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Dynamical thermalization in Bose-Hubbard systems
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We numerically study a Bose-Hubbard ring of finite size with disorder containing a finite number of bosons
that are subject to an on-site two-body interaction. Our results show that moderate interactions induce dynamical
thermalization in this isolated system. In this regime the individual many-body eigenstates are well described
by the standard thermal Bose-Einstein distribution for well-defined values of the temperature and the chemical
potential, which depend on the eigenstate under consideration. We show that the dynamical thermalization
conjecture works well at both positive and negative temperatures. The relations to quantum chaos, quantum
ergodicity, and the Åberg criterion are also discussed.
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I. INTRODUCTION

A quantum system that is in contact with a thermostat is
described by the well-known quantum thermal distributions
given in textbooks on statistical physics (see, e.g., Ref. [1]).
However, there has always been an interest (raised, e.g., in the
works of Bohr on the statistical description of neutron capture
and nuclei construction [2]) to understand the emergence
of thermalization effects within a complex quantum system
through the dynamical properties of the system itself, without
the explicit introduction of a thermostat. That is, while the full
quantum system is prepared, say, within a pure eigenstate of
its Hamiltonian and is therefore not subject to thermalization,
the one-body observables of interest in relation to its single-
particle eigenstates may nevertheless feature the standard
thermodynamic properties known from textbook statistical
physics as a consequence of the presence of interactions within
the system.

Of course, the emergence of such a statistical description
in the absence of any thermostat, which we call the dynamical
thermalization conjecture (DTC) in the following, requires
quantum ergodicity of the system eigenstates. Research on this
latter topic has been stimulated by the works of Åberg [3,4],
as well as by Deutsch [5] and Srednicki [6], which generated
a broad discussion of the eigenstate thermalization hypothesis
(ETH) as well as various investigations of different research
groups (see the references and the discussion in Ref. [7] and
in the recent review in [8]).

It is clear that dynamical thermalization is based on quan-
tum ergodicity of eigenstates. In the single-particle context,
a mathematical proof of quantum ergodicity was obtained by
Shnirelman for eigenstates of one-particle chaotic billiards in
the limit of large quantum numbers [9], where the class of
billiards with chaotic classical dynamics had previously been
established by Sinai and coworkers (see, e.g., Ref. [10]). In
such single-particle systems it is numerically straightforward
to verify that quantum ergodicity implies the emergence of
universal random matrix statistics for the energy levels of
the system, which is known as the Bohigas-Giannoni-Schmit
conjecture established first for quantum chaos billiards [11].
Thus the development of the field of quantum chaos [12,13]
established links between quantum systems with classical
dynamical chaos and random matrix theory (RMT) invented

by Wigner for spectra of complex nuclei [14], and it was
recognized that the emergence of Wigner-Dyson statistics for
energy level spacings is a necessary condition for quantum
ergodicity of eigenstates.

However, in spite of significant progress in the field of
quantum chaos, studies in this context were mainly related to
one-particle systems with a few degrees of freedom [12,13].
Indeed, the properties of many-body quantum systems, e.g.,
nuclei [15], were hardly accessible to computer simulations at
the time of the 1970s and 1980s. At that time the common lore
within the nuclear physics community was that in many-body
quantum systems the density of states is exponentially growing
with the excitation energy above the Fermi level and hence any
small interaction between fermions will very rapidly lead to the
mixing of noninteracting many-body states accompanied by
the RMT statistics of the level spacings, by quantum ergodicity
of states, and hence by dynamical thermalization [16]. This
lore persisted until the end of the 20th century even though
Åberg presented in 1990 numerical and analytical arguments
according to which the onset of RMT level spacing statistics,
and hence quantum ergodicity, takes place only when directly
coupled states are mixed by two-body interactions (which,
from a fundamental point of view, are the only ones that
exist in nature) [3,4]. The Åberg criterion for the onset of
quantum chaos in a weakly interacting many-body system was
later confirmed in more advanced studies for other quantum
systems, such as finite fermionic systems [17,18] and quantum
computers of interacting qubits [19,20], as was reviewed in
Ref. [21]. In the latter context of quantum computers, examples
of single eigenstates that are well thermalized by the presence
of residual weak interactions between qubits and thus satisfy
the DTC are presented in [20], showing that such states are
also well described by the Fermi-Dirac thermal distribution.
In the framework of complex atoms the quantum ergodicity
properties of eigenstates and the emergence of DTC have been
discussed in Refs. [22,23], but the interactions in such atoms
are relatively strong, and the DTC cannot be straightforwardly
verified in real atoms.

