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Calculating work in weakly driven quantum master equations: Backward and forward equations
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I present a technical report indicating that the two methods used for calculating characteristic functions for the
work distribution in weakly driven quantum master equations are equivalent. One involves applying the notion of
quantum jump trajectory [Phys. Rev. E 89, 042122 (2014)], while the other is based on two energy measurements
on the combined system and reservoir [Silaev et al., Phys. Rev. E 90, 022103 (2014)]. These represent backward
and forward methods, respectively, which adopt a very similar approach to that of the Kolmogorov backward
and forward equations used in classical stochastic theory. The microscopic basis for the former method is also
clarified. In addition, a previously unnoticed equality related to the heat is also revealed.
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I. INTRODUCTION

Recently, there has been growing interest in the heat and
work of nonequilibrium quantum processes [1–30]. Studies fo-
cusing on this issue have mainly been motivated by an interest
in extending the important classical fluctuation relations into
the quantum regime, e.g., the celebrated Bochkov-Kuzovlev
equality [1] and the Jarzynski equality (JE) [31].

Compared with their classical counterparts [32], which
are physically intuitive, the definitions of fluctuating heat
and work become very delicate in the quantum case. In order
to formulate a quantum JE, in a closed quantum system, a
two-energy measurements (TEM) scheme was proposed by
Kurchan [2] to define the work. Although this definition still
faces criticisms related to the fact that the scheme may destroy
the initial quantum-coherent superposition of the system [33],
it has been widely accepted in the field [12,13,34]. Because
closed quantum systems are not common in reality, there have
also been many attempts to generalize this definition to include
open quantum systems [35]. These efforts can be roughly
divided into two types of method. The first type [11,12,25]
involves the combination of the system and its surrounding
heat reservoir as a composite system. The TEM scheme is
then conducted on the system and reservoir. As the interaction
between these is weak, the energy eigenvalue change obtained
using the TEM for the system is referred to as the internal
energy change, while the energy eigenvalue change obtained
by the TEM for the reservoir is referred to as the heat released
from the system, QTEM. Therefore, the work done on the open
system, WTEM, is the sum of the internal energy change and the
heat.

The second type of method is based on the quantum jump
trajectory (QJT) that is unraveled from the Lindblad quantum
master equations [6,9,17,18,21–24,36]. Under this notion, the
energy change of the heat reservoir is continuously measured.
This is interpreted as the released heat along a trajectory, QQJT.
If one preserves the internal energy change of the system
mentioned above, an alternative work, WQJT, is then the sum of
the heat and internal energy change along the same trajectory.
Figure 1 schematically illustrates the difference between these
two types of work in a two-level quantum system.
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Because very different measurement schemes are involved
in the above definitions of work, the nature of the relationship
between these is not immediately clear. An analogous question
related to heat has been raised by De Roeck et al. [9,12,36]
previously. They proved that if the open system can be
described by the Markovian master equation, these two types
of heat are indeed equivalent. Garrahan and Lesanovsky [37]
further emphasized this equivalence from the viewpoint of the
evolution equation of the characteristic function (CF) of the
heat.1 To my knowledge, however, even when using the Marko-
vian setup, the equivalence of the two types of work has not
yet been explicitly discussed, although intuitively this should
be true. A possible reason for this is that, under the action of a
time-varying force, there are no generally valid Markovian
master equations except that the driving force is weak
enough [35,38]. Very recently, for this specific type of master
equation, I developed a CF method [23] for calculating the
work WQJT. It is of note that shortly after the publication of my
paper, Silaev et al. [25] proposed another CF method for use
in calculating the work WTEM for the same quantum system.
Hence, now it is important to check the equivalence of these
two types of work. In this article, I explicitly show the result.

