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Non-self-averaging in Ising spin glasses and hyperuniversality
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Ising spin glasses with bimodal and Gaussian near-neighbor interaction distributions are studied through
numerical simulations. The non-self-averaging (normalized intersample variance) parameter U22(T ,L) for the
spin glass susceptibility [and for higher moments Unn(T ,L)] is reported for dimensions 2,3,4,5, and 7. In
each dimension d the non-self-averaging parameters in the paramagnetic regime vary with the sample size L

and the correlation length ξ (T ,L) as Unn(β,L) = [Kdξ (T ,L)/L]d and so follow a renormalization group law
due to Aharony and Harris [Phys. Rev. Lett. 77, 3700 (1996)]. Empirically, it is found that the Kd values are
independent of d to within the statistics. The maximum values [Unn(T ,L)]max are almost independent of L in
each dimension, and remarkably the estimated thermodynamic limit critical [Unn(T ,L)]max peak values are also
practically dimension-independent to within the statistics and so are “hyperuniversal.” These results show that the
form of the spin-spin correlation function distribution at criticality in the large L limit is independent of dimension
within the ISG family. Inspection of published non-self-averaging data for three-dimensional Heisenberg and
XY spin glasses the light of the Ising spin glass non-self-averaging results show behavior which appears to
be compatible with that expected on a chiral-driven ordering interpretation but incompatible with a spin-driven
ordering scenario.
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I. INTRODUCTION

The non-self-averaging parameter, usually noted A or U22,
represents the normalized intersample variability for systems
such as diluted ferromagnets or spin glasses where the micro-
scopic structures of the interactions within individual samples
are not identical. The parameter is defined for ferromagnets as
the intersample variance of the susceptibility normalized by
the mean susceptibility squared [1],

U22(β,L) =
[
σχ (T ,L)

χ (T ,L)

]2

= var(〈q2〉)
[〈q2〉]2

, (1)

where σ (T ,L) is the standard deviation of the equilibrium
sample-by-sample distribution of the susceptibility. We denote
by 〈· · · 〉 the thermal mean for a single sample and by [· · · ]
the sample mean. In Ising spin glasses (ISGs) the spin glass
susceptibility replaces χ . The non-self-averaging definition
can be widened to other observables [1]; we will also discuss
the behavior of non-self-averaging of higher moments 〈q3〉
and 〈q4〉 of the spin overlap parameter q defined in Eq. (5). In
general the Unn parameter is defined as

Unn(β,L) = var(〈|q|n〉)
[〈|q|n〉]2

. (2)

Aharony and Harris [1] gave a fundamental renormalization
group discussion of non-self-averaging in diluted ferromag-
nets, which can be applied also to spin glass models. First,
they showed that in the paramagnetic regime, at temperatures
above the critical temperature, U22 (which they referred to as
Rχ ) behaves as

U22(T ,L) ∼ (ξ (T ,L)/L)d, (3)

where d is the dimension of the system and ξ (T ,L) is the
standard finite size second moment correlation length (see, for

instance, Ref. [2]). This rule can be understood in a simple
physical picture: the intersample variability depends on the
ratio of the sample volume to the correlated volume. Roughly,
each sample is contained in a “box” of volume Ld . When this
box volume is much larger than the correlated volume ξ (T )d ,
all samples will have essentially identical properties; when the
inverse is true, each sample has its own individual properties.

Then at the critical point Tc where ξ (T ) diverges in the
thermodynamic limit (ThL), U22(Tc,L) becomes independent
of L even when L tends to infinity [1]. In this strongly
non-self-averaging regime the observables for each individual
sample have different properties. The passage as a function
of temperature in the thermodynamic limit from “all samples
identical” (randomness irrelevant) to “all samples different”
(randomness relevant) is a fundamental signature of the
physical meaning of ordering in systems with disorder or in
spin-glass-like systems. Aharony and Harris show that the
value of U22(Tc,L) in the limit of large L should be universal
for ferromagnets with different forms of disorder in a given
dimension. We find empirically that within the ISG family this
critical parameter is practically dimension-independent, i.e.,
“hyperuniversal.”

