), because such classical rate equations can be seen
as effective models derived from a general quantum master
equation. When this reduction is done consistently, it is evident
that such classical rate equations implicitly take coherence into
account, even though no coherence terms appear explicitly in
the classical rate equation. In such descriptions the key matrix
elements Hln appear as parameters in the rate coefficients for
transport between sites. A thorough analysis of this reduction
is given in Refs. [22,62]. For example, a classical rate equation
containing conventional Förster rates for the excitation energy
transfer is valid only within a restricted parameter regime
where the electronic inter-site coupling is weak compared to
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the electron-vibration coupling, providing a limiting case of
the general quantum master equation where the effect of the
intersite electronic coupling Hln may be incorporated by a
perturbative calculation of a rate constant within the Golden
Rule approximation. Since, as demonstrated above, in the
quantum master equation model intersite coherence is neces-
sary for energy transfer regardless of the parameter regime,
it follows that an effective Förster model implicitly takes
this coherence into account, even though no coherence terms
appear explicitly in the Förster rate equation. We note that
in the literature, Förster transfer is often termed “incoherent”
(see, e.g., Refs. [21,63,64]) since it does not contain explicit
coherence terms. However, this is somewhat misleading, since
Förster transfer does implicitly take coherence within the
site-to-site excitation transfer into account.

F. Energy-transfer pathways

The probability-current description is also very useful to
identify the pathways of energy transfer in a network of sites
and to reveal the relative weights, i.e., the relative importance,
of different pathways. This can provide important insight into
the design-function relationships of natural biological systems
such as light-harvesting complexes, inter alia. To reveal the
pathways, one can integrate the probability currents between
the sites over a certain time interval of interest to obtain both
the direction of transport and the net amount of excitation
probability that has been transported via each pathway during
this time period. Thus, the net amount of probability �Pln(�t)
that has been transported between a site l and a site n during
the time �t can be calculated from

�Pln(�t) =
∫ t0+�t

t0

dt jln(t), (22)

where the currents jln(t) are calculated beforehand with
Eqs. (11) and (12) from a given time-dependent density matrix
ρ(t) obtained from the quantum master equation. We note that
this analysis may be made using any underlying dynamical
model, provided that time dependence of the density matrix
and probability currents are consistently calculated with the
same model. This approach is used with a convolutionless
non-Markovian master equation in a companion paper [4] to
reveal the pathways of energy transport in the Photosystem II
super-complex, a light-harvesting apparatus driving photosyn-
thesis in higher plants. For illustration, the resulting transport
pathways of Ref. [4] are shown in Fig. 1. These pathways are
obtained by time-integrating the probability currents according
to Eq. (22), where the probability currents jln(t) are calculated
from the time-dependent electronic density matrix of the sites
ρ(t) using the formalism of Eqs. (12) and (17) (see Ref. [4]
for more details).

This diagram can help to understand the function of the
individual pigments of Photosystem II and their arrangement in
the super-complex. For instance, it can reveal which pigments
play a crucial role in the long-range transport chain and
which ones mainly serve as light absorbers, or, in case of
the pigments in the reaction center (RC), which ones serve
primarily to create the charge separation states that trap the ex-
citation energy. The diagram identifies the pathways between
antenna pigments (LHCII) and inner pigments (CP43, RC).

FIG. 1. Time-integrated excitation probability currents between
the pigments in a Photosystem II super-complex (over a time period of
1 ns) reveal pathways of excitation transport, based on the numerical
propagation of the electronic density matrix in Ref. [4] using a non-
Markovian quantum master equation. Initially only pigments 7 and
10 are excited. The arrows show the directions and their thickness the
relative magnitude of the integrated currents (see Ref. [4] for details
of the calculation).

The arrows in the diagram show the directions and relative
importance (magnitude of the integrated current) of the
different pathways. From these pathways, it is apparent that
there is a distributed network of transport channels rather than
single dominant pathways. This observation holds true for
the transport between the different complexes (LHCII, CP43,
RC), as well as inside the complexes. There are multiple
pathways from LHCII to CP43 and from CP43 to the RC.
Within complexes, some of the pathways transport a large
amount of excitation energy.

The intracomplex transport dynamics also appear to create
“loop currents,” where the excitation is transported in a loop
between sites. For instance, in the reaction center there is a
relatively strong loop current from pigment 32 to 27 to 28, and
back to 32 (see diagram).