II. OVERVIEW OF THE TWO CF METHODS

Let us suppose that the Hamiltonian of a bare system is H0.
This weakly interacts with the surrounding heat reservoir, with
Hamiltonian Hr , and the inverse temperature β. The interaction
term is assumed to be V = S ⊗ R, where S and R represent
the operators of the system and reservoir parts, respectively.
The form of V is not the most general form possible, although
it is adequate for illustrating our results. Initially, the system is
in the thermal state, ρ0 = exp(−βH0)/Tr[exp(−βH0)]. Then
a weakly driving field is applied from time t = 0 to a final time,
tf . If one assumes that several approximations are appropriate
during the process, which includes the weak-coupling, Born-
Markov, and rotation wave approximations (RWA), then the

1Reference [37] in fact used the generating function rather than
the CF. The former can be viewed as the latter that is evaluated
on the imaginary axis. They are no essential differences if the
nonequilibrium process is finished within a finite-time interval. This
notion will be used again in the following discussions.
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evolution equation of the reduced density matrix of the system
ρ(t) is (setting � = 1) [35]

∂tρ(t) = Lt ρ(t) = −i[H0 + H1(t),ρ(t)] + D[ρ(t)], (1)

where H1(t) is the interaction term between the system and the
field. The D term denotes dissipation due to weak coupling
between the system and the reservoir:

D[A] =
∑

ω

γ (ω)

[
S(ω)AS†(ω) − 1

2
{S†(ω)S(ω),A}

]
. (2)

The operator, S, can be decomposed into a sum of the
eigenoperators of H0, i.e.,

S =
∑

ω

S(ω) =
∑

ω

S†(ω), (3)

[H0,S(ω)] = −ωS(ω) and S(−ω) = S†(ω). These sums are
extended over all energy differences, ω, of the eigenvalues of
H0 [35]. The rate γ (ω) satisfies the detailed balance condition:

γ (−ω) = γ (ω) exp(−βω). (4)

This condition plays a key role in the validity of the work
equalities [23,34] and in the following discussions. Master
equation (1) is widely utilized in quantum optics, e.g., in
describing resonance fluorescence [35].

Equation (1) can be unraveled into the QJT form for
the state vector [35,39,40]. By applying this notion, one
may intuitively define the work WQJT along each individual
trajectory [18,21,23], as described in Fig. 1(b). I have shown
that the probability density function (PDF) of the work can be
calculated using its CF [23]

�QJT(μ) = E[eiμWQJT ] = Tr[K0(0; μ)ρ0], (5)

where μ is a real number and the symbol E[· · · ] denotes an
average over all QJTs. The operator K0(t ′; u) (0 � t ′ � tf )
therein satisfies

∂t ′K0(t ′; μ)

= −L�
t ′K0(t ′; μ) − K0(t ′; μ)i[H1(t ′),eiμH0 ]e−iμH0 ,

= −i[H0 + H1(t ′),K0(t ′; μ)]

−D�[K0(t ′; μ)] − K0(t ′; μ)i[H1(t ′),eiμH0 ]e−iμH0 , (6)

where K0(tf ; μ) = I is the identity operator, L�
t ′ is the dual

superoperator of Lt ′ , and

D�[A] =
∑

ω

γ (ω)

[
S†(ω)AS(ω) − 1

2
{S†(ω)S(ω),A}

]
. (7)

Equation (6) corresponds to the backward time, t ′. Hence,
I refer to this as the backward equation. This is a terminal
value problem rather than a common initial value problem. On
the other hand, for use with the same master equation, Silaev
et al. [25] presented another CF for use with the work, WTEM:

�TEM(μ) = Tr[eiμH0 ρ̂(tf ; μ)], (8)

FIG. 1. A schematic diagram describing the two definitions of
work based on the TEM scheme on (a) the combined two-level
quantum system (the blue circles) and reservoir (red squares) and
on (b) the QJT. In (a), the Hamiltonian, H0, of a bare system
has a discrete eigenvector and eigenvalue: H0|εn〉 = εn|εn〉. The
Hamiltonian Hr of the reservoir has the following eigenvector and
eigenvalues: Hr |ζ k

r 〉 = ζ k
r |ζ k

r 〉. The evolution of the wave vector, �(t),
of the composite system is unitary under the whole Hamiltonian.
The green arrow on the right-hand side denotes the projected energy
measurements on the system and reservoir at time, tf . In (b), the
dashed lines denote the Schrödinger-like evolution of the state vector,
ψ0(t), of the system under a non-Hermitian Hamiltonian, while thin
lines represent occasional jumps of the state vector due to emitting
or absorbing a quantum ω of energy into or from the reservoir. These
energies are recorded by the detectors labeled by the letter D [35]. I
assume their total numbers to be N+ and N−, respectively. Notice that
here the projection at time tf is conducted solely on the bare system;
see the green line.