We report non-self-averaging measurements in near neigh-
bor interaction ISGs having dimensions 2, 3, 4, 5, and 7, with
bimodal or Gaussian near neighbor interaction distributions.
There is considerable regularity in behavior throughout all
this range of d, which includes the special cases d = 2
where Tc = 0 and d = 7, which is above the upper critical
dimension d = 6. In the paramagnetic regime U22(T ,L) =
[Kdξ (T ,L)/L]d with Kd ≈ 2.5 for all d studied, to within
statistical accuracy. Second, the peak in U22(T ,L) as a function
of T for fixed L has a value U22(max) for each L which,
after weak small size effects, is independent of L to within
the statistics and almost independent of d, U22(max) ≈ 0.205.
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The location of the peak T (U22(max)) approaches Tc from
the paramagnetic regime (higher T ) for d < 4 and from the
ordered regime (lower T ) for d > 4. The same rules are
followed for the higher moments of the spin-spin correlations.

II. SIMULATIONS

The standard ISG Hamiltonian is

H = −
∑
ij

Jij SiSj (4)

with the near-neighbor symmetric distributions normalized
to 〈J 2

ij 〉 = 1. The normalized inverse temperature is β =
(〈J 2

ij 〉/T 2)1/2. The Ising spins live on simple hypercubic
lattices with periodic boundary conditions. The spin overlap
parameter is defined as usual by

q = 1

Ld

∑
i

SA
i SB

i , (5)

where the sum is taken over all spins and A and B indicate
two copies of the same system. The spin glass susceptibility is
then defined as usual: χ (β,L) = Ld [〈q2〉].

The equilibration techniques (which are different in dimen-
sion 2) are described in Refs. [3,4]. On a technical level, it
turns out that the values of U22 and particularly the peak
values can fluctuate slightly in an irregular manner at each size,
possibly because of outliers in some of the distributions. Also,
the values depend sensitively on strict equilibration having
been achieved.

III. DIMENSION 2

It is well established that short range ISGs in dimension 2
only order at T = 0 [5,6]. The Gaussian ISG has a nondegener-
ate ground state and a continuous energy level distribution. The
bimodal ISG has an effectively continuous energy level regime
down to an L-dependent crossover temperature T ∗(L) below
which the thermodynamics are dominated by the massively
degenerate ground state [7]. This is a finite-size regime; in the
ThL regime the bimodal ISG can be considered to have an
effectively continuous energy level distribution similar to that
of the Gaussian ISG.

Measurements on two bimodal models and the Gaussian
model ISG in dimension 2 [8] show a clear scaling of U22(T ,L)
as a function of ξ (T ,L)/L, with all the maxima in U22(T ,L)
close to 0.20. We show for the standard bimodal ISG in
dimension 2 (see Fig. 1) the data scaled against ξ (T ,L)/L on a
log-log plot. This brings out the fact (not mentioned in Ref. [8])
that for temperatures above the peak location temperature, the
Aharony-Harris rule [1] U22(T ,L) = [K2ξ (T ,L)/L]2 holds,
with K2 = 2.5(1). Below the peak obvious finite size effects
due to the crossover to the ground state-dominated regime
set in.

From the same simulation runs, data for the higher moments
〈q3〉(T ,L) and 〈q4〉(T ,L) were obtained, and the values of the
normalized variances U33(T ,L) and U44(T ,L) were evaluated.
Equivalent plots to Fig. 1 are shown for U33(T ,L) and
U44(T ,L) in Figs. 2 and 3 with U33(T ,L) = [3.29ξ (T ,L)/L]2

and U44(T ,L) = [4.36ξ (T ,L)/L]2.

FIG. 1. Bimodal 2D ISG. Non-self-averaging parameter
U22(T ,L) against the normalized correlation length ξ (T ,L)/L. L =
12, 16, 24, 32, 48, 64, 96, 128 from right to left. The straight line has
slope 2.

The same data are presented as U22(T ,L) against T for
fixed L in Fig. 4; the peak location is moving towards T = 0
with increasing L, and the maximum value is very gradually
growing with increasing L. A simple extrapolation of the peak
data from L = 4 to L = 128 indicates a limiting infinite L

peak value close to 0.200.
The U33(T ,L) and U44(T ,L) peak values and positions

evolve in a very similar way to the U22(T ,L) peaks, ex-
trapolating to large L limit values U33 = 0.38 and U44 =
0.60 (Figs. 5 and 6). On the low-temperature side of the
bimodal data, a minimum in each of the Unn(T ,L) at an
L-dependent temperature followed by a plateau (see Ref. [8])
provides a clear indication of the crossover from the effectively
continuous energy level regime to the degenerate ground
state-dominated regime. For the largest sizes, this crossover
lies below the lowest temperatures at which measurements
were carried out.

