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Coulomb potential V (r) = 1/r problem on the Bethe lattice
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We study the problem of a particle hopping on the Bethe lattice in the presence of a Coulomb potential. We
obtain an exact solution to the particle’s Green’s function along with the full energy spectrum. In addition, we
present a mapping of a generalized radial potential problem defined on the Bethe lattice to an infinite number of
one-dimensional problems that are easily accessible numerically. The latter method is particularly useful when
the problem admits no analytical solution.
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I. INTRODUCTION

In many-body physics, exactly solvable models are few
and far between. In their absence, a common strategy to
pursue is the use of mean field approximations [1], where
the interactions between a finite number of the system’s
constituents and the rest are modeled through an effective
field approximating the effects of the latter on the former.
One of such approaches bears the name of its inventor,
Hans Bethe [2], and turns out to be exact on cycle-free
graphs [3]. This coined the term “Bethe lattice,” which, despite
its seeming unphysicalness, has since been successfully used
to describe a plethora of physical phenomena, including
excitations in antiferromagnets [4], Anderson localization [5],
percolation [6], and hopping of ions in ice [7] to name a
few. In particular, the Coulomb potential problem on the
Bethe lattice, first appearing in [8] and addressed in this
work, recently surfaced in a study of quantum spin ice by the
authors [9].

In this paper we treat the problem of a single-particle
hopping on the Bethe lattice in the presence of a radial
potential:

H = T + V (n), (1)

where T is −t times the adjacency matrix, and the potential
V (n) is a function of the Bethe lattice generation n only—i.e.,
a radial potential. The central result of this work is the
exact solution for the attractive Coulomb potential, V (n) = C

n

where C < 0. The solution comes in the form of a closed
form expression for the lattice Green’s function. With that,
one can obtain the energy levels of the model, and the local
density of states as a function of n. In an earlier study of the
Coulomb problem on the Bethe lattice [8], Gallinar calculates
the diagonal element of the Green’s function for a single node
at the first lattice generation (n = 1). As we discuss in Sec. II A,
the Hilbert space of a radial model on the Bethe lattice can
be separated into sectors, only one of which contains wave
functions with nonzero amplitude at n = 1. Consequently,
Gallinar’s solution, unlike our more general result, cannot be
used to obtain the energy levels belonging to the other sectors.

In the process of solving the Coulomb potential problem, we
discovered a mapping of the radial Bethe lattice model (1) to
a family of 1d problems, which is particularly useful when the
exact solution to the problem cannot be obtained. Normally,
numerical treatments of Bethe lattice models are of limited
use owing to the large fraction (no less than half the total) of

vertices at the edges. Mapping to 1d chains lets us circumvent
this obstacle.

The paper is structured as follows. In Sec. II we discuss
some features common to all models where a single particle
is hopping on the Bethe lattice, or a finite Cayley tree, in
the presence of a radial potential: the symmetries of the
Hamiltonian (1) (II A), the mapping of different symmetry
sectors to a family of 1d problems (II B), and the continued
fraction technique to solving Eq. (1) perturbatively (II C). In
the technical heart of the paper, Sec. III, we present the exact
solution to the Coulomb potential problem on the Bethe lattice,
obtained by carrying out the aforementioned perturbative
calculation to infinite order. We summarize our findings and
discuss possible applications in Sec. IV.

II. TIGHT-BINDING RADIAL HAMILTONIANS ON THE
BETHE LATTICE

In this section we discuss some general properties of
radial tight-binding models (1) defined on the Bethe lattice,
a rooted infinite cycle-free graph with coordination number
z and connectivity K , defined as K = z − 1. The root vertex
is labeled by 1. To simplify further discussion, we reduce
the coordination number at 1 to z − 1, as shown in Fig. 1(a),
such that every vertex of the Bethe lattice generation n is
connected to K vertices at generation (n + 1). Generations
n = 1 and n = 2 correspond to the root and its nearest
neighbors, respectively. Due to the absence of closed cycles
in the Bethe lattice, there is a unique path connecting any two
vertices. The distance from the root to a given node is therefore
given by the node’s generation n − 1.

Much of the discussion presented here applies to finite
Cayley trees as well: the symmetry analysis (II A) carries over
directly, whereas the 1d chains and the continued fractions
that one gets from the mapping (II B) and the expansion of the
Green’s function in powers of t (II C), respectively, are finite,
rather than infinite, for the Cayley tree problems. One particu-
larly simple result that follows is that a Cayley tree with M gen-
erations has KM−2 degenerate edge modes with energy V (M).

