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Large fluctuations and singular behavior of nonequilibrium systems
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We present a general geometrical approach to the problem of escape from a metastable state in the presence of
noise. The accompanying analysis leads to a simple condition, based on the norm of the drift field, for determining
whether caustic singularities alter the escape trajectories when detailed balance is absent. We apply our methods
to systems lacking detailed balance, including a nanomagnet with a biaxial magnetic anisotropy and subject
to a spin-transfer torque. The approach described within allows determination of the regions of experimental
parameter space that admit caustics.
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I. INTRODUCTION

A noisy dynamical system will occasionally experience
large fluctuations that can dramatically alter its state. These
fluctuations are responsible for a wide variety of interesting
behaviors, including stochastic resonance [1,2], transport via
Brownian ratchets [3,4], logarithmic susceptibility in driven
nonadiabatic systems [5], and Brownian vortices [6,7]. In
the limit of weak noise, the system’s dynamical response is
determined by its optimal paths, i.e., the paths along which it
moves with maximum probability [8,9].

Because probability ρ is conserved in a closed system, it
satisfies a continuity equation: ∂ρ/∂t + ∇ · J = 0, where J

is the probability current determined by the Fokker-Planck
equation that governs the time evolution of ρ. For a system
in equilibrium, detailed balance is satisfied; in the present
context, this corresponds to J = 0 at every point in space.
When detailed balance holds, fluctuational trajectories behave
in a simple fashion, to be discussed in Sec. III. However, when
the system’s stationary probability distribution lacks detailed
balance, the fluctuational trajectories (also known as optimal
paths) can exhibit unusual behavior. In particular, singularities
known as caustics (defined in Sec. V) can develop in the action
of the stationary (or quasistationary, depending on choice
of boundary conditions) density [4,10–14]; these result from
folds and cusps in the projection of the Lagrangian manifold
of escape trajectories onto the original space of the dynamical
variables [11]. Such singularities cannot occur in the presence
of detailed balance, but in its absence their presence can
significantly alter the behavior of noise-induced escape from a
static metastable state [11,13] or a limit cycle [15,16]. Optimal
trajectories avoid caustics [11], so appearance of a caustic in
the vicinity of a stable or saddle point can dramatically alter
the escape behavior [13].
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In this paper, we reformulate the escape problem and in
so doing determine conditions under which singularities in
the optimal escape trajectories can appear. This leads to a
new approach, based on a simple feature of the deterministic
(i.e., zero-noise) dynamics, toward determining the presence
and behavior of caustics. We apply our approach, first to a
previously studied system [13] in which caustics are known to
dramatically affect the escape dynamics, and then to a system
not studied from this perspective, namely magnetic reversal
in a biaxial nanomagnet subject to both thermal noise and
spin-transfer torque. For the latter system we determine the
experimental parameter ranges for which caustics are likely
(and unlikely) to occur.

II. ESCAPE IN A NOISY DYNAMICAL SYSTEM

Consider an overdamped particle with position vector x(t)
in an n-dimensional space. If the particle is subject to both
deterministic and random forces, its time evolution in the
general case is described by the Langevin equation

ẋ = F(x) +
√

2εĤ · Ẇ, (1)

where F(x) denotes the drift field, Ẇ represents a white-noise
process, and the tensor Ĥ(x) and scalar ε characterize the
noise anisotropy and strength, respectively. The term Ĥ(x) is
generally an n × d matrix, with n the dimensionality of the
system’s configuration space and d the dimensionality of the
noise. If Ĥ(x) has an explicit dependence on x, then the noise
is multiplicative and should be understood in the Itô sense.
We take ε to be sufficiently small so that the timescale of a
successful escape is long compared to that of a single excursion
from the stable point.