where a modified reduced density matrix ρ̂(tf ; μ) that satisfied
the following expression [12] was introduced:

∂t ρ̂(t ; μ) = L̆t (μ)ρ̂(t ; μ)

= −i[H0 + H1(t),ρ̂(t ; μ)]

+
∑

ω

γ (ω)

[
eiμωS(ω)ρ̂(t ; μ)S†(ω)

− 1

2
{S†(ω)S(ω),ρ̂(t ; μ)}

]
, (9)

with an initial condition of exp[−iμH0]ρ0. In order to
distinguish this equation from Eq. (6), I refer to this as the
forward equation, since it relates to the forward time, t . The
forms of Eqs. (5) and (8) and then Eqs. (6) and (9) appear to
be very distinct.

III. EQUIVALENCE OF THE TWO CF METHODS

First, I introduce an alternative operator,

K̃0(s; μ) = K0(t ′; μ)eiμH0†, (10)

for which  is the time-reversal operator and a parameter s =
tf − t ′. By substituting this expression into Eq. (6), I convert
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this equation into an initial value problem:

∂sK̃0(s; μ) = ˜̆Ls(μ)K̃0(s; μ)

= −i[H0 + H̃1(s),K̃0(s; μ)]

+
∑

ω

γ (ω)

[
e−iμωS†(ω)K̃0(s; μ)S(ω)

− 1

2
{S†(ω)S(ω),K̃0(s; μ)}

]
, (11)

where H̃1(s) = H1(tf − s)†, and the initial condition
K̃0(0; μ) is equal to exp[−iμH0]. I have used the detail balance
condition and assumed that the eigenoperators, S(ω), are time
reversible. The formal solution to Eq. (11) is given by the
following expression:

K̃0(s; μ) = ˜̆G(s,0; μ)[K̃0(0; μ)], (12)

where ˜̆G(s,0; μ) = T− exp [
∫ s

0
˜̆Ls ′ (μ)ds ′] is a superpropagator

and T− denotes the chronological time-ordering operator. The

superoperator ˜̆Ls(μ) possesses an important property:

˜̆Ls(μ)A = L̆�
t ′ (μ)(†A)†, (13)

where L̆�
t (μ) is the dual superoperator of L̆t (μ) in Eq. (9):

L̆�
t (μ)A = i[H0 + H1(t),A] +

∑
ω

γ (ω)

[
eiμωS†(ω)AS(ω)

− 1

2
{S†(ω)S(ω),A}

]
. (14)

The validity of Eq. (13) can be easily proved. Using these
operators and the superoperator property mentioned above, I
rewrite Eq. (5) using the following expressions:

�QJT(μ) = Tr[†K̃0(tf ; μ)e−iμH0ρ0]

= Tr[†˜̆G(tf ,0; μ)[K̃0(0; μ)]e−iμH0ρ0]

= Tr[Ğ�(0,tf ; μ)[†K̃0(0; μ)]e−iμH0ρ0]

= Tr[eiμH0Ğ(tf ,0; μ)[e−iμH0ρ0]], (15)

where Ğ(tf ,0; μ) is the dual superoperator of Ğ�(0,tf ; μ) =
T+ exp [

∫ tf
0 L̆�

τ (μ)dτ ] and T+ denotes the antichronological
time-ordering operator. It is clear that Ğ(tf ,0; μ) is in fact
the superpropagator contained in Eq. (9). Therefore, these
two CF methods are equivalent, i.e., �QJT(μ) = �TEM(μ).
Since the backward and forward time parameters are involved,
the current situation is very similar to the case of the
Kolmogorov backward and forward equations employed in
classical stochastic theory [41,42].