FIG. 2. Bimodal 2D ISG. Non-self-averaging parameter
U33(T ,L) against the normalized correlation length ξ (T ,L)/L.
L = 24, 32, 48, 64, 96, 128 from right to left. The straight line
has slope 2.
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FIG. 3. Bimodal 2D ISG. Non-self-averaging parameter
U44(T ,L) against the normalized correlation length ξ (T ,L)/L.
L = 24, 48, 64, 128 from right to left. The straight line has
slope 2.

Data for U22(T ,L) for the Gaussian ISG (not shown) are
very similar to the bimodal data, except that there is of course
no crossover effect.

For both the bimodal and the Gaussian two-dimensional
(2D) models (Fig. 7) the peak position scales in the standard
manner as

[Tmax(L) − Tc] = AL−1/ν[1 + aL−ω], (6)

where Tc = 0 and ν is the correlation length exponent, which
is already accurately estimated (see Ref. [5] for the Gaussian
and Ref. [4] for the bimodal) and a correction term is needed.
Thus we have U22 fits: Tmax(L) = 1.2L−1/3.5[1 + 0.71L−0.45]
for the Gaussian and Tmax(L) = 1.12L−1/4.8[1 + 2.54L−0.45]
for the bimodal. The Tmax(L) values for U33 and U44 are not
identical to the U22 values, but the scaling fits are of very
similar form.

[In a rather different context (see Fig. 2[a] of Ref. [9])
the non-self-averaging parameter peak position for the three-
dimensional (3D) random field Ising model moment at zero

FIG. 4. Bimodal 2D ISG. Non-self-averaging parameter
U22(T ,L) against the temperature T . L = 128, 96, 64, 48, 32, 24, 16,
12, 8, 6, 4 from left to right. The straight line indicates extrapolation
to criticality at T = 0.

FIG. 5. Bimodal 2D ISG. Non-self-averaging parameter
U33(T ,L) against the temperature T . L = 128, 96, 64, 48, 32, 24,
16, 12, 8, 6 from left to right. The straight line indicates extrapolation
to criticality at T = 0.

temperature has been shown to behave as a function of L in a
remarkably similar way, with fields h replacing temperatures
and no correction term. The observed peak heights are
independent of L.]

The zero temperature infinite size limit can be defined in two
ways. Taking the successive limits L → ∞, T → 0 gives an
extrapolated value U22(0,∞) = 0.190(5) for both bimodal and
Gaussian models, while the successive limits T → 0, L → ∞
gives a value ≈0 in the Gaussian case; with the present data
it is hard to estimate in the bimodal model because of the
crossover.

IV. DIMENSION 3

The bimodal ISG in dimension 3 has a transition tem-
perature for which the most recent estimate is Tc = 1.102(3)
[2,10,11], and the Gaussian ISG has a transition temperature
estimated to be Tc = 0.951(9) [2]. The critical values of
the dimensionless correlation length ratio [ξ (T ,L)/L]c are
estimated to be 0.652(3) and 0.635(10), respectively.

FIG. 6. Bimodal 2D ISG. Non-self-averaging parameter
U44(T ,L) against the temperature T . L = 8, 16, 32, 64, 128 from
right to left. The straight line indicates extrapolation to criticality at
T = 0.
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FIG. 7. Temperature of the maximum of the non-self-averaging
parameter U22(T ,L) against size L for the 2D ISGs. Bimodal: data red
circles, fit upper blue curve. Gaussian: data black squares, fit lower
green curve. Fit expressions are in the text.

Hasenbusch et al. [10] have generously posted their raw
tabulated simulation data for the bimodal ISG in dimension 3
as Supplemental Material with their publication. In addition
to the present measurements on 213 samples of sizes L = 4, 6,
8, 10, 12 we have extracted a selection of values of U22(β,L)
from the tables of Ref. [10], choosing the data sets with the
largest numbers of temperatures, L = 16, 20, 24. In each case
the data correspond to measurements on about 105 samples.