In the present work we investigate DTC within the
physical context of ultracold bosonic quantum gases that are
confined within finite optical lattices. Indeed, the impressive
experimental progress in the handling of ultracold atoms and
the control of their interactions has renewed and pushed the
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interest in DTC and ETH and has stimulated a number of
studies on this topic which are reviewed in Ref. [8] (see
Ref. [24] for a pioneering theoretical work in this context).
On the experimental side, recent investigations with cold
bosonic atoms allow us to test the validity of generalized Gibbs
ensembles under various experimental conditions [25]. Even a
realization of negative temperature distributions is now within
reach of cold atom experiments, as was shown in Ref. [26].
The problem of DTC and ETH is now actively investigated
with ultracold atoms (see, e.g., Ref. [27]).

We shall specifically consider finite Bose-Hubbard systems
with L sites that contain a finite number N of bosonic
atoms. Our subsystem of interest will be one (in practice
arbitrarily selected) eigenstate |k〉 of the one-body Hamiltonian
describing the kinetic energy and the external potential within
the Bose-Hubbard lattice (with k ∈ {1, . . . ,L}). The main
message that we want to convey here is that the presence
of a thermal reservoir is not necessarily required in order to
achieve dynamical thermalization and thereby obtain the Bose-
Einstein distribution within such a single-particle eigenstate.
We show that a moderate (not too strong and not too weak)
two-body interaction Û , which couples the single-particle
eigenstates with each other, can do this job as well, leading
to a thermal description of eigenstates. In that case, the
other single-particle states |k′〉 with k′ �= k form an effective
“reservoir” for the (sub-)“system” constituted by the single
state |k〉. The temperature and the chemical potential that this
reservoir provides depend then on the specific state of the
global Bose-Hubbard system spanned by the single-particle
states |k〉, which can undergo a dynamical process or be
prepared in one of the many-particle eigenstates |�〉 of the
full Bose-Hubbard Hamiltonian. This latter possibility implies
that a many-particle eigenstate |�〉 of an interacting bosonic
Hamiltonian can exhibit grand canonical thermalization fea-
tures for any single-particle eigenstate |k〉 of its one-body
(kinetic-plus-potential) part, with an effective temperature T

and an effective chemical potential μ that are specific to the
state |�〉.

The concept of dynamical thermalization is concretized in
some more detail in Sec. II, where we describe the Bose-
Hubbard model under consideration. Section III is devoted
to presenting and discussing the numerical results that are
obtained within this Bose-Hubbard model concerning the
DTC. Finally, possible implications of the DTC for a wider
class of many-body systems are briefly discussed in Sec. IV.

II. DYNAMICAL THERMALIZATION WITHIN A
BOSE-HUBBARD MODEL

As in Ref. [28], we consider a one-dimensional Bose-
Hubbard ring containing L sites. The quantum many-body
Hamiltonian of this system reads Ĥ = Ĥ0 + Û , with

Ĥ0 = −J

L∑
l=1

(â†
l âl−1 + â

†
l−1âl) +

L∑
l=1

εl â
†
l âl , (1)

Û = U

2

L∑
l=1

â
†
l â

†
l âl âl , (2)

where â
†
l and âl respectively denote the creation and an-

nihilation operators associated with site l and where we
formally identify â0 ≡ âL and â

†
0 ≡ â

†
L. The on-site energies

εl (l = 1, . . . ,L) are fixed but randomly selected with uniform
probability density from the interval −W/2 � εl � W/2.
Evidently, the single-particle Hilbert space of this finite system
is L-dimensional, and the diagonalization of the single-
particle Hamiltonian corresponding to Ĥ0 therefore yields
L orthogonal and normalized eigenstates |0〉,|1〉, . . . ,|L −
1〉 satisfying 〈k|k′〉 = δkk′ for all k,k′ = 0, . . . ,L − 1. The
associated eigenenergies Ek are supposed to be sorted such
that we have E0 < E1 < . . . < EL−1.