IV. MICROSCOPIC BASIS FOR THE BACKWARD
EQUATION

Equation (9) has a microscopic origin. This expression was
obtained by reducing an equation relating to the CF of the
work, WTEM, defined for the composite system [12,13,25],
into the degrees of freedom of the system. The above proof
implies that Eq. (6) shall be derived in an analogous manner,
even though this expression was obtained solely by employing
the notion of QJT [23]. After all, the quantum master equation

and its manner of unraveling can be thought of as effective
theories. However, if one follows the forward approach, as
employed by Silaev et al., it is impossible to directly arrive at
the backward equation (6). Let us recall another CF method
for computing the PDF of the work, WTEM, of the composite
system. First, I explicitly write its whole Hamiltonian, H (t ′) =
H0 + H1(t ′) + Hr + V . There exists the following evolution
equation relating to the operator, K(t ′; μ) [34]:

∂t ′K(t ′; μ) = −i[H (t ′),K(t ′; μ)] − K(t ′; μ)i[H (t ′),

eiμ(H0+Hr )]e−iμ(H0+Hr ) (16)

with a terminal condition of K(0; μ) = I . The
CF, �TEM(μ), equals Tr[K(0; μ)ρ0 ⊗ ρr ], where
ρr = exp(−βHr )/Tr[exp(−βHr )] is the canonical density
matrix of the reservoir. A brief explanation of Eq. (16) is
given in Appendix A. This equation appears to be very similar
to Eq. (6). In particular, as �TEM(μ) = Tr[Trr [K(0; μ)ρr ]ρ0],
one may naturally assert that the latter could correspond to
the reduced effective equation of the former, while the term
Trr [· · · ] (the trace over the reservoir) could correspond to
the previous K0(0; μ). In the following discussion, these two
conjectures are verified.

Let us introduce the time evolution operator U0r (t ′) =
exp[−i(H0 + Hr )t ′] and rewrite Eq. (16) using the interaction
picture,

∂t ′KI (t ′; μ) + i
[
HI

1 (t ′),KI (t ′; μ)
] + iKI (t ′; μ)

×eiμH0
[
e−iμH0 ,H I

1 (t ′)
]

= −i[VI (t ′)KI (t ′; μ) − KI (t ′; μ)VIμ(t ′)], (17)

where the operator subscripts I denote that these are the
interaction picture operators, and

VIμ(t ′) = U
†
0r (t ′)eiμ(H0+Hr )V e−iμ(H0+Hr )U0r (t ′). (18)

Note that I have moved all terms that do not involve the
interaction term, V , to the left-hand side (LHS) of the equation.
This is in preparation for the perturbation calculation below.
Equation (17) has an integral form:

KI (t ′; μ) = I + i

∫ tf

t ′
dτ [VI (τ )KI (τ ; μ) − KI (τ ; μ)VIμ(τ )]

+ i

∫ tf

t ′
dτ

[
HI

1 (τ ),KI (τ ; μ)
]

+ i

∫ tf

t ′
dτKI (τ ; μ)eiμH0

[
e−iμH0 ,H I

1 (τ )
]
. (19)

I substitute Eq. (19) into the right-hand side (RHS) of Eq. (17)
and obtain

∂t ′KI (t ′; μ) + i
[
HI

1 (t ′),KI (t ′; μ)
] + iKI (t ′; μ)

×eiμH0
[
e−iμH0 ,H I

1 (t ′)
]

=
∫ tf

t ′
dτVI (t ′)[VI (τ )KI (τ ; μ) − KI (τ ; μ)VIμ(τ )]

−
∫ tf

t ′
dτ [VI (τ )KI (τ ; μ) − KI (τ ; μ)VIμ(τ )]VIμ(t ′)

− i[VI (t ′) − VIμ(t ′)] +
∫ tf

t ′
dτVI (t ′)

[
HI

1 (τ ),KI (τ ; μ)
]
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−
∫ tf

t ′
dτ

[
HI

1 (τ ),KI (τ ; μ)
]
VIμ(t ′)

+
∫ tf

t ′
dτVI (t ′)KI (τ ; μ)eiμH0

[
e−iμH0 ,H I

1 (τ )
]

−
∫ tf

t ′
dτKI (τ ; μ)eiμH0

[
e−iμH0 ,H I

1 (τ )
]
VIμ(t ′). (20)

Multiplying both sides by ρr and taking a trace over the
reservoir, I transform the left-hand side of the above equation
into

LHS = ∂t ′K0I (t ′; μ) + i
[
HI

1 (t ′),K0I (t ′; μ)
]

