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Macroscopic time-reversal symmetry breaking at a nonequilibrium phase transition

Pyoung-Seop Shim,1 Hyun-Myung Chun,1 and Jae Dong Noh1,2

1Department of Physics, University of Seoul, Seoul 130-743, Korea
2School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea

(Received 20 June 2015; revised manuscript received 6 September 2015; published 11 January 2016)

We study the entropy production in a globally coupled Brownian particles system that undergoes an order-
disorder phase transition. Entropy production is a characteristic feature of nonequilibrium dynamics with broken
detailed balance. We find that the entropy production rate is subextensive in the disordered phase and extensive
in the ordered phase. It is found that the entropy production rate per particle vanishes in the disordered phase and
becomes positive in the ordered phase following critical scaling laws. We derive the scaling relations for associated
critical exponents. The disordered phase exemplifies a case where the entropy production is subextensive with
the broken detailed balance.
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Detailed balance is the hallmark of the thermal equilibrium
state. A system is said to obey detailed balance if the
probability current along any microscopic trajectory in the
phase space is balanced by that along the time-reversed one [1].
Consequently time-reversal symmetry is preserved in thermal
equilibrium.

Thermodynamics of nonequilibrium systems, where de-
tailed balance and time-reversal symmetry are broken and
the total entropy production is positive by dissipating the
housekeeping and excess heats, has been attracting much
interest [2–10]. Recent studies have been focused on mi-
croscopic systems with a few degrees of freedom where
the effect of thermal fluctuations are strong. Under the
framework of stochastic thermodynamics, various fluctuation
theorems are discovered, which provide useful insights on
the nature of nonequilibrium fluctuations. Theoretical works
foster experimental studies of microscopic systems such as
molecular motors, nano heat engines, biomolecules, and so
on [11–16].

Macroscopic systems pose an intriguing question on the
level of irreversibility. Consider a many-particle system dis-
playing an order-disorder phase transition whose microscopic
dynamics does not obey detailed balance. Does the broken
detailed balance result in time-reversal symmetry breaking at
the macroscopic level? On the one hand, one may expect that
entropy productions of each particle add up to a macroscopic
amount irrespective of a macroscopic state. On the other hand,
if the system is in a disordered phase so that all configurations
are almost equally likely, then irreversibility may not show up
on a macroscopic level producing only a subextensive amount
of entropy. This question lead us to the study of the entropy
production in a model system undergoing nonequilibrium
phase transition.

In this paper, we investigate the emergence of macroscopic
irreversibility out of microscopic dynamics with broken
detailed balance. We find that the total entropy production
changes its character from being subextensive to being
extensive as the system undergoes an order-disorder phase
transition. The entropy production rate per particle exhibits
critical scaling laws as an order parameter does in ordinary
critical phenomena, and scaling relations among critical
exponents are derived. Although the results are derived in

a specific model system, we argue that the scaling behaviors
should be valid for general nonequilibrium systems.

As a nonequilibrium model, we adopt a particle system
which displays a collective motion. In nature a flock of birds
and a school of fish display a collective motion [17–26]. Such
a phenomenon has been studied with microscopic models
consisting of active self-propelled particles moving at a con-
stant speed [17–20,20,21]. Flocking takes place when particles
are subject to an interaction that favors mutual alignment
of velocities. These systems undergo nonequilibrium phase
transition from a disordered phase to an ordered flocking
phase as the interaction strength increases. Theoretical efforts
have been devoted to understanding the mechanism leading
to the flocking and the nature of the phase transition [17,20].
In this work, we focus on a Langevin system introduced in
Ref. [27]. In comparison with the previous models with active
particles, particles in this model are driven by the thermal
noise in addition to the velocity aligning force. Thus, it allows
us to study the thermodynamic quantities such as the entropy
production.