Diagonalizing Eq. (1), we let Ĝ be the diagonal matrix
with Ĝii = g2

i corresponding to Ĥ. The associated drift-field
vector then has components fi = Fi/g

2
i , which can be seen as

follows. In terms of its components, the stochastic contribution
on the right-hand side of Eq. (1) can be written in terms of a
single Wiener process with compound variance:∑

j

Ĥi,j Wj = gi W̃ , (2)
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where g2
i = ∑

j Ĥ 2
i,j and W̃ is identical to the original Wiener

process, now driving each component of the original Langevin
equation.

We can then rewrite Eq. (1) as

ẋ = F(x) +
√

2εg(x) ˙̃W, (3)

and for each of the n components of the Langevin equation,
we can write

2ε ˙̂W 2 = 1

g2
i

(ẋi − Fi)
2. (4)

The quasistationary distribution ρ(x) ∝ exp[−S(x)/2ε] is
given to leading order in the zero-noise limit [8] by the
variational problem consisting of finding the extrema of the
action functional S = ∫ T

0 LFW dt . That is, one varies over
all paths beginning at a fixed reference point x0 and ending
at the point x of interest at time T , and chooses the one
that minimizes the action. Summing over the components in
Eq. (4), one arrives at the Freidlin-Wentzell (FW) Lagrangian
and associated Hamiltonian in the action functional:

LFW = 1
2 (ẋ − F) · Ĝ−1 · (ẋ − F), (5)

HFW = 1
2 [(p + f) · Ĝ · (p + f) − f · Ĝ · f]. (6)

Here f = Ĝ−1 · F and p is the FW canonical momentum with
elements pi = ∂ẋi

LFW.
Suppose now that the drift field contains one or more stable

fixed points and that the system’s initial state lies within the
basin of attraction of one of these. It can be seen by inspection
of Eq. (6) that the fluctuational dynamics can be mapped onto
the problem of a particle with unit electrical charge moving on
a Riemannian manifold with (positive definite) metric tensor
Ĝ, under the combined influence of a magnetic vector potential
A = −f [17] and electric scalar potential φ = −f · Ĝ · f =
−|f|2

Ĝ
[18]. Hamilton’s equations of motion are then

ẋ = Ĝ · p + F = Ĝ · (p + f), (7)

ṗ = −∇xHFW. (8)

The optimal escape paths are zero-energy trajectories, that
is, those along which the Hamiltonian Eq. (6) vanishes (see,
for example, Ref. [19]). For any state vector x, the set of
momenta satisfying the zero-energy condition HFW = 0 can
be seen to describe an n-dimensional ellipse in momentum

space centered at p = −f and with axes ai =
√

f · Ĝ · f/g2
i .

III. THE MOMENTUM ELLIPSE

For simplicity we now confine our considerations to two
dimensions; the procedure presented below is straightfor-
wardly generalized to higher dimensions by parametrizing
an n-dimensional ellipse. The 2D momentum ellipse can be
parametrized as

px(γ ) = |f|Ĝ
gx

cos γ − fx, (9)

py(γ ) = |f|Ĝ
gy

sin γ − fy. (10)

FIG. 1. Diagram of momentum ellipse parametrized by γ . γ0

and π + γ0 correspond to anti-instanton and instanton solutions,
respectively.

This momentum ellipse defines all possible least-action
motions accessible to the particle at x traveling along an
escape trajectory. The so-called “anti-instanton” trajectories
characterize motion toward the stable fixed point; these have
zero FW momentum and travel parallel to the drift field,
corresponding to γ = γ0 ≡ − arctan( fy

fx

gy

gx
). The so-called

“instanton” trajectories, i.e., fluctuational paths away from the
stable fixed point, travel antiparallel to the drift field in systems
with detailed balance (see below) and have a corresponding
FW momentum p̄ = −2f̄ [8,19,20], which here corresponds
to γ = π + γ0. Figure 1 shows a typical diagram of such a
momentum ellipse.

Because the angle γ parametrizes momentum at each point
in configuration space, it is convenient to express the equations
of motion of the particle trajectories solely as a function of x
and γ . Substituting Eqs. (9) and (10) into the Hamiltonian
equations of motion, Eqs. (7) and (8), we find

ẋ = gx |f|Ĝ cos γ,
(11)

ẏ = gy |f|Ĝ sin γ.