The U22(T ,L) bimodal data in 3D have almost L-
independent peak values U22(T ,L)max = 0.207(3) with peak
locations tending gradually downwards towards Tc as L

increases (Figs. 8 and 9; see Ref. [12], which also observed
a very similar peak height for a 3D next-nearest-neighbor
bimodal model). Small fluctuations as a function of L can be
put down to residual equilibration differences as the statistical
errors in these data are very small because of the large numbers

FIG. 8. Bimodal 3D ISG. Non-self-averaging parameter
U22(T ,L) against the normalized correlation length ξ (T ,L)/L.
L = 10, 12, 16, 20, 24 (pink, purple, cyan, green, black) right
to left. L = 16, 20, 24 from Ref. [10]. The straight line has
slope 3.

FIG. 9. Bimodal 3D ISG. Non-self-averaging parameter
U22(T ,L) against temperature T . L = 4, 6, 8, 10, 12, 16, 20, 24 (blue,
red, black, pink, purple, cyan, green, brown) right to left. L = 16, 20,
24 from Ref. [10]. Vertical line Tc.

of samples. At the critical temperature the finite-size scaling
limit for [T → Tc,L → ∞] is U22(Tc,L) = 0.147(3) [10].

When scaled against ξ (T ,L)/L, in the paramagnetic range
U22(T ,L) = [K3ξ (T ,L)/L]3 following the Aharony-Harris
law, with K3 = 2.6(1) (Fig. 8). The peak locations correspond
to ξ (T ,L)/L ≈ 0.35. Alternatively the peak locations can be
approximately scaled as [Tmax − 1.1] = 1.07L−1/2.1, or if the
value of ν = 2.56 from Ref. [11] is imposed with a correction
term, as [Tmax − 1.1] = 0.8L−1/2.56[1 + 0.8L−1].

In the large L limit, the U33 and U44 peak locations are
tending to Tc, and the peak values extrapolate to U33 ∼ 0.39
and U44 ∼ 0.61 (Figs. 10 and 11).

V. DIMENSION 4

U22(T ,L),U33(T ,L) and U44(T ,L) data for the Gaussian
ISG in dimension 4 are shown in Figs. 12, 13, 14, and 15. The
data correspond to N = 8192 samples for each L. The critical
temperature is Tc = 1.80(3) [2,3], and the finite size critical
value for the normalized correlation length ratio [ξ/L]c =
0.440(5) [2,3]. Scaling against the normalized correlation
length (Fig. 12), U22(T ,L) = (K4ξ (T ,L)/L)4 again following

FIG. 10. Bimodal 3D ISG. Non-self-averaging parameter
U33(T ,L) against temperature T . L = 4, 6, 8, 10, 12 (blue, red, black,
pink, purple) right to left. Vertical line Tc.
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FIG. 11. Bimodal 3D ISG. Non-self-averaging parameter
U44(T ,L) against temperature T . L = 4, 6, 8, 10, 12 (blue, red, black,
pink, purple) right to left. Vertical line Tc.

the Aharony-Harris law, with K4 = 2.7(1) and peaks located
at ξ (T ,L)/L = 0.43(2) so very close to ξ (Tc,L)/L.

Data obtained for the four-dimensional (4D) bimodal ISG
(not shown) follow a very similar pattern with the same
peak height. The locations of the Unn(T ,L) peaks are almost
independent of L. This was noted for U22(T ,L) in the 4D
Gaussian ISG in Ref. [12] and in Ref. [13] for a bond-diluted
bimodal model; it follows from the proximity of the peak
ξ (T ,L)/L and critical ξ (Tc,L)/L values. For the bond-diluted
bimodal model, the peak height is again ≈0.205 [13]. Because
of the quasi-L-independence, the peak location extrapolated
to infinite size provides an estimate for Tc, which is limited in
precision only by the statistical uncertainties; no scaling of the
peak position against L is possible in this dimension.

The Gaussian Unn(T ,L) peak heights become independent
of L to within the statistical errors after weak finite size effects
for small L (Figs. 13, 14, and 15). The stability of the Unn(T ,L)
peak heights as L is varied turns out to be a useful empirical
criterion for the quality of equilibration.

FIG. 12. Gaussian 4D ISG. Non-self-averaging parameter
U22(T ,L) against the normalized correlation length ξ (T ,L)/L. L = 4,
6, 8, 10, 12 (blue, red, black, pink, green), right to left. The straight
line has slope 4.

FIG. 13. Gaussian 4D ISG. Non-self-averaging parameter
U22(T ,L) against the temperature T . L = 4, 6, 8, 10, 12 (blue,
red, black, pink, green) from right to left. The horizontal line is
an extrapolation to criticality at T = Tc (vertical line).