Introducing the coefficients Ck,l that handle the transfor-
mation from the original on-site basis to the single-particle
eigenbasis through the relation

âl =
L−1∑
k=0

Ck,l b̂k (3)

for all l = 1, . . . ,L, we can now represent the many-body
Hamiltonian of the Bose-Hubbard system according to Ĥ =
Ĥ0 + Û , with

Ĥ0 =
L−1∑
k=0

Ekb̂
†
kb̂k , (4)

Û = U

2

L−1∑
k1=0

L−1∑
k2=0

L−1∑
k3=0

L−1∑
k4=0

L∑
l=1

C∗
k1,l

C∗
k2,l

Ck3,lCk4,l

×b̂
†
k1

b̂
†
k2

b̂k3 b̂k4 . (5)

In the absence of interaction, i.e., for U = 0, we thereby
recover the Hamiltonian (4) whose many-particle eigenstates
are given by the Fock states |n0, . . . ,nL−1〉 that are defined with
respect to the single-particle basis (|0〉, . . . ,|L − 1〉). Diago-
nalizing the interacting Hamiltonian Ĥ in this representation
yields the many-body eigenstates

|�α〉 =
∞∑

n0=0

. . .

∞∑
nL−1=0

C(α)
n0,...,nL−1

|n0, . . . ,nL−1〉, (6)

where the coefficients C(α)
n0,...,nL−1

reflect the conservation of
the total number of particles (i.e., we have C(α)

n0,...,nL−1
= 0 if

n0 + · · · + nL−1 �= N (α), with N (α) being the total number of
particles in the state |�α〉). We suppose that these eigenstates
are ordered according to their associated eigenenergies Eα; that
is, we have E0 < E1 < E2 < · · · . The representation (6) allows
us now to straightforwardly extract the mean population of the
single-particle eigenstate |k〉 within the many-body state |�α〉
according to

〈n̂k〉α = 〈�α|b̂†kb̂k|�α〉

=
∞∑

n0=0

. . .

∞∑
nL−1=0

nk

∣∣C(α)
n0,...,nL−1

∣∣2
. (7)

This mean population can now be compared with the pre-
diction that would result from a quantum statistical modeling
in the spirit of the DTC. To this end we effectively treat
each single-particle state |k〉 as a (sub-)system of interest
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and assume that the other states |k′〉, with k′ �= k, form an
effective energy and particle reservoir to which this system
is coupled by virtue of the presence of atom-atom interaction.
This reservoir is characterized by a given temperature T = 1/β

(using temperature units in which kB ≡ 1) and by a given
chemical potential μ, which both depend on the many-body
eigenstate |�α〉 under consideration, i.e., β ≡ βα and μ ≡ μα .

To fully establish the connection with the textbook quantum
statistical theory of noninteracting Bose gases [1], we model
the dynamics within our system of interest by an effective
one-body Hamiltonian of the form Ĥ

(eff)
k = Ẽkb̂

†
kb̂k . While in

the absence of interaction we would naturally set Ẽk = Ek , the
presence of a repulsive (or attractive) atom-atom interaction
gives rise to an effective mean-field shift of this energy towards
higher (or lower) energies. Assuming that the atoms are more
or less equidistributed among the L sites of the Bose-Hubbard
ring for the many-body eigenstate under consideration (which
is generally the case in the central part of the many-body
spectrum but may not be valid at the upper end of the spectrum
in the presence of a repulsive interaction or at the lower end of
the spectrum in the presence of an attractive interaction; see
also the discussion in the next section), this effective mean-
field shift is approximately given by the addition energy NU/L

that would be needed in order to add an extra atom to the
interacting system. We therefore set

Ẽk = Ek + NU/L . (8)

The statistical density operator of our one-state system is
then written as

ρ̂k = 1

Yk

exp[−β(Ẽk − μ)b̂†kb̂k]. (9)

Provided we have

β(Ẽk − μ) > 0 , (10)

we can express the partition function associated with the
eigenstate |k〉 as

Yk =
∞∑

n=0

e−nβ(Ẽk−μ) = 1

1 − e−β(Ẽk−μ)
. (11)

It is then straightforward to show that the average population
of the single-particle state |k〉 is given by the Bose-Einstein
distribution

nk = Tr[ρ̂b̂
†
kb̂k] = 1

eβ(Ẽk−μ) − 1
≡ nk(β,μ) . (12)