The model in Ref. [27] is composed of passive particles in
the thermal reservoir instead of active particles. It consists
of N Brownian particles of mass m in a two-dimensional
plane of size L × L embedded in a thermal reservoir at
constant temperature T . The particle density is denoted by
ρ = N/L2. Let xi = (xi1,xi2) and vi = dxi

dt
= (vi1,vi2) be the

position and the velocity of a particle i = 1, . . . ,N . We will
represent a configuration of the whole system with a short-
hand notation Z = (X,V ) with X = {x1,x2, . . . ,xN } and
V = {v1,v2, . . . ,vN }. The equations of motion are given by

m
dvi

dt
= Fi(V ) − γ vi + ξ i(t), (1)

where γ is the damping coefficient and ξ i(t) = (ξi1(t),ξi2(t))
is the thermal noise satisfying

〈ξia(t)〉 = 0,

〈ξia(t)ξjb(t ′)〉 = 2γ kBT δij δabδ(t − t ′) (2)

with the Boltzmann constant kB , which will be set to unity
hereafter. The velocity aligning force Fi(V ) is taken to be

Fi(V ) = �v̂i × ( f × v̂i) = �[ f − ( f · v̂i)v̂i], (3)
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where � is the interaction strength, v̂i = vi/|vi | is the unit
vector, and

f = 1

N

N∑
j=1

v̂j . (4)

The vector f points towards the average direction of the
particles, and its magnitude � = | f | plays a role of the order
parameter for the collective motion. Note that the force Fi is
perpendicular to vi . It does not work on the particle but turns
the direction of vi toward f . The interaction is infinite-ranged.
A short-ranged version of the model was studied in Ref. [28].

Numerical study in Ref. [27] found that the system under-
goes a phase transition separating a disordered phase (� < �c)
and an ordered phase (� > �c). Near � = �c, the order
parameter scales as 〈�〉s ∼ (� − �c)β and the fluctuation χ ≡
N (〈�2〉s − 〈�〉2

s ) scales as χ ∼ |� − �c|−γ , where 〈〉s denotes
the steady-state ensemble average. The critical exponents are
given by β/ν � 0.491 and γ /ν � 1.02, where ν � 0.94 is
the correlation length exponent (ξ ∼ |� − �c|−ν) [27]. These
exponents are compatible with those of the mean field XY
model [29,30]. When the interaction is infinite-ranged, the
correlation volume ξV is more useful than the correlation
length ξ . Since the model under consideration is embedded
in the two-dimensional space, the correlation volume is given
by ξV = ξ 2 and scales as ξV ∼ |� − �c|−ν̄ with ν̄ = 2ν.

The velocity-dependent force breaks the detailed balance
and the time-reversal symmetry. We quantify the amount of the
time-reversal symmetry breaking by the entropy production.
Suppose that the system evolves along a stochastic trajectory
Z[τ ] = {(X(t),V (t))|0 � t � τ } for a time interval τ . Follow-
ing stochastic thermodynamics [10], the total entropy produc-
tion �Stot[Z[τ ]] along a given trajectoryZ[τ ] is determined by
the probability ratio ofZ[τ ] against its time-reversed trajectory
ZR[τ ] = {(X(τ − t), − V (τ − t))|0 � t � τ } [10,31–35].

In our model, the total entropy production is decomposed
into three terms as (see Appendix A)

�Stot[Z] = �Ssys[Z] − Q[Z]

T
+ �Sv[Z], (5)

where �Ssys is the change in the Shannon entropy of the
system, and the second term is the Clausius form for the
entropy change of the heat bath with Q being the heat absorbed
by the system. The last term Sv appears only in the presence
of a velocity-dependent force [35] and is given by

�Sv[Z] = m

γT

N∑
i=1

∫ τ

0
dt Fi(V (t)) ◦ dvi(t)

dt
. (6)

In the steady state, the ensemble average of �Ssys vanishes.
The thermodynamic first law reads as �E = Q + W where
�E is the change in the total energy E = ∑

i
1
2mv2

i and W =∑
i

∫ t

0 dtvi · Fi is the work done by the force. Since W =
0, Q = �E and its steady state average vanishes. Thus, the
entropy production rate per particle in the steady state is given
by

s ≡ 1

N

〈
dStot

dt

〉
s

= m

γT

1

N

N∑
i=1

〈
Fi ◦ dvi

dt

〉
s

. (7)
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FIG. 1. s versus � for several values of N . Inset shows the finite
size scaling behaviors of s when � is below, equal to, and above
�c = 1.976. The dotted (dashed) line has the slope −1 (−1/2).