A. Symmetries of the model

Here and in Sec. II B, we treat the z = 3 case for
concreteness unless stated otherwise. We refer to two vertices
at generation (r + 1) as siblings if they are connected to the
same parent vertex at generation r .
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FIG. 1. (a) The first four generations of the Bethe lattice with z =
3. The origin (r = 1) has coordination number z − 1. (b) A three-site
fragment of the Bethe lattice.

Exchanging left and right siblings at a given generation
leaves the Hamiltonian (1) invariant [7]. These operations
commute, which allows us to associate a separate quantum
number, denoting the parity under such exchanges, with each
generation n > 1. Each such symmetry sector can be mapped
onto a 1d half-line, whose origin is offset by the number equal
to the highest Bethe lattice generation with an odd quantum
number for a given sector.

To understand the physical meaning of the mapping to
follow, consider three vertices depicted in Fig. 1(b): parent site
1 at generation r , and siblings 2 and 3 at generation r + 1 that
are connected to it. Let us construct two states: a symmetric
and an antisymmetric combination of the particle being at sites
2 and 3, |�S〉 and |�A〉, respectively. When the hopping term
T in Hamiltonian (1) acts on |�S〉, the contributions from
sites 2 and 3 add up enabling the particle to hop back to the
parent site 1 with amplitude 2t . By contrast, T acting on |�A〉
results in back-hopping canceling out. From the extension
of this argument to the entire generation of vertices rather
than a single sibling pair, it follows that a particle starting
out at a state that is odd at the kth generation cannot hop to
generations r < k. Therefore, the particle’s wave function has
zero amplitude at all generations r < k: in particular, only the
all even states have a nonzero amplitude at the origin. This
property allows us to make a statement about the degeneracies
of the energy levels: if the sector’s highest generation with an
odd quantum number is n, then each of the lower generations
r > 2 contributes a factor of 2 to the total degeneracy of that
sector’s energy levels.

B. Mapping to infinite half-lines

We now describe how different Hilbert space sectors,
labeled by the even and odd quantum numbers discussed
above, can be mapped onto one-dimensional chains. We note
that the main idea behind the mapping is an established
result for metric trees [10–12], whose edges are treated as
line segments, as opposed to vertex pairs as in the case of
combinatorial trees, e.g., the Bethe lattice. Additionally, the
connection between the spectra of a Hamiltonian defined on a
half-line and a related problem on the Bethe lattice was known
previously [13].

The technique we present can be used to calculate the full
spectrum of the Bethe lattice problem from 1d models that
have the advantage of being trivial to simulate numerically.
Moreover, one can also use it to obtain the eigenstates

of the original problem via exact diagonalization, or their
probabilities by the analytic method described in Sec. II C.

The mapping can be understood in the following way. We
start in the |i〉 basis, where i identifies individual nodes of the
Bethe lattice. Having labeled the vertices in Fig. 1(a) from left
to right at each row, starting with 1 for the root, we end up
with a Hamiltonian matrix of the following form:

H =

⎡
⎢⎢⎢⎢⎢⎣

V (1) −t −t 0 ...

−t V (2) 0 −t ...

−t 0 V (2) 0 ...

0 −t 0 V (3) ...

... ... ... ... ...

⎤
⎥⎥⎥⎥⎥⎦. (2)

The matrix above can be brought to a block diagonal form
via a unitary transformation into the basis of states defined by
their even and odd quantum numbers:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V (1) −√
2t 0 0 0 0 ...

−√
2t V (2) −√

2t 0 0 0 ...

0 −√
2t V (3) −√

2t 0 0 ...

... ... ... ... ... ... ...

0 0 0 0 V (2) −√
2t ...

0 0 0 0 −√
2t V (3) ...

... ... ... ... ... ... ...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the upper left block corresponds to the all-even sector
of the Hilbert space, and the next one to the states which are
odd at the second generation and thus have zero amplitude
at site 1. The problem of a single-particle hopping on the
Bethe lattice in the presence of a radial potential V (n) has thus
been decomposed into a series of one-dimensional problems
with hopping strength multiplied by a factor of

√
2 compared

to the original, such that in each kth infinite half-line V (n)
is offset by k. The degeneracies discussed in the previous
section are reflected in the fact that the block diagonal form of
the Hamiltonian (2) contains multiple identical 1d problems
starting with the third generation, and their number is equal to
the degeneracy of the respective sector.