Alternatively, considering the Unn(T ,L) as dimensionless
variables, the intersections of the curves for fixed L should also
give a criterion for estimating Tc, but the statistical fluctuations
and corrections to scaling affect the intersections much more
drastically than they do the peak location, which means that
this is an imprecise criterion in the 4D case as noted in
Ref. [13].

VI. DIMENSION 5

U22(T ,L), U33(T ,L), and U44(T ,L) data for the Gaussian
ISG in dimension 5 are shown in Figs. 16, 17, 18, and 19.
The data correspond to 4096 samples for each L. The critical
temperature is Tc = 2.390(5), and the finite size critical value
for the normalized correlation length ratio [ξ/L]c ≈ 0.45
[14]. We are not aware of other comparable simulation
measurements in this dimension. Data obtained for the 5D
bimodal ISG (not shown) are very similar. The Unn(T ,L) peak
heights become independent of L to within the statistical errors
after weak finite size effects for small L.

FIG. 14. Gaussian 4D ISG. Non-self-averaging parameter
U33(T ,L) against the temperature T .L = 4, 6, 8, 10, 12 (blue, red,
black, pink, orange) from right to left. The horizontal line is an
extrapolation to criticality at T = Tc (vertical line).
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FIG. 15. Gaussian 4D ISG. Non-self-averaging parameter
U44(T ,L) against the temperature T . L = 4, 6, 8, 10, 12 (blue, red,
black, pink, orange) from right to left. The horizontal line is an
extrapolation to criticality at T = Tc (vertical line).

When scaled against the correlation length ratio, in the
paramagnetic range U22(T ,L) = [K5ξ (T ,L)/L]5 following
the Aharony-Harris law [1], with K5 = 2.5(1). The peak
locations correspond to ξ (T ,L)/L ≈ 0.50. As this ratio is
greater than [ξ/L]c the locations of the Unn(T ,L) peaks are
at temperatures below Tc and the peak temperatures move
upwards towards Tc with increasing L. The peak location
extrapolated to infinite size provides an estimate for Tc,
which is again limited by the statistical precision but which
provides a useful independent check on the value of the
ordering temperature. As the peak position changes are small,
a quantitative scaling of the peak positions is not possible.

VII. DIMENSION 7 AND SUMMARY

By this dimension, N the number of spins per sample has
become very large, (N = 823,543 for L = 7), which imposes
practical limits on the sizes and numbers of samples in the

FIG. 16. Gaussian 5D ISG. Non-self-averaging parameter
U22(T ,L) against the normalized correlation length ξ (T ,L)/L. L = 4,
6, 8, 10 (blue squares, red circles, black triangles, pink inverted
triangles). The straight line has slope 5.

FIG. 17. Gaussian 5D ISG. Non-self-averaging parameter
U22(T ,L) against the temperature T . L = 4, 5, 6, 7, 8, 9, 10 (blue,
green, red, olive, black, orange, pink) from right to left on the right.
The horizontal line is an extrapolation to criticality at T = Tc (vertical
line).

simulations. The simulations were carried out for L = 3 to 7
with 512 samples at each L.

The dimension 7 bimodal ISG has an ordering temperature
Tc = 3.39(1) estimated using the standard Binder cumulant
crossing point technique [14] in agreement with the high-
temperature series expansion (HTSE) estimates Tc = 3.37(2)
[15] and Tc = 3.384(15) [16]. (Curiously the HTSE value
given in Ref. [17] corresponds to Tc = 3.459. We suspect a
typographical error). As this dimension is above the upper
critical dimension d = 6, the critical exponents γ = 1 and
ν = 1/2 are known exactly. In this case in the paramagnetic
regime U22(T ,L) = [K7ξ (T ,L)/L]6, with an exponent which
appears to be ≈ 6 rather than 7 (Fig. 20). This could arise
from the breakdown of the relations between scaling exponents
above the upper critical dimension. Because of the limited
number of samples and the small values of L at this dimension,
this estimate is not very precise.

FIG. 18. Gaussian 5D ISG. Non-self-averaging parameter
U33(T ,L) against the temperature T . L = 4, 5, 6, 7, 8, 9, 10 (blue,
green, red, olive, black, orange, pink) from right to left on the right.
The horizontal line is an extrapolation to criticality at T = Tc (vertical
line).
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FIG. 19. Gaussian 5D ISG. Non-self-averaging parameter
U44(T ,L) against the temperature T . L = 4, 5, 6, 7, 8, 9, 10 (blue,
green, red, olive, black, orange, pink) from right to left on the right.
The horizontal line is an extrapolation to criticality at T = Tc (vertical
line).