The role of γ in characterizing the direction of escape is
apparent. The slope of the escape trajectory is found by
dividing the second of Eq. (11) by the first to yield

∂y/∂x = (gy/gx) tan γ . (12)

IV. THE NATURE OF FLUCTUATIONAL TRAJECTORIES

Equations (11) show that thermally driven dynamics evolve
at the rate of the deterministic dynamics rescaled by the
noise-induced metric, i.e., |ẋ|2

Ĝ−1 = |f|2
Ĝ

= |F|2
Ĝ−1 . When the

noise is additive (Ĥ independent of x) and isotropic (Ĝ ≡ 1̂)
[21], detailed balance is satisfied if the drift field is derivable as
the gradient of a smooth potential function [13,19]. In this case
the two rates become trivially identical, because the instanton
(ẋ = −f) and anti-instanton (ẋ = f) trajectories are simply
sign-reversed. It is somewhat surprising, however, to see that it
holds more generally. This result can alternatively be derived

012114-2



LARGE FLUCTUATIONS AND SINGULAR BEHAVIOR OF . . . PHYSICAL REVIEW E 93, 012114 (2016)

by writing down the effective Lorentz dynamics for a charged
particle traveling in both electric and magnetic fields,

ẍ = ∇|f|2 − ẋ × (∇ × f), (13)

and noting that upon multiplying by ẋ one obtains ∂t |ẋ|2 =
∂t |f|2, again implying that the dynamical speed of a particle
moving under the influence of noise is equal to the norm of
the zero-noise drift field. This notion has been employed in the
literature [22] to construct an efficient numerical scheme (the
gMAM method, which represents an evolution of the minimum
action method [23]) capable of computing transition pathways
via geometric minimization of the FW action, improving on
the older String method [24,25].

Using these results, the Freidlin-Wentzel Lagrangian can
be rewritten as [26]

LFW = 1
2 |ẋ − F|2

Ĝ−1 = 1
2

[|ẋ|2
Ĝ−1 + |F|2

Ĝ−1 − 2ẋ · Ĝ−1 · F
]

= |f|2
Ĝ

− ẋ · f

= |f|2
Ĝ

(1 − cos �), (14)

where we have employed the identities F = Ĝ · f and ẋ · Ĝ−1 ·
ẋ = |f|2

Ĝ
, and defined

� ≡ arccos

(
ẋ · f

|f|2
Ĝ

)
(15)

as the angle between the instantaneous escape velocity ẋ and
the deterministic drift field f at x. Equation (14), which is
exact in the low-noise limit, shows that, as long as � does
not vary too much over the course of the escape trajectory, the
effective action S(x) will be dominated by the behavior of |f|Ĝ,
implying that the norm of the drift field alone captures much
of the structure of the system’s action.

To characterize better the relative importance of |f| versus
� on the escape dynamics, consider a closed fluctuational path
C that moves from a stable fixed point xS to some other point
x0 within its attractive basin, subsequently returning (along the
anti-instanton trajectory ẋ = f) to the fixed point. Using 	C to
denote the surface enclosed by C, we find

SC =
∮
C

(|f|2
Ĝ

− ẋ · f
)
dt =

∮
C
ds|f|Ĝ −

∫
d	C · (∇ × f).

(16)

In the second equality we changed integration variables from
t to s, where s denotes distance traveled along the trajectory,
and used the earlier result that |ẋ| = |f| for all systems. We also
used Stokes’ theorem to rewrite the effect of the geometrical
phase due to � in terms of its equivalent surface integral. This
equation shows how the presence of a nongradient field (which
possesses nonzero curl) contributes to the action, and therefore
helps determine the trajectory, of an optimal path. While
enclosing a larger “magnetic flux”

∫
d	C · (∇ × f) acts to

reduce the path’s action (where the flux term is positive), doing
so can also move the particle into regions of configuration
space with larger |f|, which acts to increase the action. The
least action trajectory therefore optimizes the relative balance
between these two terms.