This is the production rate of the housekeeping entropy that
is necessary for maintaining the nonequilibrium steady state
[5,9,31,32].

We have performed numerical simulations. The equations
of motion in (1) are integrated numerically by using the
time-discretized (�t = 0.01) Heun algorithm [36]. We took
m = γ = ρ = 2T = 1 in all simulations. Figure 1 shows that
s displays a characteristic behavior signaling a continuous
phase transition. As N increases, s ∼ 1/N for � < �c while
it converges to a finite value for � > �c. We also measure the
fluctuation of the entropy production that is defined as

χs(�,N,τ ) = 1

τN

[〈
�S2

v

〉
s
− 〈�Sv〉2

s

]
, (8)

where �Sv denotes the entropy production of N particles in a
time interval τ . Figure 2(a) shows the fluctuation measured at
fixed τ = 64. It has a sharp peak at � = �c, which also reminds
us of a continuous phase transition. The threshold �c � 1.976
is close to the onset of the collective motion reported in
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FIG. 2. (a) Fluctuation χs as a function of �. (b) χs versus (� −
�c) in the log-log scale. The dashed line has the slope −1. (c) χs

versus N for � < �c. The dashed line has the slope −1.
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Ref. [27]. We will show that the entropy production indeed
exhibits the continuous phase transition and that the phase
transition is triggered by the onset of the collection motion.

The entropy production can be related to the order parame-
ter � for the collective motion. Using the equations of motion
for dvi/dt , the entropy production in (6) is written as (see
Appendix B)

�Sv =
N∑

i=1

∫ τ

0
dt

[
1

γ T
|Fi |2 + 1

m
∇vi

· Fi

]

+
N∑

i=1

1

γ T

∫ τ

0
Fi · dW i(t), (9)

where ∇vi
denotes the gradient operator with respective to vi

and dW i(t) = ∫ t+dt

t
dt ′ξ i(t

′). The last term contributes neither
to the ensemble average nor to the fluctuation because it is of
the order of O(τ 1/2) with zero mean while the others scale
linearly with τ . Hence, it will be ignored. We then introduce
the polar coordinate so that the velocity vector is written as
vi = (vi cos θi,vi sin θi). The relation (4) for the vector f =
(� cos ψ,� sin ψ) is written as

�eiψ = 1

N

N∑
j=1

eiθj . (10)

By using (3) and (10), we can show that (see Appendix B)

�Sv =
N∑

i=1

∫ τ

0
dt[Ai − Bi + Ci] + O(τ 1/2), (11)

where Ai = �2�2

γ T
sin2(ψ − θi), Bi = ��

mvi
cos(ψ − θi), and

Ci = �
Nmvi

.
The expression in (11) gives a hint on the scaling behavior

of the entropy production. The macroscopic variables � and
ψ fluctuate much slower than the microscopic variables vi and
θi . Thus, in taking the ensemble average of (11), we can use
the adiabatic approximation [30] to replace �2 and � with
their ensemble averaged values. Power counting combined
with the adiabatic approximation leads to the conclusion that
the entropy production rate per particle scales as s ∼ 〈�2〉s ∼
〈�〉2

s (from Ai and Bi) with the O(N−1) correction (from
Ci). Therefore, we expect that the entropy production rate per
particle exhibits a critical power law scaling

s ∼ (� − �c)βe (12)

with the critical exponent

βe = 2β (13)

for � > �c and s ∼ 1/N for � < �c. When N is finite,
following the standard finite-size-scaling (FSS) ansatz, we
expect that

s = N−βe/ν̄�[(� − �c)N1/ν̄]. (14)

The scaling function �(x) has the limiting behaviors �(x)
x	1−→

xβe ensuring (12) and �(x)
x�−1−→ |x|βe−ν̄ guaranteeing the N−1

scaling in the disordered phase.
The numerical data in Fig. 1 are analyzed according to the

FSS form with the mean field critical exponents βe = 1 and

10-1 100 101 102

|Γ−Γc|N
1/ν

10-2

10-1

100

101

102

sN
β e

/ν

N=160
N=640
N=2560
N=10240
N=40960

FIG. 3. Scaling plot of sNβe/ν̄ versus |� − �c|N 1/ν̄ according to
(14). The solid (dashed) line has slope 1(−1).