In the plot of U22(T ,L) against T (see Fig. 21), the
L-independent critical finite-size crossing point value is
U22(Tc) ≈ 0.15, and the [U22(T ,L)]max peak heights are
independent of L and equal to ≈ 0.21 to within the statistics,
as for the other dimensions. The maxima locations move
towards Tc from within the ordered regime. This behavior is
very similar to that observed in the mean field ISG SK model
[18,19], where again the U22(T ,L) peak heights tend to about
0.21.

The higher order U33(T ,L) and U44(T ,L) (Figs. 22 and 23)
follow much the same pattern. Finally we have collected the
ISG U22, U33, and U44 peak height data for all the dimensions
studied. These are displayed in such a way as to underline the
interdimension regularities in Figs. 24, 25, and 26. Within the
present statistics the peak heights are dimension independent
for dimensions 3 to 7 and are slightly lower in dimension 2.

FIG. 20. Bimodal 7D ISG. Non-self-averaging parameter
U22(T ,L) against the normalized correlation length ξ (T ,L)/L. L = 4,
5, 6, 7 (blue circles, green triangles, red inverted triangles, olive
diamonds). The straight line has slope 6.

FIG. 21. Bimodal 7D ISG. Non-self-averaging parameter
U22(T ,L) against temperature T . L = 3, 4, 5, 6, 7 (cyan, blue, green,
red, olive) left to right on the left. Vertical line Tc. Horizontal line
extrapolation.

VIII. THE GAUGE GLASS

The gauge glass (GG) is a canonical vector spin glass (see,
for instance, Ref. [20]) where XY spins on a [hyper]cubic
lattice of size L interact through the Hamiltonian

H = −J
∑
ij

cos(φi − φj − Aij ), (7)

the sum ranging over near neighbors. The φi represent the
angles of the spins, and the Aij are quenched random variables
uniformly distributed between [0,2π ]. J is conventionally set
equal to 1. Periodic boundary conditions are applied. The GG
does not support chiral ordering. The GG in dimension 3 has
a critical temperature Tc = 0.47(1) [20–22].

The non-self-averaging parameter U22(L,T ) scales with
ξ (L,T )/L [21] and shows a maximum peak height indepen-
dent of L and a peak position Tmax(L) near ξ (L,T )/L = 0.35.
The paramagnetic regime data [21] appear by inspection
to be compatible with the Aharony-Harris rule U22(L,T ) ∼
[ξ (L,T )/L]3 although the published data are not presented

FIG. 22. Bimodal 7D ISG. Non-self-averaging parameter
U33(T ,L) against temperature T . L = 3, 4, 5, 6, 7 (cyan, blue, green,
red, olive) left to right on the left. Vertical line Tc. Horizontal line
extrapolation.
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FIG. 23. Bimodal 7D ISG. Non-self-averaging parameter
U44(T ,L) against temperature T . L = 3, 4, 5, 6, 7 (cyan, blue, green,
red, olive) left to right on the left. Vertical line Tc. Horizontal line
extrapolation.

in this way. As the critical correlation length ratio is
[ξ (L,T )/L]c = 0.54 [21], the U22(L,T ) peak temperature
location moves downwards with L and tends towards Tc. The
3D GG vector spin-glass U22(T ,L) thus follows basically the
same rules as followed by U22(T ,L) in the ISG in 3D, except
that the GG peak maximum is ≈0.10 instead of 0.205. Data on
GGs in dimensions 2, 3, and 4 from measurements which were
not designed to estimate the non-self-averaging parameter [22]
are consistent with U22(T ,L) peak values near 0.10 in each
dimension. We can speculate that this family of spin-glass
models also has its characteristic dimension-independent value
of the non-self-averaging peak height.

IX. HEISENBERG AND XY SPIN GLASSES

These spin glasses have the same Hamiltonian as the
ISGs but with vector spins which are Heisenberg (three
component) or XY (two component), respectively. Numerical
measurements on Heisenberg spin glasses (HSGs) are of

FIG. 24. Peak values of the non-self-averaging parameter
U22(T ,L) against inverse size 1/L for all the ISGs studied. Open
symbols are for Gaussian ISGs, closed for bimodal ISGs. Red squares
2D, pink triangles 3D, black circles 4D, blue diamonds 5D, green
inverted triangles 7D.