Applying this reasoning to all single-particle eigenstates
of our Bose-Hubbard ring gives us a means to determine
the parameters β and μ associated with a given many-body
eigenstate, provided we can trust the validity of the DTC.
Indeed, we must have

L−1∑
k=0

nk = N (13)

due to the conservation of the number of particles, and we
can furthermore require that the total energy of the many-body

eigenstate be evaluated as

Eα =
L−1∑
k=0

Ẽknk =
L−1∑
k=0

Eknk + N2U/L . (14)

These two equations can be numerically solved for μ and
β. For many-body eigenstates with a relatively low total
energy Eα , we expect to thereby obtain a positive temperature
T = 1/β > 0 as well as a negative chemical potential sat-
isfying μ < Ek + NU/L for all k = 0, . . . ,L − 1, in perfect
accordance with standard textbook quantum statistical physics
[1]. Within the upper part of the spectrum, however, we
would have μ > Ek + NU/L for all k = 0, . . . ,L − 1 as well
as a negative temperature T < 0, which appears since the
single-particle spectrum of the system is bounded [26]. We
note that the concept of negative temperature is well known
in spin physics [29], but in our case it has a purely dynamical
origin.

III. NUMERICAL RESULTS

Figure 1 displays the mean populations 〈n̂k〉α for various
many-body eigenstates that are obtained within a Bose-
Hubbard ring of L = 8 sites containing N = 8 particles
(yielding a Hilbert space that is spanned by altogether N =
6435 many-body eigenstates), where we chose the parameters
U = 0.5J and W = 4J . Each panel of Fig. 1 shows single-
particle eigenstate populations for many-body eigenstates.
While there are weak fluctuations in the populations, the
overall probability distributions appear to remain stable with
respect to small variations of α, which reflects the statistical
stability of thermal distributions.

In Fig. 2 we make an averaging of the populations 〈n̂k〉α
over 20 consecutive many-body eigenstates ranging within
α0 − 9 � α0 � α0 + 10. After such an averaging, we obtain
a qualitative agreement with the general behavior that is
expected from the Bose-Einstein distribution (12), shown by

0

5

<n̂k>α

(a) α = 90
α = 100
α = 110

-3 0 30

5 (c) α = 2990
α = 3000
α = 3010

-3 0 3
Ek / J

(d) α = 6290
α = 6300
α = 6310

(b) α = 990
α = 1000
α = 1010

FIG. 1. Distribution of single-particle populations for various
many-body eigenstates of the Bose-Hubbard ring with N = 8 parti-
cles on L = 8 sites, with the interaction strength U = 0.5J , and with
on-site energies εl that are randomly selected within −2J < εl < 2J .
Plotted are the populations 〈n̂k〉α as a function of the single-particle
levels Ek (k = 0, . . . ,7) for the many-body states α: (a) |�90〉, |�100〉,
|�110〉, (b) |�990〉, |�1000〉, |�1010〉, (c) |�2990〉, |�3000〉, |�3010〉, and
(d) |�6290〉, |�6300〉, |�6310〉.
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FIG. 2. Average distribution of single-particle populations for the
Bose-Hubbard ring with N = 8 particles on L = 8 sites, with the
interaction strength U = 0.5J , and with on-site energies εl that are
randomly selected within −2J < εl < 2J . The red circles display,
on [(a), (b), (e), and (f)] linear and [(c), (d), (g), and (h)] logarithmic
scales, the average populations 〈nk〉 = 0.05

∑α0+10
α=α0−9〈n̂k〉α for [(a)

and (c)] α0 = 100, [(b) and (d)] α0 = 1000, [(e) and (g)] α0 = 3000,
and [(f) and (h)] α0 = 6300. The stars connected by solid lines show
the populations nk that result from the Bose-Einstein distribution
(12), where β and μ were chosen such that

∑
k nk = N = 8 and∑

k Eknk = ∑
k Ek〈nk〉.

solid lines. The agreement of numerical probabilities with
the DTC (12) is valid for positive [Figs. 2(a)–2(d)], infinite
[Figs. 2(e) and 2(g)], and negative [Figs. 2(f) and 2(h)]
temperatures. In the latter case [Figs. 2(f) and 2(h)] the mean
population increases with increasing single-particle energy,
which, when being compared to Eq. (12), would correspond to
a moderately low negative temperature T < 0 and a chemical
potential μ > EL−1, while a decrease of population with
increasing single-particle energy corresponds to the more
familiar case of a positive temperature T > 0 and a negative
chemical potential μ < E0.