+ iK0I (t ′; μ)eiμH0
[
e−iμH0 ,H I

1 (t ′)
]
, (21)

where K0I (t ′; μ) = Trr [K(t ′; μ)ρr ]. Note that HI
1 (t ′) is now

the interaction picture operator for the system due to the
fact that [H1(t ′),Hr ] = 0. So far, all these derivations are
exact. In order to attend to the complicated right-hand side
of Eq. (20), however, I resort to certain approximations.
Following the standard concepts pertaining to the dynamics
of open systems [35], I make the important assumption that
KI (τ ; μ) ≈ K0I (τ ; μ) ⊗ Ir for all KI terms on the right-hand
side. This is justified if the field term, H1(t), and the coupling
term, V , are so weak that the reservoir is almost not affected
by these interactions. By imposing the conventional condition
Tr[RI (t ′)ρr ] = 0 and performing a Markov approximation, I
immediately obtain the following expression:

RHS =
∫ tf

t ′
dτSI (t ′)SI (τ )K0I (t ′; μ)〈RI (t ′)RI (τ )〉r

−
∫ tf

t ′
dτSI (t ′)K0I (t ′; μ)SIμ(τ )〈RI (t ′)RIμ(τ )〉r

−
∫ tf

t ′
dτSI (τ )K0I (t ′; μ)SIμ(t ′)〈RI (τ )RIμ(t ′)〉r

+
∫ tf

t ′
dτK0I (t ′; μ)SIμ(τ )SIμ(t ′)〈RIμ(τ )RIμ(t ′)〉r ,

(22)

where 〈· · · 〉r = Trr [· · · ρr ] are the reservoir correlation func-
tions. If I further assume the RWA to be valid, the integrals in
the above equation may be eliminated, and I arrive at a final
form:

RHS = −i[HLS,K0I (t ′; μ)] − D�[K0I (t ′; μ)], (23)

where HLS represents the Lamb shift [35]. Considering that
this is a standard procedure, I only highlight the key steps
in Appendix B. If I transform Eqs. (21) and (23) back into
Schrödinger’s theoretical framework and neglect the smaller
Lamb shift, I reproduce Eq. (6).

V. THE BACKWARD EQUATION OF THE HEAT

As discussed earlier, the PDFs of the heat QTEM and QQJT

are the same in the master equation (1). Hence, defining
one CF for the heat is adequate, e.g., �(μ). Previous re-
sults [9,12,25,36,37] have shown that this function can be
evaluated by

�(μ) = E[eiμQQJT ] = Tr[ρ̂(tf ; μ)], (24)

where ρ̂ in the latter equation satisfies the same Eq. (9) but
with a different initial condition of ρ0. In comparison with the
case of the work, one may expect that there exists an operator
F0(t ′; μ) (0 � t ′ � tf ) that leads to the relation

�(μ) = Tr[F0(0; μ)ρ0]. (25)

It is not difficult to find the backward equation of the operator
if one follows either of the two methods related to the work.
Here I only present the final result:

∂t ′F0(t ′; μ) = −L̆�
t ′ (μ)F0(t ′; μ) (26)

with a terminal condition F0(tf ; μ) = I . The current discus-
sion also highlights the fact that, if the initial density matrix
of the system is a completely random ensemble, ρC , such as
in the N -level system, ρC = I/N , the PDF of the heat must
obey an exact equality,

EC[e−βQQJT ] = 1, (27)

where I used the subscript C to indicate the fact that all the
QJTs star from this specific initial condition. The proof of this
is reserved for Appendix C. Note that there exists a classical
version of the equality in the classical stochastic process [42].

I assert that, since the use of the backward and forward
equations related to the work (heat) always leads to the same
CFs, from the viewpoint of computing, there are no specific
reasons to favor one more than the other. This is only a
question of personal taste or convention. On the other hand,
when one carries out formal derivations, in some cases the
forward method is more convenient than the backward method
or vice versa. For instance, one can easily obtain a concise
expression related to the work equality if the backward method
is used [23,24,34].