Furthermore, the diagram shows that the transport to and
inside the reaction center appears to be mainly via the two
pigments 30 and 32, while the other pigments do not contribute
much to the net transport to the first state of the charge
separation trap (labeled RP1 in the diagram). Even though
pigments 27 and 28 are involved in the strong loop current,
their contribution to the net current to RP1 seems negligible.

In Ref. [4], we tested this interpretation of the transport in
the RC obtained from the diagram by running a simulation
where excitation transport is allowed only to the pigments 30
and 32 and transport to the other RC pigments is blocked. It
was found that in this restricted simulation the same amount of
excitation is transported to the trapping state as before. Thus,
it appears that pigments 30 and 32 are crucial for the excitation
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transport to the trapping states, whereas the other RC pigments
seem to be mainly needed for the charge separation (trapping).

This example demonstrates that probability-current dia-
grams as the one presented in Fig. 1 provide a powerful tool
for the analysis of pathways and design-function relationships
in transport in quantum systems.

G. Dynamics for Markovian system-environment coupling

When the memory time of the environment is short relative
to the characteristic time scale of the system dynamics, the
coupling to the environment is Markovian and the energy
transfer dynamics are particularly simple, allowing useful
analytic insight to be obtained. As described below, we find
that in this situation only three quantities are sufficient to fully
characterize the dynamics, namely, the probability current
between the sites, the real component of the coherence between
the sites, and the imaginary component of the coherence.

In the Markovian limit, the quantum master equation of
Sec. II reduces to a Lindblad equation, with dephasing and
relaxation terms given by Eqs. (6) and (7). From Eqs. (11),
(12), and (17), the total population current from site l to site n

is

jLindbl
ln (t) = −∂t dln(t) = j

Unitary
ln (t) + j

Relax,Lindbl
ln (t)

= 2Vln Im(ρln(t)) + [
γ R

lnρll(t) − γ R
nlρnn(t)

]
, (23)

where dln(t) ≡ [ρll(t) − ρnn(t)]/2 denotes the population dif-
ference of sites l and n, and Vln = Hln the intersite electronic
coupling. As before, the unitary contribution to the population
current is driven by the imaginary component Im[ρln(t)] of the
coherence between the sites and the relaxation contribution
depends on the population ρnn(t) of the sites.

Considering the evolution equations for the imaginary
and real components of the coherence separately, using the
Lindblad dynamics, Eq. (1), with Eqs. (6) and (7) and Eqs. (4)
and (5), we obtain for the imaginary component of the
coherence

∂t Im[ρln(t)] = 2Vln dln(t) − �ln Re[ρln(t)] − �ln Im[ρln(t)]

+
∑
k �=l,n

{Vkn Re[ρlk(t)] − Vlk Re[ρkn(t)]},

(24)

where �ln ≡ (Hll − Hnn) is the energy gap between the tran-
sition energies of sites l and n. The dephasing and electronic
relaxation rates have been combined here into a single decay
rate �ln ≡ (γ D

l + γ D
n + ∑

k �=l γ
R
lk + ∑

k �=n γ R
nk)/2. For the real

component of the coherence, we find

∂t Re[ρln(t)] = �ln Im[ρln(t)] − �ln Re[ρln(t)]

−
∑
k �=l,n

{Vkn Im[ρlk(t)] − Vlk Im[ρkn(t)]}.

(25)

The three coupled Eqs. (23)–(25) completely describe the en-
ergy transfer dynamics. Since the structure of these equations
is relatively simple, some qualitative observations can be made
directly from analysis of their forms.

First, we note that the imaginary component of the
coherence creates population transport via the first term in

Eq. (23), as discussed above. The population transport in turn
couples back into the imaginary component of the coherence
via the population difference dln(t) in the first term in Eq. (24).
In contrast, the real component of the coherence [Eq. (25)] is
not directly coupled to the population transport. Nevertheless,
this does indirectly influence the population transport, because
it is coupled to the imaginary component of the coherence via
both the first and last terms in Eq. (25) and the second and last
terms in Eq. (24). These terms coupling the real and imaginary
components of the coherence can be divided into two distinct
contributions.