A more detailed comparison of the DTC with the Bose-
Einstein distribution (12) is presented in Fig. 3, where we show
average single-particle eigenstate populations that are obtained
from all many-body eigenstates whose energies lie in given
intervals. The agreement between the numerically computed
averages (left panels) and the analytical predictions resulting
from the Bose-Einstein distribution (12) (right panels) is very
good, both on a linear scale and on a logarithmic scale.

To assess the validity of the DTC on a more quantitative
level, we extract from the single-particle eigenstate popula-
tions (7) effective entropies

Sα = −
L−1∑
k=0

〈n̂k〉α
N

ln

( 〈n̂k〉α
N

)
(15)

that characterize how many single-particle eigenstates are
populated within a given many-body eigenstate |�α〉 (and

0
1
2
3
4
5
6
7

k

(a)

-2 -1 0 1 2 3 4
εα / NJ

0
1
2
3
4
5
6
7

(c)

(b)

-2 -1 0 1 2 3
εα

__
 / NJ

(d)

FIG. 3. Left: Average populations of the single-particle eigen-
states |k〉 as a function of the energy per particle for the Bose-Hubbard
ring with N = 8 particles on L = 8 sites, with the interaction strength
U = 0.5J , and with on-site energies εl that are randomly selected
within −2J < εl < 2J . The populations are shown on a linear scale
in (a) and (b), which uniformly varies from 0 (white) to 8 (black),
and on a logarithmic scale in (c) and (d), which uniformly varies
from 0.08 (white) to 8 (black). They are averaged over all many-body
eigenstates whose energies per particle Eα/N lie within the indicated
intervals on the abscissa. Right: The corresponding predictions
provided by the Bose-Einstein distribution (12), where β and μ were
chosen such that

∑
k nk = N = 8 and

∑
k Eknk + N 2U/L = Eα ,

with Eα/N corresponding to the centers of the abscissa intervals
(e.g., Eα/N = −1.75J for the leftmost subcolumn of the two panels
on the right-hand side).

that are very similar to the one-particle occupation entropies
considered in Ref. [30] in the context of many-body local-
ization). Clearly, this entropy will be rather low at the lower
and upper edges of the many-body spectrum where only few
single-particle states are effectively populated (as is seen in
the top left and bottom right panels of Fig. 2, respectively),
while it acquires its maximal value ln L in the central part of
the spectrum where all single-particle eigenstates are equally
populated on average. Figure 4 displays Sα as a function of
the energy per particle Eα/N for all many-body eigenstates
of the Bose-Hubbard ring with N = L = 7,8,9 and with the
parameters W = 4J and U = ±0.5J . We see that there is,
on average, a remarkable one-to-one relationship between
the entropies Sα and the eigenenergies Eα of the many-body
eigenstates.

The advantage of the dependence S(E) is related to the fact
that both variables S and E are extensive variables, and thus
their values have smaller fluctuations compared to probability
distributions (12). This feature has been noted and used for
nonlinear chains with disorder [31,32] and Bose-Einstein
condensates, described by the Gross-Pitaevskii equation, in
chaotic two-dimensional billiards [33]. It is interesting to note
that in these nonlinear systems [31–33] the DTC is still valid
but is induced by nonlinear mean-field interactions between
linear states.
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Sα

(c)

-2 0 2
0

1

2 (e)
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0

1

2 (b)

-4 -2 0 2
0

1

2 (d)

-4 -2 0 2
εα / NJ

0

1

2 (f)

FIG. 4. Entropy per particle versus total energy per particle for
the Bose-Hubbard ring (1) with on-site energies εl that are randomly
selected within −2J < εl < 2J . The red dots show the entropies that
are obtained from the many-body eigenstates according to Eq. (15)
for the sizes [(a) and (b)] L = N = 7, [(c) and (d)] L = N = 8, and
[(e) and (f)] L = N = 9 and for the interaction strengths U = 0.5J

(left) and U = −0.5J (right). They are plotted as a function of the
associated eigenenergies Eα divided by the number of particles N . The
solid lines show the entropies that are obtained from the Bose-Einstein
distribution (12) according to Eq. (16) for all possible (positive and
negative) temperatures as a function of the corresponding energies ε

(18), using the single-particle eigenenergies Ek of the Bose-Hubbard
system, which are displayed as blue circles on the abscissae.