The energy levels of the Bethe lattice problem with hopping
amplitude −t and radial potential V (n) have a trivial relation
to those of the related 1d chains: namely, Bethe lattice energies
from the sector with the highest odd generation at k are given by
the energies of the 1d chain with hopping −√

2t and potential
V (n + k − 1). In that sector, the probability amplitude for
finding the particle in a state with energy En at Bethe lattice
generation r is given by the (r − k + 1)th component of
the eigenvector with eigenvalue En of the corresponding 1d

problem.
Our next step depends on whether the form of V (n) in

Eq. (1) allows for an exact solution. In the case that it
does not, exact diagonalization will readily provide us with
both the energy levels and the wave functions for each
one-dimensional chain, which can then be used to derive
the corresponding observables for the original Bethe lattice
problem. The advantage of employing the mapping technique
lies in the fact that for a one-dimensional chain, boundary
effects quickly become negligible as we increase the system
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size. On the other hand, Cayley trees are notoriously difficult
to deal with numerically due to the large fraction of nodes at
the systems’ edges.

On the analytic front, there are various ways to approach
one-dimensional hopping problems on the lattice. The one that
we discuss in the next section can be applied to the original
Bethe lattice problem directly, in addition to the special z = 2
case of one-dimensional chains. When the technique that we
are about to discuss results in an exact solution for the lattice
Green’s function, there is no benefit in first decomposing the
Bethe lattice problem to a series of 1d ones, so the generalized
coordination number z and connectivity z = K − 1 will be
used in the rest of the paper.

Before we turn to the discussion of the Green’s function
calculation, we note that both the symmetry analysis and
the mapping to 1d have a straightforward generalization to
Bethe lattices with larger coordination numbers z > 3 [7].
In this case, each generation’s quantum number takes one
of K values. Going back to our three-site example in
Sec. II A, consider connecting site 1 in the Bethe lattice
fragment in Fig. 1(b) to K , rather than 2, descendants,
labeled from 2 to K + 1. The argument remains almost
identical, except for there now being K − 1 states that do
not give rise to back-hopping: |�j

A〉 = (|2〉 + e1×(i2πj/K)|3〉 +
... + e(K−1)×(i2πj/K)|K + 1〉)/√K , where j is an index going
from 1 to K − 1.

C. The continued fraction method for calculating the lattice
Green’s function

The cycle-free nature of the Bethe lattice makes it well-
suited for recursive approaches [4,5]. In order to calculate the
Green’s function we separate the Hamiltonian (1) into two
parts:

H0 = V (n) and H ′ = T , (3)

and generate a perturbation series in t using the Dyson
equation,

G(ω) = G0(ω) + G0(ω)�(ω)G(ω), (4)

where G0(ω) is the unperturbed Green’s function,

G0(ω) = 1

ω − H0
,

and �(ω) is the self-energy of the particle. If we consider
a diagonal element Gi(ω) of the Green’s function operator,
its self-energy is given by a sum of terms associated with all
paths on the Bethe lattice going away from node i and back
to it. For each hop one such term gains a factor of −t and is
divided by ω − H0 evaluated at the “arrival” node (excluding
the starting vertex i). The lack of closed cycles on the lattice
makes all paths that we need to count self-retracing, allowing
for a straightforward way to sum them up. We can write Gi(ω)
as a power series expansion in t , or, equivalently, as a continued
fraction. For instance, for the root vertex 1 the diagonal element
of the lattice Green’s function is given by

G1(ω) = 1

ω − V (1) − Kt2

ω−V (2)− Kt2

ω−V (3)−...

. (5)

The self-energies for other nodes of the Bethe lattice involve, in
addition to “forward” hops to higher generations, paths that go
through the root. Their Green’s functions Gi∈n(ω) (where i is
a node at the nth generation) can be defined in terms of a finite
number of GF

k (ω), infinite continued fractions involving only
the forward hops starting from a node at the kth generation:

Gi∈n(ω) = 1

ω − V (n) − Kt2GF
n+1(ω) − t2

[Gj∈n−1(ω)]−1+t2GF
n (ω)

,

(6)
where

GF
k (ω) = 1

ω − V (k) − Kt2

ω−V (k+1)−...