(i) Terms depending on the local coherence, i.e., the
coherence between two sites l and n that affect the population
current between the same two sites [second term in Eq. (24)
and first term in Eq. (25)]. These terms scale with the energy
gaps �ln between sites.

(ii) Terms that account for the nonlocal influence of the
coherence stemming from the coupling to other sites [last terms
of Eqs. (24) and (25), respectively]. These terms scale with the
electronic intersite couplings Vkn.

We note further that the influence of the energy gaps �ln

on the population current depends on the magnitude of the real
component of the coherence since it appears only as a factor
in the Re[ρln(t)] term in Eq. (24).

The Markovian dephasing and relaxation leads to a simple
decay term for both the imaginary component of the coherence,
Eq. (24), and the real component of the coherence, Eq. (25),
that is characterized by a single decay time scale which is
given by the �ln, the sum of dephasing and relaxation rates.

Finally, it is of interest to consider the application of this
analysis to the smallest possible coupled site system, namely to
energy transfer between the two sites in a molecular dimer. A
dimer will possess only local coherence terms but no nonlocal
coherence terms [k �= l,n in Eqs. (24) and (25)]. This leads to a
reduction of possible coherence effects, e.g., no long distance
transfer and similarly no transfer from a given site to multiple
other sites. In this situation the reduction of possible coherence
effects leads to significantly simpler dynamics. Furthermore,
for the commonly studied example of a homodimer, i.e.,
�1,2 = 0, Eq. (25) would be completely decoupled from the
other two equations and the real part of the coherence decays
with the decay rate given by �1,2.

IV. CONCLUSIONS

In this paper we have introduced an analysis of elec-
tronic excitation energy transport using excitation-probability
currents. While the analysis is general and independent of
basis, our discussion is set in terms of a specific physical
focus on spatial energy transport through systems of coupled
sites and therefore employs a site basis. We applied the
analysis to an open quantum system model for energy transport
in which the dynamics are described by a non-Markovian
quantum master equation that contains both terms representing
unitary dynamics and dephasing and relaxation. We illus-
trated the analysis for electronic energy transport in systems
such as molecular aggregates and biological pigment-protein
complexes, for which the electronic degrees of freedom
are typically coupled to a vibrational environment and the
resulting dephasing and relaxation play an important role. We
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showed that the probability-current analysis gives instructive
insights into key features of the transport, allowing a clear
identification and quantification of the contributions of unitary
dynamics, coherence, dephasing, and electronic relaxation and
dissipation to the transport.

The probability currents representing the energy transport
are found to be given by a sum of unitary, dephasing, and
relaxation contributions. Each of these have simple forms
and can be readily calculated from a given time-dependent
electronic density matrix of the system, obtained, e.g., from
a numerical simulation of the quantum master equation. An
important result of the probability-current analysis is that
the unitary contribution to the current is caused entirely by
coherence between the sites, i.e., the off-diagonal elements
of the electronic system density matrix in the site basis, and
has no contribution from the population of the sites (diagonal
elements of the density matrix). This means that if there is
no coherence between the sites, then the unitary contribution
to the current will be zero. It is also noteworthy that only
the imaginary component of the coherence is involved in the
unitary current—not the real component. The same holds for
the unitary contribution to the current in the energy eigenstate
basis of the system Hamiltonian, i.e., only the imaginary
part of the coherence contributes, neither the real part of
the coherence nor the energy eigenstate population terms
contribute. The analysis shows that it is therefore useful to
consider imaginary and real components of the coherence
separately when studying energy transport dynamics.

Another key finding is that the contribution of the dephasing
term to the currents is always zero, regardless of specific
properties of the non-Markovian environment, such as the
form of the environment spectral density that describes the
strength of the coupling between the electronic excitation and
each vibrational mode of the environment. This means that in
a model containing only unitary dynamics and non-Markovian
dephasing—a commonly used model for energy transfer—the
only contribution to the overall energy transfer comes from the
unitary contribution to the current and thus from the coherence
between the sites. However, even though the dephasing does
not contribute explicitly to the currents, it is found to affect
the coherence that constitutes the unitary contribution to the
currents and thereby influence the energy transport implicitly.
If dephasing is strong, it can completely suppress the intersite
coherence and thus remove the unitary contribution to the
transport currents (this is the well-known Quantum Zeno
effect; see, e.g., Ref. [1]), so that the current derives only from
relaxation contributions. In this context, it is important to note
that a non-Markovian dephasing term in the quantum master
equation can also induce relaxation within the vibrational
manifold of the environment [55].