ν̄ = 2. As shown in Fig. 3, the data collapse and the limiting
behaviors of the scaling function confirm the scaling relation
in (13) and the FSS form of (14).

The total entropy production �Sv is given by the spatial and
temporal sum of the fluctuating local entropy production rates.
We can derive the scaling form for the fluctuation χs in the
following way: Near the critical point, the correlation volume
and time diverge as ξV ∼ |� − �c|−ν̄ and ξt ∼ |� − �c|−νt ,
respectively. When N 	 ξV and τ 	 ξt in the ordered phase
(� > �c), the total entropy production �Sv is the sum of the
contributions from M = τN/(ξt ξV ) space-time blocks. All the
blocks are independent because they are beyond the correlation
volume and time. Therefore, the fluctuation should scale as
χs ∼ 1

τN
× M × (ξt ξV s)2 ∼ ξt ξV s2, which leads to the scaling

form

χs ∼ (� − �c)−γe (15)

with the exponent

γe = νt + ν̄ − 2βe. (16)

This is the hyperscaling relation extended to the systems with
anisotropic scaling [37,38]. At the critical point, the finite-size
effect dominates so that

χs(�c,N,τ ) ∼
{

τ γe/νt , τ � Nz̄

Nγe/ν̄ , τ 	 Nz̄
(17)

with z̄ = νt/ν̄. In the disordered phase, the entropy production
rate per particle vanishes as s ∼ 1/N , so does the fluctuation
χs ∼ 1/N .

The numerical data support the scaling theory. Figure 2(b)
shows the fluctuation follows the power law of (15) with γe =
1. This exponent value satisfies the hyperscaling relation in
(16) with νt = 1, ν̄ = 2, and βe = 1. The 1/N scaling inside
the disordered phase is also checked in Fig. 2(c). The FSS
behavior at the critical point � = �c is examined in Fig. 4.
At a given N , χs(�c,N,τ ) increases algebraically with τ and
saturates to a limiting value [see Fig. 4(a)]. The scaling plot
in Fig. 4(b) confirms the scaling behavior of (17) for τ � Nz̄

and τ 	 Nz̄.
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We have shown that the broken detailed balance leads
to the macroscopic entropy production only in the ordered
phase using the analytic scaling theory and the numerical
simulations. The entropy production per particle per unit time
s is positive but vanishes as 1/N in the disordered phase, while
it is finite in the ordered phase following the power law [see
(12)]. The fluctuation χs vanishes in the disordered phase and
follows the power law [see (15)] in the ordered phase. The
critical exponents satisfy the scaling relations in (13) and (16).

The quadratic relation s ∼ 〈�〉2
s is crucial in deriving the

scaling theory. This relation is derived in a model system that
has a mean field nature. We argue that the scaling behaviors
may be universal in general thermal systems undergoing a
nonequilibrium phase transition between a near-equilibrium
disordered phase and a nonequilibrium ordered phase. Col-
lective motions in the ordered phase are characterized by
the thermodynamic currents Ji of, e.g., energy and particle.
The currents are small near the critical point. Thus, fol-
lowing the linear irreversible thermodynamics of Onsager
[39], one can assume that Ji = ∑

j LijXj where Xj are the
thermodynamic forces and Lij are the Onsager coefficients.
The entropy production rate is then given by dS/dt =∑

i XiJi = ∑
i,j L−1

ij JiJj ∝ J 2, which supports the validity
of the quadratic relation between the entropy production rate
and the current density. In stochastic thermodynamics, the
total entropy production rate is written as the configuration
space average of the probability current density squared [10],
which also supports the relation. It would be interesting to
investigate the scaling relations in (13) and (16) in systems
with a short-ranged interaction.

The result that the ordered phase costs more environmental
entropy production may be understood in the framework of
the thermodynamic second law. Suppose that one changes
a coupling constant of a system so that it relaxes from a
disordered phase to an ordered phase in a characteristic re-
laxation time trelax. During the process, the system entropy de-
creases at the rate dSsys/dt ∼ �Ssys/trelax = [Ssys(ordered) −
Ssys(disordered)]/trelax < 0. The thermodynamic second law
requires that the entropy production rate should be non-

negative at any moment. Therefore, during the relaxation
process, the environmental entropy production rate should
satisfy dSenv/dt � −dSsys/dt ∼ |�Ssys|/trelax, which gives a
lower bound for the environmental entropy production rate.
It should be investigated further whether the inequality is
working in the steady state. We leave it for future work.