FIG. 25. Bimodal and Gaussian ISG non-self-averaging U33(L)
peak values against inverse size 1/L. Closed symbols bimodal, open
symbols Gaussian. Red squares 2D, pink triangles 3D, black circles
4D, blue diamonds 5D, green inverted triangles 7D.

particular importance because the canonical experimental
spin-glass dilute alloys (AuFe, CuMn, AgMn) are all Heisen-
berg systems, so it should be possible to understand the
ordering mechanism in “real life” spin glasses on the basis
of numerical data on Heisenberg models. We have no new
data to report on these models, but it is of interest to consider
published non-self-averaging data in the light of the ISG
results.

Both Heisenberg and XY spin glasses can support chiral-
glass order as well as spin-glass order, and for many years there
have been two conflicting interpretations of the numerical data
on the ordering transitions in these models in dimension 3.
According to the first interpretation, the ordering is spin-spin
interaction driven; basically the ordering process is much
the same as in ISGs, and the chiral order follows on as a
geometrically necessary consequence of the onset of spin
order, without the chiral interactions playing any significant
role in the spin glass transition [23–27]. The alternative

FIG. 26. Bimodal and Gaussian ISG non-self-averaging U44(L)
peak values against inverse size 1/L. Closed symbols bimodal, open
symbols Gaussian. Red squares 2D, pink triangles 3D, black circles
4D, blue diamonds 5D, green inverted triangles 7D.
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interpretation is that the driving role in 3D HSG or XYSG
ordering is played by the chirality, so that there is first a chiral
order onset followed at a lower temperature by spin ordering
transition [28–31]. (Similar disagreements concerning fully
frustrated 2D XY models were resolved definitively in favor
of a distinct chiral-order transition just above a spin-order
transition [32,33].) The arguments of both schools to support
their respective interpretations in the 3D HSG and XYSG
models have been essentially based on analyses of the data
for the crossing points of the dimensionless normalized
spin and chiral (s and c) correlation lengths ξs(T ,L)/L and
ξc(T ,L)/L.

The numerical simulations in the spin glasses are even more
demanding than in the fully frustrated models, and because of
intrinsic finite-size corrections and the need to reach strict
equilibration at each L, extrapolations to infinite L in order
to estimate the ThL crossing point locations are delicate.
As simulations were extended to larger sizes in successive
Gaussian HSG and XYSG measurements interpreted on
the spin-driven ordering scenario, the joint spin or chiral
crossover temperature was estimated to be Tc(HSG) ≈ 0.160
[23], Tc(HSG) ≈ 0.145 with a KTB-like critical line [24],
marginal but very similar spin and chiral behavior (XYSG
and HSG) [25,26], and most recently Tc(HSG) ≈ 0.120 [27].
No non-self-averaging results were reported. From detailed
3D bimodal and Gaussian HSG and 3D Gaussian XYSG
measurements, the two separate transition temperatures on
the chiral-driven ordering scenario are estimated to be (bi-
modal HSG) [29], Tc(c) = 0.194(5) and Tc(s) � 0.15, (Gaus-
sian HSG) Tc(c) = 0.143(3) and Tc(s) = 0.125(+0.006/ −
0.012) [30], and (XYSG) Tc(c) = 0.308(5) and Tc(s) =
0.274(3) [31]. Non-self-averaging data were shown in each
case.

In the light of the ISG results reported above, it would
appear that in Heisenberg and XY spin glasses non-self-
averaging could provide an independent primary numerical
criterion for spin and/or chiral ordering much less sensitive
to finite-size effects and to strict equilibration (as already
suggested in Ref. [29]). On the first (spin-driven order-
ing) scenario one would expect the spin non-self-averaging
parameter U22s(T ,L) to follow much the same rules as
for the ISG or the GG chiral-free vector spin-glass cases
discussed above, with a peak location moving towards an
upper spin-ordering temperature Tc(s) as L increases, and a
regular behavior reflecting U22s(T ,L) ∼ [ξs(T ,L)/L]3 in the
paramagnetic regime above Tc(s). On this interpretation the
chiral U22c(T ,L) would be weaker than the U22s(T ,L); if a
U22c(T ,L) peak exists, it would be located at a temperature
below or possibly at the ThL U22s(T ,L) peak.