There are two immediate consequences of Eq. (16). The
first is that in gradient systems, where f = −∇xU for some

smooth potential function U (x) (so ∇ × f = 0), and where
the instanton trajectory satisfies ẋ = −f, we recover the
well-known action (see, for example, Ref. [19]) for the entire
trajectory: SC = 2[U (x0) − U (xS)]. The second, more general
consequence is that any sudden change in |f|, as system
parameters are varied, can dramatically alter the balance
between the drift norm and the magnetic flux, and hence the
structure of the optimal paths.

V. APPLICATIONS

When detailed balance is satisfied, fluctuational
trajectories—i.e., instantons and anti-instantons—follow the
drift field, and therefore never cross. When detailed balance is
broken, anti-instantons still run parallel to the drift field [19],
but now instantons need not run antiparallel; as a consequence,
fluctuational trajectories can cross. Because the action is
determined from the fluctuational trajectories (Sec. II), it will
now in general be nondifferentiable at such crossing points.
The envelope of crossing trajectories constitutes a caustic
[27] (see, e.g., Fig. 1 of [14]). When caustics appear along
the optimal escape trajectory, they can significantly alter the
system’s escape dynamics. In this section we consider two
applications of the approach described in this paper: the first
is to a well-studied system in which new insights are gained
by utilizing this approach, and the second is to a system of
physical interest that has not been previously studied from this
perspective.

A. System with a tunable parameter

It has been observed [11,13] that noisy systems with
nongradient deterministic dynamics (and therefore generally
lacking detailed balance) containing tunable parameters can
dramatically change their escape behaviors, in a way remi-
niscent of a broken symmetry transition, when certain critical
parameter thresholds are crossed. Consider, for example, the
following well-studied system [13] with a tunable parameter α:

ẋ = x(1 − x2 − αy2) + √
εẆx, (17)

ẏ = −y(1 + x2) + √
εẆy, (18)

where the additive white noise is isotropic and the drift field is
nongradient for all α �= 1. For any α, the system has two stable
fixed points at (±1,0) and one hyperbolic (saddle) fixed point
at (0,0). We consider the optimal escape trajectory from (1,0)
to (0,0), which flows along the x axis for α < 4. Above α = 4,
however, caustics appear in the basin of attraction of the stable
point [13], focusing to a point on the x axis between 0 and
1, as shown in Fig. 2. As a consequence, the optimal escape
trajectory bifurcates into two off-axis trajectories. Analysis of
the norm of the drift field reveals that in transitioning across
the critical threshold αC = 4, the structure of the extrema
of f changes abruptly. For α < 4, the norm exhibits two
global minima at (1,0) and (0,0), along with a saddle near
the midpoint of the x axis. For α > 4, however, two local
minima appear symmetrically displaced off the x axis, with
the previous on-axis saddle now a local maximum (Fig. 2).
According to Eq. (14), these new minima lower the effective
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FIG. 2. Contour plot of the norm of the drift field from Ref. [13], for α = 3 (left) and α = 5 (right). Optimal escape trajectories are shown
in red (medium gray), and other instanton trajectories in green (light gray). For α = 3, instanton trajectories do not cross, and the escape
trajectory lies along the x axis. Correspondingly, two global minima in the norm of the drift field are present at the unstable (0,0) and stable
(1,0) equilibria, respectively, along with a saddle close to the midpoint of the x axis. For α = 5, instanton trajectories cross, indicating the
presence of a caustic (not shown). Correspondingly, the saddle in the norm of the drift field for α = 3 is now a local maximum, with two new
local minima appearing off the x axis. Consequently, there are now two symmetrical off-axis optimal escape trajectories that follow the new
off-axis minima in the norm of the drift field (and in so doing avoid the caustic). A standard “shooting method” was employed to compute the
trajectories. The FW dynamical equations were solved directly by evolving initial states taken very close to the fixed point of the drift field.
Initial momenta were chosen to satisfy a gradient-like solution p(x) = −2F(x). The accuracy of this approach is guaranteed by the fact that in
the neighborhood of a fixed point, the deterministic drift can always be approximated by the gradient of a potential.

action of off-axis escape trajectories, in accordance with
observations. Deviation of the escape trajectories from the
exact minima are due to the “magnetic flux” term in Eq. (16).