This work was supported by the Basic Science
Research Program through the NRF Grant No.
2013R1A2A2A05006776.

APPENDIX A: TOTAL ENTROPY PRODUCTION

It is straightforward to decide whether a deterministic dy-
namics is reversible or not. Suppose that a system evolves from
a configuration Z(0) = (X(0),V (0)) to Z(τ ) = (X(τ ),V (τ ))
along a trajectory Z[τ ] = {Z(t)|0 � t � τ }. If one flips the
velocity in the final configuration and takes the resulting
configuration (X(τ ), − V (τ )) as an initial state, then the
reversible dynamics lets the system follow the time-reversed
trajectory ZR[τ ] = {ZR(t)|0 � t � τ } with ZR(t) ≡ (X(τ −
t), − V (τ − t)).

Generalizing this idea to stochastic systems, one can define
the irreversibility or the entropy production by comparing the
probability of trajectories Z[τ ] and ZR[τ ]. The probability
distribution function (PDF) of a given trajectory Z[τ ] is
given by P [Z[τ ]] = �[Z[τ ]; Z(0)] p0(Z(0)), where p0(Z)
is an initial PDF of being in a configuration Z at time t = 0
and �[Z[τ ]; Z(0)] is a conditional probability distribution
of Z[τ ] to a given initial configuration Z(0). The PDF
for a time-reversed trajectory ZR[τ ] is similarly given by
P [ZR[τ ]] = �[ZR[τ ]; ZR(0)] pτ (Z(τ )), where pτ (Z) is the
PDF at time τ which has evolved from p0(Z). According to
stochastic thermodynamics, the total entropy production for a
given trajectory Z[τ ] is given by [10]

�Stot = ln
�[Z[τ ]; Z(0)] p0(Z(0))

�[ZR[τ ]; ZR(0)] pτ (Z(τ ))
. (A1)

It consists of two parts as �Stot = �Ssys + �Senv, where

�Ssys = − ln pτ (Z(τ )) + ln p0(Z(0)) (A2)

is the system entropy change and the remaining term �Senv is
the environmental entropy production.

The environmental entropy production can be written in
terms of physical quantities. This task has been done in a recent
preprint [35] for systems with an arbitrary velocity-dependent
force. We make use of Eq. (11) of Ref. [35] to obtain that

�Senv = −m

T

N∑
i=1

∫ τ

0
vi(t) ◦ dvi(t)

+ m

γT

N∑
i=1

∫ τ

0
Fi(V (t)) ◦ dvi(t), (A3)

where the notation A(t) ◦ d B(t) ≡ A(t+dt)+A(t)
2 · [B(t + dt) −

B(t)] stands for the stochastic integral in the Stratonovich
sense [1]. Using mdvi = (mdvi − Fidt) + Fi dt in the first
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term, one can further decompose �Senv as

�Senv = −
∑N

i=1

∫ τ

0 vi ◦ (mdvi − Fi dt)

T

−
∑N

i=1

∫ τ

0 vi ◦ Fi dt

T
+ m

γT

N∑
i=1

∫ τ

0
Fi(V ) ◦ dvi .

(A4)

The Langevin equation indicates that

Q =
N∑

i=1

∫ τ

0
vi ◦

(
m

dvi

dt
− Fi

)
dt

=
N∑

i=1

∫ τ

0
vi ◦ (−γ vi + ξ i)dt (A5)

is the work done by the heat bath through the damping force
and the random force, namely the heat absorbed by the system
from the heat bath. The second term is identically zero since
vi ⊥ Fi . The third term is �Sv. This completes the derivation
of Eqs. (5) and (6). In �Stot, (�Ssys − Q/T ) is generic in all
thermal systems, while the others appear only in the presence
of velocity-dependent forces.

Note that the force Fi does not work (W = 0). Conse-
quently, the thermodynamic first law is written as �E = Q,
where �E is the change in the total kinetic energy E ≡∑N

i=1
1
2mv2

i .