The entropy of probability distribution (15) can also be
obtained in the framework of the grand canonical ensemble
described by the Bose-Einstein distribution (12). We obtain

S(β,μ) = −
∑

k

nk(β,μ)

N (β,μ)
ln

(
nk(β,μ)

N (β,μ)

)
, (16)

with the total number of particles being given by

N (β,μ) =
∑

k

nk(β,μ) . (17)

We can then calculate S(β,μ) for all possible (positive and
negative) values of β where the chemical potential μ is chosen
such that the total population of the system according to
Eq. (17) equals the total number of particles: N (β,μ) = N .
This population entropy can be plotted versus the effective
energy per particle

ε(β,μ) =
∑

k

nk(β,μ)

N (β,μ)
Ẽk =

∑
k

nk(β,μ)

N (β,μ)
Ek + NU/L (18)

determined in analogy with Eq. (14), where we apply the
mean-field shift (8) to account for the presence of the
interaction.

The resulting curves are displayed by the solid lines in
Fig. 4. We find a very good agreement with the population
entropies Sα obtained from the many-particle eigenstates
|φα〉 for both positive and negative interaction strengths U =
±0.5J . Significant deviations occur near the upper bound of
the spectrum for positive interaction strengths and near the
lower bound of the spectrum for negative interaction strengths.
Indeed, many-body eigenstates in this regime are typically
characterized by a rather strong localization of the population
on a very small number L̃ 
 L of Bose-Hubbard sites. The
effective mean-field shift ε �→ ε + NU/L̃ that one would have
to apply in this regime is therefore much more important than
elsewhere in the many-body spectrum.

As each point on the solid lines in Fig. 4 is characterized
by a well-defined temperature, we are now in a position
to determine the effective temperature Tα associated with a
many-body eigenstate |φα〉 either from its energy per particle
Eα/N or from its population entropy Sα . Both possibilities

-1

0

1
(a)

-1

0

1

J βS

(c)

-2 -1 0 1 2-1

0

1
(e)

(b)

(d)

-2 -1 0 1 2
J βE

(f)

FIG. 5. Inverse temperatures β = 1/(kBT ) associated with the
many-body eigenstates of the Bose-Hubbard ring for the sizes L =
N = 7 (top), L = N = 8 (middle), and L = N = 9 (bottom), for the
interaction strengths U = 0.5J (left) and U = −0.5J (right), and for
on-site energies εl that are randomly selected within −2J < εl < 2J ,
in perfect analogy with the panels shown in Fig. 4. The horizontal axis
shows the inverse temperatures βE that are obtained from intersecting
the energy per particle Eα/N of the eigenstate under consideration
with the corresponding entropy-versus-energy curve obtained from
the Bose-Einstein distribution (solid lines in Fig. 4). The vertical axis
shows the inverse temperatures βS that are obtained from intersecting
the population entropy (15) with the corresponding entropy-versus-
energy curve. Both possible definitions of the effective temperature
of a many-body eigenstate yield, on average, very similar values,
as can be seen from the fact that all data points are scattered
about the diagonal (indicated by dashed lines), with systematic
deviations occurring in the regimes of low positive or negative
temperatures to be encountered near the lower and upper bounds of the
spectrum.
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yield very similar temperatures, as is seen in Fig. 5. Systematic
deviations between these two possible definitions of the
temperature associated with a many-body eigenstate occur in
the regimes of low positive or negative temperatures, which
are to be encountered near the lower and upper bounds of the
spectrum.

Calculating the arithmetic average of the two possible
definitions of the temperature associated with a many-body
eigenstate and plotting this average temperature as a function
of the associated energy per particle and entropy yield very
good agreement with the prediction obtained from the Bose-
Einstein distribution (12), as is seen in Fig. 6. The same holds
true for the chemical potential μ of a many-body eigenstate,
which can also be determined either from the corresponding
energy per particle Eα/N or the corresponding population
entropy Sα . This underlines the validity of the DTC in the
context of finite Bose-Hubbard systems.