B. Biaxial macrospin subject to thermal noise and spin torque

A more interesting application is to a physically rele-
vant model lacking detailed balance: the stochastic Landau-
Lifshitz-Gilbert-Slonczewski (sLLGS) equation governing the
evolution of a unit magnetization vector subject to a combina-
tion of both gradient and nongradient torques. This equation
reads

ṁi = Ai(m) + Bik(m) ◦ Hth,k, (19)

where the drift vector A(m) and diffusion matrix B̂(m) are
given by

A(m) = m × heff − αm × (m × heff)

−αIm × (m × n̂p), (20)

Bik(m) =
√

C[−εijkmj − α(mimk − δik)], (21)

and the equation is interpreted in the Stratonovich sense
[28]. The first term in A(m) corresponds to magnetization
precession about a local magnetic field, with heff = −∇mε(m)
a conservative vector field. Here ε(m) is the energy landscape
of the magnetic system under study. The second term in
A(m) is a phenomenological damping term, with the damping
constant α typically ∼O(10−2). The third is a nongradient
term corresponding to spin-angular momentum per unit time
injected via a current I into the macrospin along an arbitrary

polarization direction n̂p [29]. Although the diffusion matrix
B̂(m) (with C the diffusion constant) appears state-dependent,
it can be shown (e.g., by rewriting the dynamics in spherical
coordinates) to correspond to isotropic, state-independent
noise.

In the absence of applied currents (I = 0), the fluctuational
trajectories are determined by the energy landscape ε(m) and
do not cross. In the presence of nonvanishing current, however,
detailed balance is absent, and it therefore becomes important
to determine how this new feature may—or may not—alter the
escape dynamics. The methods developed above allow us to
analyze this problem by examining the norm of the total drift
field governing the macrospin dynamics. To lowest order in α,
it is

|A(m)|2 = |m × heff|2 + 2αI n̂p · (m × heff) + O(α2). (22)

We wish to determine under which conditions the con-
servative precessional contribution dominates the nongradient
contribution. That is, under which conditions do the extrema
of |A(m)|2 corresponding to I = 0 not change significantly
when I > 0? By the approach developed above, this implies
that under such conditions the most probable escape paths
should not differ significantly from the reverse-drift instanton
paths of the purely gradient case.

We consider for simplicity the case of a biaxial macrospin
subject to the energy landscape

ε(m) = Dm2
x − m2

z, (23)

defined on the surface of the unit sphere (|m| = 1). Here D � 0
is the ratio of hard-axis to easy-axis anisotropies [30,31].
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FIG. 3. Constant energy contours of the unit magnetization
sphere. Red (medium gray) and blue (dark gray) contours correspond
to ε < 0 and ε > 0 precessions, respectively. Dashed black lines are
the ε = 0 separatrices.

In the absence of applied currents and damping, the motion
is purely precessional. Focusing solely on this precessional
motion, we can divide the unit magnetization sphere into four
disjoint dynamical regions, as shown in Fig. 3.

When magnetization energy is conserved, the surface of
the sphere can be divided into trajectories with ε > 0 and
those with ε < 0. The ε < 0 surface can be further subdivided
into orbits with mz > 0 and mz < 0, and the ε > 0 surface
similarly subdivided into orbits with mx > 0 and mx < 0.
These regions are separated by a common separatrix mx =
±mz/

√
D, corresponding to a degenerate ε = 0 dynamical

state whose trajectory lies on a plane tilted at an angle
θC = arctan(1/

√
D) with respect to the y−z plane.