On the second (chiral-driven order) scenario, it would
be the chiral U22c(T ,L) which would show a peak first,
with a peak location tending towards the (upper) chiral
ordering temperature Tc(c) as L increases. In the paramagnetic
regime one would expect a regular behavior of the chiral
non-self-ordering U22c(T ,L) with increasing L, governed
by U22c(T ,L) ∼ [ξc(T ,L)/L]3. On this scenario the spin
U22s(T ,L) would then show a peak location somewhere below
the chiral U22c(T ,L) peak, with a location tending towards
an ordering temperature Tc(s) below Tc(c), together with a
paramagnetic regime U22s(T ,L) behavior behaving irregularly

at least at small L because the paramagnetic spin ordering is
perturbed by the dominant onset of chiral order.

Very informative non-self-averaging data have been pub-
lished on the 3D HSG with bimodal interactions [29], on the 3D
HSG with Gaussian interactions [30], and on the 3D Gaussian
XYSG [31]. In each case the pattern is the same. First,
there is a strong U22c(T ,L) peak at an almost L-independent
temperature T ≈ 0.19, T ≈ 0.145, T ≈ 0.31, respectively, so
in each case close to the Tc(c) value estimated independently
from other criteria [29–31]. In the paramagnetic regime there is
a regular narrowing in temperature of the U22c(T ,L) peak with
increasing L which appears compatible with the Aharony-
Harris law U22c(T ,L) ∼ [ξc(T ,L)/L]3 though the data are
not presented in this form. Second, in each case, the spin
U22s(T ,L) peak is either not visible (HSGs) or is marginal
(XYSG) down to the lowest temperature at which non-self-
averaging measurements were made, T ≈ 0.145, T ≈ 0.11 to
0.13 depending on L, and T ≈ 0.24 to 0.275 depending on L

in the three cases.
Thus the non-self-averaging data U22c(T ,L) and U22s(T ,L)

in the three models [29–31] appear by inspection to be
fully compatible with the chiral-driven ordering interpretation
[28–31], but incompatible with the HSG behavior expected on
the spin-driven ordering scenarios [23–27], unless there are
strong finite-size effects such that a U22s(T ,L) peak (invisible
in the present data) moves up in temperature with increasing L

to rejoin the U22c(T ,L) peak. Independent arguments in favor
of the chiral-driven ordering are given in [34].

It would appear that further numerical measurements
designed specifically to study the non-self-averaging could
resolve conclusively the question of the driving mechanism
for ordering in Heisenberg and XY spin glasses.

X. CONCLUSION

The non-self-averaging data on ISGs in all dimensions
show a remarkable regularity. In each dimension there is
a peak as a function of temperature in the standard non-
self-averaging parameter U22(T ,L) and in the higher-order
parameters U33(T ,L) and U44(T ,L) whose values are L-
independent after weak small size effects. As can be seen
in Figs. 24, 25, and 26 the peak values U22(T ,L)max ≈ 0.21,
U33(T ,L)max ≈ 0.40, U44(T ,L)max ≈ 0.62 are independent of
dimension to within the statistics for dimensions 3, 4, 5,
and 7 (and for infinite dimension SK model [18,19] U22

measurements), with a slightly smaller value in dimension 2. In
the paramagnetic regime above the peak the Aharony-Harris
renormalization group law [1] Unn(T ,L) = (Kdξ (T ,L)/L)d

is obeyed, with Kd (U22) ≈ 2.6 for all dimensions. Both of
these empirical observations can be classed tentatively as
“hyperuniversal behavior.”

Published [21] and unpublished [22] data on the GG, a
vector spin glass which does not support chirality, suggest that
non-self-averaging rules analogous to those that hold in the
ISGs appear to apply but with a different characteristic peak
height U22(T ,L)max ≈ 0.10.

XY and Heisenberg spin glasses can support chiral ordering
as well as spin ordering. In the light of the non-self-averaging
behavior reported above for the ISG models, the published spin
and chiral non-self-averaging data [29–31] in 3D Heisenberg
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and XY models appear to be incompatible with a spin-driven
ordering scenario [23–27] but support the alternative conclu-
sion that the spin-glass ordering in these models is chiral-
driven rather than spin-driven, in the Kawamura scenario [28].
An important implication would be that order in the canonical
experimental Heisenberg spin glasses is also chirality driven.
We suggest that simulations directly designed to study the
non-self-averaging in these systems should be undertaken.
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