Finally, we show in Fig. 7 that the reduced one-body density
matrices associated with the many-body eigenstates |�α〉 are
rather close to diagonal matrices. To this end, we plot in Fig. 7
the densities

p
(α)
k,k′ = |〈�α|b̂†kb̂k′ |�α〉/N |2 , (19)

which correspond to the square moduli of the one-body density
matrix elements 〈�α|b̂†kb̂k′ |�α〉 normalized by the number
of particles. These densities are plotted both for individual
many-body eigenstates (top row) and for averages of over 100
consecutive eigenstates in the many-body spectrum (bottom
row of Fig. 7). The logarithmic grayscale plot clearly indicates
that this one-body density matrix is very close to a diagonal
matrix. This is precisely what one should expect to occur

-50

0

50

T / J

(a) (b)

-2 0 2 4
εα / NJ

-50

0

50

μ / J

(c)

0 1 2 3
Sα

(d)

FIG. 6. [(a) and (b)] Average temperatures T and [(c) and (d)]
chemical potentials μ of the many-body eigenstates as a function of
their energies per particle Eα/N (left) and their entropies Sα (right)
for the Bose-Hubbard ring with L = N = 8, U = 0.5J , and on-site
energies that are randomly selected within −2J < εl < 2J . In (a)
and (b), the red dots show the average temperatures (β−1

E + β−1
S )/2,

where βE and βS are taken from Fig. 5. The red dots in (c) and
(d) show the average chemical potentials (μE + μS)/2, where μE

and μS are obtained in a manner perfectly analogous to βE and βS ,
respectively. The solid lines display the corresponding predictions
from the Bose-Einstein distribution (12).
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FIG. 7. One-body density matrix elements associated with var-
ious many-body eigenstates of the Bose-Hubbard ring with N = 8
particles on L = 8 sites and the interaction strength U = 0.5J . Top:
On a logarithmic scale which uniformly varies from 1 (black) to
10−5 (white), the densities p

(α)
k,k′ defined in Eq. (19) as a function of

k and k′ (on the horizontal and vertical axes, respectively) for the
eigenstates (a) α = 100, (b) α = 3000, and (c) α = 6300. Bottom:
Average densities pk,k′ = 0.01

∑α0+50
α=α0−49 p

(α)
k,k′ for (d) α0 = 100, (e)

α0 = 3000, and (f) α0 = 6300.

in the framework of the grand canonical ensemble defined
by Eq. (9).
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FIG. 8. Same as Fig. 4 for variable interaction and disorder
strengths (a) U = 0.5J , −0.5J < εl < 0.5J , (b) U = 0.5J , −4J <

εl < 4J , (c) U = 0.2J , −2J < εl < 2J , and (d) U = J , −2J <

εl < 2J for the Bose-Hubbard ring (1) containing N = 8 particles
on L = 8 sites. While the agreement with the DTC prediction is
still very convincing for weak disorder in (a), a too low interaction
strength U < Uc (see text) does not give rise to an efficient mixing of
the noninteracting eigenstates of the system. This yields a number of
interacting many-body eigenstates that are not fully thermalized, as is
seen in (b) and (c). For a very strong interaction [in (d)], on the other
hand, the considerations leading to the mean-field shift expression
(8) are to be refined as the assumption of an equidistribution of the
atoms within the lattice is expected to become invalid with increasing
many-body eigenenergy.
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It appears intuitively obvious that the occurrence of dy-
namical thermalization ought to be strongly linked to the
validity of the ETH. Indeed, if the many-body eigenstates of the
interacting quantum system are fully thermalized according to
the ETH, we can formally derive the Bose-Einstein distribution
for each single-particle eigenstate by treating this state as
a “subsystem” that is coupled to a “reservoir” constituted
by the other single-particle eigenstates. To support this link
between the ETH and the DTC, we compare in Fig. 8 the
numerically computed entropies of probability distribution
(15) with the corresponding analytical prediction (16) for
various values of the interaction and the disorder strength. As
we clearly see in Figs. 8(b) and 8(c), dynamical thermalization
becomes less effective if the interaction strength becomes
smaller than a certain critical energy scale Uc below which
the assumption of quantum ergodicity can no longer be taken
for granted. According to the Åberg criterion [3,4,18,20], we
would expect that this critical scale Uc be determined by
comparing the interaction-induced matrix element between
directly coupled noninteracting states with the energy level
spacing between directly coupled states. Strictly speaking,
however, this criterion does not apply to our system as we
are not explicitly dealing with long-range interactions (and
we cannot simply assume that all states be equally coupled
with each other since the one-body localization length of
the disordered system does not appear to exceed its size L).
Analogous computations for smaller systems with unit filling
N = L < 8 do, nevertheless, indicate that the DTC can be
satisfied in the formal thermodynamic limit N = L → ∞ at
weak (fixed) ratios U/J , in agreement with the mean-field
studies undertaken in Ref. [34].