However, the above description must be modified when
damping and current are taken into account, since either will
cause the magnetization energy ε(m) to change over time.
Using Eqs. (19)–(21) and the definition heff = −∇mε(m), we
find

ε̇ = ∇mε · ṁ = −α[m × (heff + I n̂p)] · (m × heff). (24)

Several qualitative conclusions can be drawn from Eq. (24).
When I = 0, dissipation relaxes the system to one of the two
negative energy basins in an effort to align the magnetization
with the z axis. The addition of current (which we will conven-
tionally choose to be negative, I < 0) leads to a progressive
destabilization of the mz > 0 negative-energy basin in favor of
that at mz < 0. More generally, the presence of current alters
the boundaries of the attractive stable basins, even though
a proper energy function that includes the spin-torque terms
cannot be written. However, one can show that there exists a
critical value D0 ≈ 5.09 that separates two distinctly different
qualitative regimes [30]. In the D < D0 case, the current alters
the ε = 0 separatrix boundary, while in the D > D0 case, the

ε = 0 boundary remains intact while the stable fixed points are
modified by the current’s action. Furthermore, above a critical
current IC (to be discussed further below) the entire mz > 0
region becomes unstable, thereby eliminating the bistability of
the magnetic system.

We want to determine under which conditions the nongra-
dient current term can alter the fixed-point structure of the
norm of the drift field. Because of the smallness of α, energy
changes slowly, so one can still gain useful information by
studying the norm of the drift along a constant negative-energy
trajectory. Along each energy level set ε, one can compute
the maxima and minima of the two terms appearing on the
right-hand side of Eq. (19). This allows us to determine the
range of experimental parameters for which the precessional
term dominates, and therefore when effects due to nongradient
terms can safely be ignored. Using Eq. (22) and the definition
of heff , we find the minimum of the precessional term along a
particular constant energy contour to be

min{|m × heff|2} = 4 min
{
ε(D − ε) + (D + 1)m2

z

}
= 4|ε|(1 − |ε|), (25)

where we used the fact that min{m2
z} = −ε along a constant

negative-energy contour.
We next consider the maximum of the nongradient current

term in Eq. (19) and, for definiteness, we limit ourselves to
cases where n̂p lies in the x−z plane. Let ω denote the fixed tilt
angle that n̂p makes with the z axis, and IC denote the critical
applied current above which the entire mz > 0 region becomes
unstable. Then for small α, IC = (2/π )

√
D(D + 1)/ cos ω

when D > D0 and IC = (D + 2)/2 cos ω when D < D0 [30].
Using these results, we find

max{2αI n̂p · (m × heff)}
= (4αIC cos ω)max{my(Dmx + mz tan ω)}

=

⎧⎪⎨
⎪⎩

4α
√|ε|(1 − |ε|) tan ω, if D = 0

8α
π

√
D(D + 1)(D + |ε|)|ε|Q(ω), if D > D0

2α(D + 2)
√

(D + |ε|)|ε|Q(ω), if D < D0

, (26)

where

Q(ω)

= maxmz

⎧⎨
⎩
√

1 − (D + 1)m2
z

D + |ε|

⎡
⎣
√

m2
z

|ε| − 1 + tan ω√
D

mz√|ε|

⎤
⎦
⎫⎬
⎭,

(27)

and we set the current I equal to IC in each case to obtain an
upper bound.

The above equations reveal a quantitative difference be-
tween the small tilt (tan ω 	 α−1) and large tilt (tan ω 
 α−1)
cases. Consider first the case D = 0. By Eqs. (25) and (26),
the precessional term dominates the nongradient term when
ε(1 − ε) 
 α2 tan2 ω. For the small tilt case, as long as
the magnetization energy is not too close to the separatrix
(ε = 0) or the mz = 1 pole (|ε| = 1), the precessional term
dominates and no caustics will be present. More precisely,
the precessional term dominates within the energy range
α2 tan2 ω < |ε| < 1 − α2 tan2 ω. When the tilt is larger, on the
other hand, the nongradient term begins to compete, and the
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presence of caustics may affect the reversal dynamics. Whether
they do requires a detailed analysis of the particular case of
interest.