VI. CONCLUSION

In this paper, I have proved the equivalence of the two
CF methods used for calculating work in weakly driven open
quantum systems. Hence, in the present case, the PDF of
the work defined using QJT is the same as the PDF of the
work defined for the combined system and reservoir using
the TEM scheme. This finding has two implications. First,
conceptually, the definition of the work and heat using the QJT
is intuitive if one wants to understand these thermodynamic
quantities from the viewpoint of the system. It is also not
in conflict with the definitions that employ the TEM scheme
on the system and reservoir. Second, since the recording of
the QJTs has been realized in experiments [43,44], it shall
be realistic in practice to verify the work or heat equalities
based on this notion. In addition, my current results could
be extended to some specific quantum master equations. For
instance, an immediate example is the adiabatically driven
quantum master equations [24]. Although concrete analyses
are still to be conducted, the high similarity between this type
of master equation and the current version strongly suggests
this conjecture. Finally, I want to emphasize that conducting
the TEM scheme on an arbitrary composite system is always
possible, as this does not rely on the coupling strength or
the time-evolution scales between the system and reservoir.
However, whether or not QJTs exist for general cases, e.g.,
strongly coupling and nonMarkovian conditions, is still an
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unresolved issue. Hence, under these conditions, defining work
or heat from the viewpoint of the system would become very
challenging. I hope that new progresses in this direction can
be presented in the near future.
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APPENDIX A: AN EXPLANATION OF EQ. (16)

I discuss here the time-dependent Hamiltonian of a closed
quantum system, H (t) = Hs + H1(t). This Hamiltonian, Hs ,
is assumed to have discrete eigenstates and eigenvalues:
Hs |n〉 = εn|n〉. According to the TEM scheme [13], one may
define the exclusive work as WTEM = εn − εm, where εi , i =
m,n denotes the energy eigenvalues of Hs that are measured at
the beginning and the end of the nonequilibrium process. The
CF of the PDF of the work is �(μ) = Tr[Ktf (μ)ρs], where

Kt (μ) = U †(t)eiμHs U (t)e−iμHs , (A1)

U (t) is the time-evolution operator of H (t), and ρs is the
thermal density matrix of the bare system, Hs . One way
to calculate �(μ) is to directly solve U (t). An alternative
method involves determining an evolution equation about
Kt (μ). However, there is no such closed equation about Kt (μ)
with respect to the time, t . This problem may be circumvented
by introducing

K(t ′; μ) = U (t ′)U †(tf )eiμHs U (tf )U †(t ′)e−iμHs . (A2)

It is obvious here that K(0; μ) = Ktf (μ) and K(tf ; μ) = I .
Interestingly, this new operator satisfies the following closed
evolution equation about the backward time, t ′:

∂t ′K(t ′; μ) = −i[H (t ′),K(t ′; μ)]

−K(t ′; μ)i[H (t ′),eiμHs ]e−iμHs . (A3)

If the bare system is composed of the aforementioned
combined system and reservoir, and the interaction term, V , is
assumed to be negligible, I arrive at Eq. (16).

APPENDIX B: SEVERAL KEY FORMULAS USED IN
DERIVING EQ. (23)

The decomposition of the operator S implies that

SIμ(t) =
∑

ω

S(ω)e−iω(t+μ) =
∑

ω

S†(ω)eiω(t+μ). (B1)

Substituting these into Eq. (22) and performing RWA, I obtain

RHS =
∑

ω

S(ω)S†(ω)K0I (t ′; μ)
∫ tf −t ′

0
ds eiωs

〈RI (0)RI (−s)〉r −
∑

ω

S(ω)K0I (t ′; μ)S†(ω)

×eiμω

∫ tf −t ′

0
dseiωs〈RI (0)RIμ(s)〉r

−
∑

ω

S(ω)K0I (t ′; μ)S†(ω)

×eiμω

∫ tf −t ′

0
dse−iωs〈RI (0)RIμ(−s)〉r

+
∑

ω

K0I (t ′; μ)S(ω)S†(ω)

×
∫ tf −t ′

0
dse−iωs〈RIμ(0)RIμ(−s)〉r . (B2)

If the correlation functions decay very quickly, these integrals
can be approximated using one-sided Fourier transforms by
replacing the upper limit tf − t ′ with infinity. Furthermore,
it is useful to rewrite these one-sided Fourier transforms
using the positive double-sided Fourier transforms γ (ω) =∫ +∞
−∞ eiωs〈RI (0)RI (−s)〉r [35]:∫ ∞