APPENDIX B: DERIVATION OF EQS. (9) AND (11)

The Stratonovich product Fi ◦ dvi is defined as [1]

Fi ◦ dvi = Fi(V (t + dt)) + Fi(V (t))

2
· dvi(t)

=
∑

a

Fia(t)dvia + 1

2

∑
j,a,b

∂Fia

∂vjb

dviadvjb + o(dt),

(B1)

where i,j = 1, . . . ,N are particle indices and a,b = 1,2 are
Cartesian coordinate indices. We now use the Langevin equa-
tion to replace m dvi = Fidt − γ vi dt + dW i , where dW i =∫ t+dt

t
dt ′ξ i(t ′) satisfying that 〈dWia〉 = 0 and 〈dWiadWjb〉 =

2γ T δij δab dt . Inserting this into (B1), we obtain that

mFi ◦ dvi = |Fi |2dt + Fi · dW i

+ 1

2m

∑
j,a,b

∂Fia

∂vjb

dWiadWjb + o(dt). (B2)

Since dWia are independent of each other, one can replace
(dWiadWjb) with (2γ T δij δab dt) [1]. This yields

�Sv =
N∑

i=1

∫ τ

0
dt

[
1

γ T
|Fi |2 + 1

m
∇vi

· Fi

]

+ 1

γ T

N∑
i=1

∫ τ

0
Fi · dW i ,

(B3)

which is Eq. (9). As explained before, the last term can be
neglected.

The expression for �Sv becomes simpler in the polar
coordinate. Let vi and θi are the magnitude and the polar
angle of vi , respectively. The magnitude � and the polar
angle ψ of f are given by �eiψ = 1

N

∑
j eiθj . The force

Fi = �( f − ( f · v̂i)v̂i) corresponds to the projection of f
in the normal direction of vi . Thus, one can write

Fi = �� sin(ψ − θi)θ̂ i , (B4)

where θ̂ i is the unit vector in the polar angle direction of vi .
It is evident that |Fi | = ��| sin(ψ − θi)|. The divergence is
given by

∇vi
· Fi = 1

vi

∂

∂θi

�� sin(ψ − θi)

= �

vi

∂

∂θi

1

N

N∑
j=0

sin(θj − θi)

= − �

vi

1

N

∑
j �=i

cos(θj − θi)

= �

vi

[
1

N
− � cos(ψ − θi)

]
. (B5)

Inserting the magnitude and the divergence of Fi into (B3),
we obtain Eq. (11).
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Theraulaz, New J. Phys. 16, 015026 (2014).

[25] H. Sabbah, L. Biennier, I. R. Sims, Y. Georgievskii, S. J.
Klippenstein, and I. W. M. Smith, Science 317, 102 (2007).

[26] S. Dey, D. Das, and R. Rajesh, Phys. Rev. Lett. 108, 238001
(2012).

[27] F. J. Sevilla, V. Dossetti, and A. Heiblum-Robles, J. Stat. Mech.:
Theor. Exp. (2014) P12025.

[28] V. Dossetti and F. J. Sevilla, Phys. Rev. Lett. 115, 058301
(2015).

[29] B. J. Kim, H. Hong, P. Holme, G. S. Jeon, P. Minnhagen, and
M. Y. Choi, Phys. Rev. E 64, 056135 (2001).

[30] S.-I. Sasa, New J. Phys. 17, 045024 (2015).
[31] R. E. Spinney and I. J. Ford, Phys. Rev. Lett. 108, 170603 (2012).
[32] H. K. Lee, C. Kwon, and H. Park, Phys. Rev. Lett. 110, 050602

(2013).
[33] C. Ganguly and D. Chaudhuri, Phys. Rev. E 88, 032102 (2013).
[34] D. Chaudhuri, Phys. Rev. E 90, 022131 (2014).
[35] C. Kwon, J. Yeo, H. K. Lee, and H. Park, arXiv:1506.02339v2.
[36] A. Greiner, W. Strittmatter, and J. Honerkamp, J. Stat. Phys. 51,

95 (1988).
[37] H. Hong, M. Ha, and H. Park, Phys. Rev. Lett. 98, 258701

(2007).
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