This conclusion remains qualitatively unchanged when
D > D0, with the main quantitative change being that the
energy range in which caustics cannot appear in the small tilt
case is now Dα tan ω < |ε| < 1 − Dα tan ω. For D < D0, we
need to further subdivide into the D > |ε| and D < |ε| cases.
The latter smoothly goes to the D = 0 case as D decreases,
while the former gives the same result as the D > D0 case.

Summarizing, we find that the presence of caustics is
determined by the fixed tilt angle ω that n̂p makes with the z

axis. For any D, the escape dynamics are unaffected by caustics
for a wide energy range in the small tilt case (tan ω 	 α−1),
but in principle the large tilt case (tan ω 
 α−1) can show
substantially different behavior.

C. Analytical solution of the ω = 0 case

In this section we analytically solve for the Hamiltonian dy-
namics arising from the FW action for the case of ω = 0, with
arbitrary applied current. In this case, the dynamics become
effectively one-dimensional and the dynamical equations can
be exactly solved. The FW Lagrangian for the thermally
activated dynamics of the macrospin, expressed in spherical
coordinates (θ , φ), is

LFW = 1
2 [(θ̇ − fθ )2 + sin2(θ )(φ̇ − fφ)2]. (28)

Passing to the Hamiltonian formalism we have

HFW = 1

2

[
p2

θ + p2
φ

sin2(θ )

]
+ pθfθ + pφfφ, (29)

where pθ and pφ are the conjugate momenta of θ and φ.
Hamilton’s equations are then

θ̇ = pθ + fθ , (30)

φ̇ = pφ

sin2 θ
+ fφ, (31)

ṗθ = cos θ

sin3 θ
p2

φ − pθ∂θfθ − pφ∂θfφ, (32)

ṗφ = −pθ∂φfθ − pφ∂φfφ, (33)

where so far all results are completely general and extensible
to models of any complexity (anisotropy ratio D �= 0, positive
tilts between axes, etc.). For a macrospin with both D = 0
and ω = 0, the drift vector field of the dynamics (expressed in
terms of θ and φ) can be obtained by rewriting Eqs. (19)–(21)
in spherical coordinates. Doing so, one finds

fθ = −α(I + cos θ ) sin θ, (34)

fφ = − cos θ. (35)

Because φ is a cyclic Hamiltonian variable, pφ = c with c

constant. For a zero-energy trajectory of Eq. (29), pθ is given
by

pθ = −fθ

[
1 ±

√
1 − c

(
2
fφ

fθ

+ αc

ξfθ sin2 θ

)]
. (36)

FIG. 4. Escape trajectory for a macrospin model with α =
0.01, D = 0, I = 0.3 IC , and ω = 0. Blue (solid) line shows the
least-action result of numerical integration of the FW dynamics. Red
(dashed) line is the analytical result Eq. (14).

This solution is physically valid as long as the radicand
is greater than or equal to zero for all values of θ in the
range of interest. This implies that c = 0. The conjugate
coordinate φ of pφ then evolves along the deterministic drift
field during the escape process, i.e., φ̇ = fφ , and therefore
pθ = −fθ [1 ± 1]. The pθ = 0 solution corresponds as usual
to relaxation to equilibrium, and the pθ = −2fθ solution
corresponds to instanton escape, antiparallel to the drift, along
the θ coordinate. However, during this process the precessional
dynamics of φ remain unaltered, so escape from the stable
well does not merely correspond to time-reversal of the
deterministic dynamics.