For very strong interactions, on the other hand, the
considerations leading to the mean-field shift (8) would have
to be refined, giving rise to a more involved expression for
the shift that scales with the total energy per particle. Indeed,
in the presence of a very strong interaction, we can safely
assume that the ground state and the lowly excited eigenstates
of the many-body system are characterized by an almost
perfect equidistribution within the lattice, thereby minimizing
the total interaction energy, while highly excited eigenstates
in the center and close to the upper edge of the many-body
spectrum are expected to exhibit a more and more peaked
distribution of atoms on one or a few sites of the lattice.
Correspondingly, the assumption of ergodicity is expected
to break down with increasing interaction as individual Fock
states defined with respect to the site basis become more and
more isolated from each other and the system undergoes a
transition to many-body localization. The situation simplifies
again in the limit of ultrastrong interactions |U/J | → ∞,
where the system is approaching the case of noninteracting
fermions (see, e.g., Ref. [35]).

IV. DISCUSSION

In this work we demonstrated that dynamical thermalization
takes place for interacting bosons that are contained within a
finite ring lattice exhibiting disordered on-site energies. While

the system is prepared in one of its many-body eigenstates,
the atomic populations of the single-particle eigenstates of this
disordered Bose-Hubbard system display the same thermaliza-
tion features as they would if these single-particle eigenstates
were coupled to an energy and particle reservoir according
to the grand canonical ensemble. It is therefore possible
to associate with each many-body eigenstate an effective
temperature and an effective chemical potential. Evidently,
the dynamical thermalization is caused by the presence of
the atom-atom interaction, which should not be too weak to
provide an effective mixing or so strong as to fully localize
many-body eigenstates on restricted spatial regions within
the lattice. In the regime of moderate interactions, individual
eigenstates are well described by the Bose-Einstein thermal
distribution satisfying DTC and ETH.

Dynamical thermalization may therefore provide a novel
tool to probe the validity of ETH in an interacting many-
body system, which appears all the more useful from an
experimental point of view as it is solely based on the
evaluation of one-body observables, namely, the populations
of single-particle eigenstates. In practice, these populations
can be inferred from the single-site occupations of the lattice
whose measurement was pioneered in Ref. [36] and from
the corresponding off-diagonal coherences (i.e., from the
reduced one-body density matrix of the system in the site
representation), as well as from precise knowledge of the
involved intersite hopping and on-site energies of the lattice.
Conversely, the assumption of eigenstate thermalization allows
us now to theoretically predict the single-particle eigenstate
populations within a many-body eigenstate of the system
without doing any numerical many-body computation: all we
need to know for this purpose is the relative location of the
energy per particle of this many-body eigenstate within the
single-particle eigenspectrum, as well as the on-site interaction
strength in order to correctly account for the effective mean-
field shift (8) of the single-particle energies.

Restricting ourselves to finite size systems with up to
nine bosons, we do not analyze in this work the conditions
of validity of the DTC in this Bose-Hubbard system. The
determination of the conditions under which the DTC is valid
is a much more involved task which is beyond the scope of
this paper. In the case of long-range interactions we expect
that the Åberg criterion will work well as it was the case for
fermionic [18] and qubit systems [19,20]. In the case of a finite
interaction range, however, the noninteracting eigenstates can
be localized, and the validity of the DTC can depend on the
system size, on the nature and strength of interactions, and
on the disorder strength. The investigation of DTC and ETH
in systems with a finite interaction range is now attracting
growing interest with the possible appearance of phase
transitions (see, e.g., Ref. [37] and references therein). We
expect that experimental tests of the DTC with cold atoms will
allow us to investigate this fundamental problem in great detail.
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