. (7)

Provided we can obtain a closed form expression for Eq. (7),
the diagonal elements Gi(ω) of the full Green’s function give
us the system’s energy levels [poles of Gi(ω) occur at the
energies ω whose corresponding eigenstates are visible at the
lattice node i] and the local densities of states (the local DOS
at node i is proportional to Im[Gi(ω)]). The probability of
the bound state with an energy ωn at node i is given by the
residue of Gi(ω) evaluated at ωn. A continuous imaginary part
of Gi(ω) points to the existence of a continuum energy band.

D. Constant potential on a sublattice

Given the particle’s Green’s function, we have the full
knowledge of its energy spectrum, but not of its eigenstates.
Although a direct way to obtain the exact eigenstates for a
general radial V (n) is often unavailable, there are specific cases
when a large fraction of them can be deduced. One such case is
that of a potential that takes a constant value on at least one of
the two sublattices (corresponding to alternating generations of
the Bethe lattice), e.g., VA on sublattice A. The bipartite nature
of the lattice allows for a straightforward way of constructing
eigenstates with the energy VA: amplitudes on the A nodes are
assigned in such a way that hopping to the B nodes cancels out.
For instance, for a non-normalized eigenstate corresponding
to eigenvalue VA, start with amplitude +1 at the root (taking
it to belong to sublattice A), and assign zeros on all even (B)
generations and (−1/K)

n−1
2 on all odd (A) ones. Alternatively,

we can choose a sibling set at any sublattice A generation k,
assign amplitudes to the siblings such that hopping back to the
parent node cancels out,

K∑
i=1

si = 0,

and construct the rest of the state by assigning amplitude si ×
(−1/K)

n−k
2 to all the A nodes in the i th sibling branch, and

zeros elsewhere. Such bipartite eigenstates with energy VA

constitute fraction 1/2K of the total number of eigenstates.

III. THE COULOMB POTENTIAL PROBLEM

We consider a single-particle hopping on the Bethe lattice
in the presence of an attractive Coulomb potential:

H = T + C/n, (8)
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where T is the hopping matrix whose nonzero elements are equal to −t , n is the generation of the Bethe lattice (n = 1 at the
root), and C < 0.

A. The exact solution

What makes the Coulomb problem exactly solvable is the fact that the infinite continued fractions of the form (7) with
V (n) = C/n can be written in closed form, with the use of special functions [14–16]:

GF
k (ω) = 2k/ω√

1 + x2 + 1

1

k − C/ω√
1+x2

2F1

(
1− C/ω√

1+x2 ,k+1,k+1− C/ω√
1+x2 ;

1−√
1+x2

1+√
1+x2

)
2F1

(
1− C/ω√

1+x2 ,k,k− C/ω√
1+x2 ;

1−√
1+x2

1+√
1+x2

) , (9)

where x2 = − 4Kt2

ω2 and 2F1(a,b,c; z) is the Gauss hypergeo-
metric function. We can thus obtain the diagonal elements of
the Green’s function G(ω) for our problem exactly, and use
them to calculate the energy levels and the local densities of
states, which we do next.

B. The all-even bound states

We already know from Sec. II A that only the all-even
states are allowed at the root. Therefore, all the energy levels
of the all-even sector are given by the poles of G1(ω) =
GF

1 (ω). Obtained from Eq. (9), it is proportional to a ratio
of two hypergeometric functions. In the k = 1 case, the
hypergeometric function in the denominator has no zeros.
The ground-state energy corresponds to the pole that G1(ω)
has when 1 − C/ω√

1+x2 in the denominator is equal to zero,
whereas the excited energy levels are given by the poles of
the hypergeometric function in the numerator:

G1(ω) ∝ 2F1

(
1 − C/ω√

1 + x2
,2,2 − C/ω√

1 + x2
;

1 − √
1 + x2

1 + √
1 + x2

)
.

To find them, we make use of the hypergeometric series
representation of 2F1(a,b,c; z):

2F1(a,b,c; z) =
∞∑

j=0

(a)j (b)j
(c)j

zj

j !
,

where (x)j is the Pochhammer symbol (x)j = x(x + 1)...(x +
j − 1). Evidently, 2F1(a,b,c; z) has a pole whenever c + j =
0, where j is an integer from 0 to ∞. Together with the
pole when 1 − C/ω√

1+x2 = 0, this leads to the following energy
levels [8]:

ωn = −
√

C2

n2
+ 4Kt2, n = 1,2,3,.... (10)

In the continuum limit n → ∞, the energy levels (10) reduce
to the familiar 1/n2 dependence of the Bohr formula. It is
interesting to note that the same result is obtained by solving
the continuum hydrogen atom problem with a C/r potential
in the limit of infinitely many dimensions [17].