Having solved for the general momenta in terms of the
spherical coordinates, we can analytically derive the relation

FIG. 5. Escape trajectory for a macrospin model with α =
0.01, D = 0, I = 0.3 IC , and ω = 0.3 θC (defined in text). The purple
(solid) line shows the least-action result of numerical integration
of the FW dynamics. The red (dashed) line is the analytical result
Eq. (14).
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FIG. 6. Escape trajectory for macrospin model with α = 0.01, D = 20, I = 0.8 IC , and varying tilts: (a) ω = 0, (b) ω = 0.1 θC , (c)
ω = 0.25 θC . Different color trajectories correspond to different initial conditions of the FW dynamics. Dashed black lines correspond to the
ε = 0 separatrices. In all scenarios, escape trajectories never cross, indicating the absence of caustics.

between φ and θ along the escape trajectories. Dividing φ̇ by
θ̇ from Hamilton’s equations, we find

φ(θ ) = 1

α

∫ θ

0
dθ̃

cos θ̃

(I + cos θ̃) sin θ̃

= 1

α(1 − I 2)

{
log [tan(θ/2)] + I log

[
2(I + cos θ )

sin θ

]}
,

(37)

where the integrand diverges at the θ = 0 pole due to
degeneracy in the φ coordinate, and at the θ = arccos(−I )
separatrix where the escape trajectory is nondifferentiable.

We tested these results and predictions by numerically
integrating the FW dynamics associated with the stochastic
process Eq. (16) for several different cases. The case D �= 0
will be discussed in the following section. Here we show results
for D = 0, with both zero and small tilt.

Figure 4 shows the optimal escape trajectory for D =
0, ω = 0, and I = 0.3 IC . As shown above, the FW dynamics
are exactly solvable in this case.

We next consider the case of small tilt. In accord with our
analysis, the numerical results demonstrate that the escape
dynamics are essentially unaltered (Fig. 5). In the limit of
sufficiently small α, critical currents scale trivially with the
tilt (Iω

C = I 0
C/ cos ω) [30]. By including this correction to the

analytical expression for the ω = 0 escape model, we can fit
the data well, even though the system no longer obeys detailed
balance.

VI. DISCUSSION

We tested the predictions of the previous section by
numerically integrating the FW dynamics associated with
the stochastic process Eq. (19) for several different cases.
Results for D = 0 were shown in Fig. 5. The absence of
caustics, for both zero and small tilt, is apparent. Here
we present the more interesting case of nonvanishing D.
Figure 6 shows results for D = 20, I = 0.8 IC , and three
tilts ω = 0, 0.1, and 0.25 θC [recall that θC = arctan(1/

√
D)].

These tilt values (and even larger ones) can be realized in
current experiments on orthogonal spin-valve devices [32].

The optimal trajectories change as tilt is increased, even
though the exit point remains essentially unchanged. However,
numerical results for larger tilts, up to the critical tilt, do not
exhibit crossing of escape trajectories, suggesting that caustics
have not formed near escape paths. The only major difference
is the number of precessions the system undergoes before
reaching the separatrix (i.e., the boundary of the domain of
attraction of the stable fixed point, which here corresponds to
ε = 0).

To summarize, an analysis of the norm of the drift field
indicates that for most tilts, caustics do not appear within
the escape region, and so—perhaps surprisingly—the loss
of detailed balance does not qualitatively alter the escape
dynamics. However, on closer examination one finds that for
any tilt, there remain regions—where mz ≈ 1 or, separately,
where ε ≈ 0—where this conclusion breaks down, because
the precessional contribution to the drift norm vanishes at
mz = 1 and at ε = 0. That is, two regions will always exist
in the magnet’s configuration space where the (nongradient)
spin-transfer torque term dominates the (gradient) precessional
term. The widths of these regions have been shown to be
sufficiently small that their effect on the escape dynamics is
negligible.

In the case when the tilt is large (tan ω 
 α−1), however,
the nongradient term dominates the gradient term in all of
configuration space, and so caustics may appear. In order to
determine whether they do requires a more lengthy analysis,
in which the fixed point structure of the drift field norm must
be analyzed to determine whether it changes. We defer such
an analysis to future work.
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