0
dseiωs〈RI (0)RI (−s)〉r

= 1

2
γ (ω) + i

2π
P

∫ +∞

−∞

γ (�)

ω − �
d�, (B3)∫ ∞

0
dseiωs〈RI (0)RIμ(−s)〉r

= 1

2
γ (ω)eiωμ + i

2π
P

∫ +∞

−∞

γ (�)

ω − �
ei�μd�, (B4)

where P denotes the Cauchy principal value of the integral.
After a simple rearrangement, I obtain Eq. (23), where the
Lamb shift term

HLS = 1

2π

∑
ω

S†(ω)S(ω)P
∫ +∞

−∞

γ (�)

ω − �
d�. (B5)

APPENDIX C: PROOF OF EQ. (27)

Two key observations are used here. First, Eqs. (24)
and (25) are in fact valid for any initial density matrix that
is diagonalized in terms of the energy basis [12,24], e.g.,

EC[eiμQQJT ] = Tr[F0(0; μ)ρC] = Tr[ρ̂(tf ; μ)]. (C1)

The modified reduced density matrix ρ̂(t ; μ) still satisfies
Eq. (9) but with the initial density matrix of ρC . Second, by
applying the detailed balance condition about the rates and
S(−ω) = S†(ω), one may find

L̆t ′ (iβ)(ρC) = 0. (C2)

With these two facts, I can easily prove the equality by using
the backward equation (26) or the forward equation (9). For the
former method, I need to evaluate the following expression:

∂t ′Tr[F0(t ′; μ)ρC] = −Tr[L̆�
t ′(μ)(F0(t ′; μ))ρC]

= −Tr[F0(t ′; μ)L̆t ′ (μ)(ρC)]. (C3)

Clearly, by substituting μ = iβ into the above equation,
performing an integral on both sides from time 0 to tf , and
applying the terminal condition F0(tf ; μ) = I , I immediately
obtain the identity

Tr[F0(0; iβ)ρC] = 1. (C4)
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According to Eq. (C1), I may then prove Eq. (27). However, it
is also easy to arrive at this equality if one applies the forward
equation (9). I first re-express Eq. (C1) as

Tr[ρ̂(tf ; μ)] = Tr[Ğ(tf ,0; μ)[ρC]]. (C5)

Choosing μ = iβ and examining Eqs. (C1) and (C2) again, I
reobtain the equality (27). The reader is reminded that these
discussions are also able to verify the validity of the work
equalities [23,24].

[1] G. N. Bochkov and Yu E. Kuzovlev, Sov. Phys. JETP 45, 125
(1977).

[2] J. Kurchan, arXiv:cond-mat/0007360 (2000).
[3] H. Tasaki, arXiv:cond-mat/0009244 (2000).
[4] S. Yukawa, J. Phys. Soc. Jpn. 69, 2367 (2000).
[5] S. Mukamel, Phys. Rev. Lett. 90, 170604 (2003).
[6] W. De Roeck and C. Maes, Phys. Rev. E 69, 026115 (2004).
[7] A. E. Allahverdyan and T. M. Nieuwenhuizen, Phys. Rev. E 71,

066102 (2005).
[8] P. Talkner, E. Lutz, and P. Hänggi, Phys. Rev. E 75, 050102

(2007).
[9] W. De Roeck, C. R. Phys. 8, 674 (2007).

[10] D. Andrieux and P. Gaspard, Phys. Rev. Lett. 100, 230404
(2008).

[11] P. Talkner, M. Campisi, and P. Hänggi, J. Stat. Mech.: Theor.
Exp. (2009) P02025.

[12] M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81,
1665 (2009).

[13] M. Campisi, P. Hänggi, and P. Talkner, Rev. Mod. Phys. 83, 771
(2011).
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[25] M. Silaev, T. T. Heikkilä, and P. Virtanen, Phys. Rev. E 90,

022103 (2014).

[26] S. Suomela, P. Solinas, J. P. Pekola, J. Ankerhold, and T. Ala-
Nissila, Phys. Rev. B 90, 094304 (2014).

[27] S. Suomela, J. Salmilehto, I. G. Savenko, T. Ala-Nissila, and M.
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