The contribution of the electronic relaxation to the current
was seen to be more complicated than the other contributions.
In general, the relaxation contribution can depend explicitly on
both coherence and population terms in the electronic density
matrix, as well as on the non-Markovian dynamics of the
environment. In the Markov limit, however, when the memory
time of the environment is short compared to the other time
scales of the dynamics, the electronic relaxation contribution
to the current was found to reduce to a very simple classical rate
equation term that depends on the populations of the sites and

on the corresponding relaxation rates, but not on the coherence.
Note that performing the Markov limit with respect to the
electronic relaxation still allows the incorporation of non-
Markovian dephasing—and hence of vibrational relaxation
as noted above—caused by a non-Markovian environment
[4,55,59].

Such nonunitary electronic relaxation is often used to
model radiative or nonradiative decay of electronic excitation
or trapping of excitation [3,4,22,59]. The transport deriving
from this Markovian relaxation is a very distinct process
from the unitary, coherent excitation transport mechanisms
between sites. The latter derives only from the Hamiltonian
terms, e.g., from resonant transition dipole-dipole interaction
between molecules [4,6,14]. Since the third possible current
contribution (dephasing) does not contribute explicitly to the
currents, the probability-current analysis shows that even in
the presence of electronic relaxation, the actual excitation
transport currents between sites may depend entirely on the
coherence between the sites and the Hamiltonian coupling
appearing in the unitary contribution. Consequently, if the
coherence is zero at a time t , there will be no current, i.e., no
energy transport, at this time t and the overall energy transport
is dependent on the presence of sustained coherence in the
system.

The finding that the energy transport can be entirely
determined by the coherence is one of the key insights provided
by this probability-current approach. As discussed in the text,
this reliance of the transport on coherence does not contradict
the fact that the (overall) transport dynamics can often be
described reasonably well by classical master equations, such
as the rate equations deriving from Förster and modified
Redfield models that contain only population terms and no
explicit coherence terms, in contrast to the quantum master
equations that contain the coherence as off-diagonal elements
of the density matrix [4,9,22,61]. This is because such classical
rate equations can be interpreted as effective descriptions of a
full quantum description, in which the effective rate equation
implicitly takes coherence into account by virtue of derived,
effective rate parameters, even though the coherence does not
explicitly appear in the equation [22].

Another very useful aspect of the description of energy
transport by means of probability currents is that this analysis
can reveal the pathways of the transport and their relative
importance in a large network of sites. This issue can be
addressed by integrating the probability currents between
sites over a certain time interval of interest, to show the net
amount of excitation probability transported via each pathway
and the direction of the transport within this time period.
In a concrete example of application, we demonstrated that
such a probability-current analysis allows revelation of long-
range energy-transport pathways within and between different
subcomplexes in the Photosystem II super-complex that drives
photosynthesis in higher plants, leading to new insights into the
design-function relationship of this photosynthetic apparatus.
Details of the application to Photosystem II are given in a
companion paper [4].

The interplay between the probability current and the imag-
inary and real components of the coherence was specifically
analyzed for the case of a Markovian environment where
the evolution of population and coherence is described by
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a Lindblad quantum master equation. Here a set of three
coupled equations are found to completely describe the energy
transfer dynamics, allowing a qualitative analysis of the mutual
influence that these quantities have on each other and how
they are affected by dephasing, relaxation, and localization
due to energy gaps between the sites. These are the effects that
play a crucial role in modeling and understanding excitation
energy transport in molecular aggregates and pigment-protein
complexes [1–3].

Finally, we point out that while the probability-current
analysis presented in this paper has focused on a quantum
master equation description of electronic energy transfer, the
procedure to identify and quantify contributions to probability
currents that stem from the different terms of an evolution

equation is far more general and can be applied to a broad
range of dynamical models and evolution equations. Indeed the
approach is not restricted to energy transfer and can in principle
be applied to any evolution equation that describes the time-
dependence of probabilities or other conserved quantities,
including classical master equations that contain probabilities
and rates, such as those derived from a generalized Förster
or modified Redfield models [9,61], as well as other quantum
evolution equations.
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