The bound state energy levels of all other sectors can be
obtained numerically as poles of the appropriate GF

k (ω), given
in Eq. (9).

C. Scattering states

A closer inspection of the Green’s function (9) reveals an
imaginary part in the |ω| < 2

√
Kt range, corresponding to

the continuum energy band, which follows the accumulation
of bound states below −2

√
Kt . Interestingly, the free particle

problem [4] has the same continuum spectrum, although its
distribution of states within the band is different. It is thus
instructive to first consider the case where C = 0. For the time
being, we restore the coordination number at the root to z,
which makes the symmetric equal-amplitude superposition of
all vertices an eigenstate with energy −zt . The lattice Green’s
function is given by the expression:

Gfree(ω) = 1

ω − 2zt2

ω+√
ω2−4Kt2

, (11)

which indeed indicates a continuous spectrum between
−2

√
Kt and 2

√
Kt . The gap from the −zt uniform state to

the lower edge of the band, −2
√

Kt , can be explained by the
peculiar dimensionality of the Bethe lattice. The imaginary
part of Eq. (11), which is proportional to the density of states
N (ω), has a singularity at the edge, whereas the expected
form is N (ω) ∝ C(ω − ε)d/2 where ε is the edge of the band
and d is the dimension of the system. Given the Bethe lattice
is “infinitely dimensional,” d → ∞, the band tails disappear,
and the system acquires a gap. Introduction of closed loops in
a way that results in a finite d therefore leads to appearance of
band tails stretching below ε = −2

√
Kt towards the uniform

state at −zt .

IV. SUMMARY AND DISCUSSION

We have obtained an exact solution for the spectrum of
the Coulomb potential problem on the (K + 1)-coordinated
Bethe lattice. The energy levels of different symmetry sectors
are given by the poles of the forward hopping Green’s
functions (9). The sectors correspond to a choice of even or one
of the (K − 1) odd quantum numbers for each generation of
the Bethe lattice n > 1. If the highest generation with an odd
quantum number is k, then all of the states in the corresponding
sectors have zero amplitude at nodes belonging to generations
n < k, and the sectors’ energy levels, obtained from the poles
of GF

k (ω), are Kk−2-fold degenerate. Each such sector can be
mapped onto a hopping problem on an infinite half-line, where
V (n) is offset by k and the hopping amplitude is multiplied by√

K . This mapping exists for any problem whose Hamiltonian
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has the form (1), and is particularly useful when, unlike in the
Coulomb potential case, an exact solution cannot be obtained.

Models which involve approximating various physical
structures as well as mathematical constructions by cycle-free
graphs are plentiful. A single-particle hopping on such graph
can serve as an effective model for problems in complex
many-body physics. For instance, the motion of a free particle
on the Bethe lattice has been used to study antiferromagnets [4]
and water ice [7], whereas a particle hopping in the presence
of random and radial potentials was used to model Anderson
localization [5] and spin ice [9], respectively.

Apart from the few known exactly solvable cases, problems
defined on Cayley trees are difficult to treat. While the exact
diagonalizaion of a single-particle problem may seem manage-
able using numerical methods, the large number of nodes at the
boundary poses an immense difficulty. One may circumvent
the issue by introducing closed cycles at the ends and/or focus-
ing on the properties associated with the interior of the tree. We
demonstrate that there is an alternative point of view for radial
potentials. The mapping of each sector onto a one-dimensional
problem allows for numerical treatment with tractable bound-
ary effects stemming from the single edge node.

In addition to the broadly applicable mapping above, the
exact solution derived in the present work may prove to be of
use across various fields of physics, the inverse r potentials
being among the most common. In fact, the motivation behind
this study came from considering the problem of emergent
magnetic monopoles arising in a particular class of frustrated
magnets—spin ice—where the Bethe lattice turns out to be
a good approximation for the state space of the problem,
and the Coulomb potential defined on it served to represent
interactions between pairs of monopoles [9].
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