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We connect the rare fluctuations of an equilibrium (EQ) process and the typical fluctuations of a nonequilibrium
(NE) stationary process. In the framework of large deviation theory, this observation allows us to introduce NE
thermodynamic potentials. For continuous-time Markov chains, we identify the relevant pairs of conjugated
variables and propose two NE ensembles: one with fixed dynamics and fluctuating time-averaged variables,
and another with fixed time-averaged variables, but a fluctuating dynamics. Accordingly, we show that NE
processes are equivalent to conditioned EQ processes ensuring that NE potentials are Legendre dual. We find a
variational principle satisfied by the NE potentials that reach their maximum in the NE stationary state and whose
first derivatives produce the NE equations of state and second derivatives produce the NE Maxwell relations
generalizing the Onsager reciprocity relations.
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I. INTRODUCTION

Potentials define a specific concept in physics. They
predict the evolution of a system from a variational principle.
Such principles span many scientific fields from mechanics,
electromagnetism, and optics to control theory, thermodynam-
ics, and statistical physics. A variational principle elegantly
summarizes the method used to solve a problem into the
extremization of the appropriated cost function, for instance,
the action in mechanics [1], the optical path length in optics
[2], or the thermodynamic potential in statistical physics [3].
The underlying idea is to explore all possibilities, including
nonphysical ones, to find the physical solution from the
extremum of the cost function.

In statistical physics, a thermodynamic potential is a state
function of the thermodynamic variables. The latter specify a
coarse-grained representation of the state of a system including
a large number of degrees of freedom. Thermodynamic
variables come in conjugated pairs: in each pair, one variable
is free and one is constrained according to the environmental
conditions. The equilibrium (EQ) thermodynamic potentials
proceed from the Legendre transformation of either energy
or entropy. This transformation, at the core of the theory’s
dual structure, allows us to interchange the free and con-
strained variables. The thermodynamic state is reached at the
extremum of the thermodynamic potential. There, the mean
free variables are functions of the constrained ones. Beyond
the mean description, the potential also predicts the statistics
of the free thermodynamic variables, either by generating
their cumulants, or from its connection with the asymptotic
probability of the free variables.

Statistical physics provides a microscopic foundation to
thermodynamics and a method to describe equilibrium sys-
tems. In the last decades, the large deviation theory [4,5]
has modernized our understanding of statistical physics and
accounted for its successes. More recently, it has received a
growing interest thanks to its applications to nonequilibrium
(NE) systems, for instance, in glasses [6–9], biological systems
[10–12], or rare events sampling [13].

Clearly, one step toward understanding NE phenomena
starts with the derivation of a NE thermodynamic potential
verifying most of the aforementioned properties. With this

in mind, many authors have shed light on the structure
of statistical physics for NE Markov processes. Oono and
Eyink considered that large deviation functions (LDF) could
represent NE potentials [4,14,15]. On this basis, Oono and
Paniconi proposed a phenomenological framework to study
NE steady states [16]. For NE continuous processes, Bertini
et al. developed the macroscopic fluctuation theory describing
the statistics of density and current fluctuations in nonequilib-
rium stationary states (NESS) [17,18]. Bodineau and Derrida
used an additivity principle to predict those fluctuations in
diffusive systems [19,20].

For discrete processes, Lecomte, Appert-Rolland, and van
Wijland introduced a dynamical partition function and the cor-
responding topological pressure identified as a LDF [21,22].
Baule and Evans explored these ideas using a path entropy with
the aim of finding rules constraining the dynamics of fluids
under continuous shear [23–25]. Monthus proposed a similar
approach, but involving the maximization of a trajectory-based
relative entropy in the presence of constraints [26]. Using large
deviation theory, Maes and Netočný [27] found a canonical
structure and obtained the LDF of occupation and current
probabilities from a variational approach based on the LDF
of occupation and transition probabilities. A key step was the
introduction of an EQ reference process to highlight that EQ
fluctuations naturally appear when studying NE fluctuations.
From another perspective, Nemoto and Sasa have shown that
a cumulant generating function (CGF) also proceeds from a
variational principle, strengthening the dual structure of the
theory [28].

More recently, Chetrite and Touchette proposed a gen-
eral framework for both continuous and discrete processes:
they found that a conditioned Markov process is ensemble
equivalent to a condition-free process called the driven (or
auxiliary) process, but also to an exponentially tilted process
called the canonical process [29,30]. This latter process is
defined by exponentially weighting the probability of each
trajectory with a weight depending on a functional v of the
stochastic process. This weighting procedure is analogous to
the definition of the canonical ensemble from the superposition
of microcanonical ensembles using a Boltzmann weight. On
the other hand, the conditioned Markov process assumes that
the variable v is constrained to a given value. Finally, the driven
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TABLE I. Relationship between the various stochastic processes and NE ensembles. The EQ reference process conditioned on the energy
currents j , activities f , and occupations p generates the trajectories of the systems in the NE microcanonical ensemble. The process with
mean energy currents, activities, and occupations equal to the constrained values of the conditioned process is the driven process. The path
probabilities of the driven process are asymptotically equivalent to the path probability of the NE process and of the canonical reference process.
The CGF of j, f , and p for the NE process is exactly the same as the CGF of the EQ reference process (up to a translation), i.e., spontaneous
rare fluctuations of the EQ process are associated to typical realizations of the NE process. The NE process generates the trajectories of the
systems in the metacanonical ensemble. This ensemble includes the systems that are put out of equilibrium by gradients of temperatures
imposed by heat reservoirs. From the equivalence between the conditioned reference process with the driven reference process and the NE
process, we conclude that the NE microcanonical and metacanonical ensembles are equivalent.

NE metacanonical
ensemble Γ(a, b, m)

EQ reference process
z with generator k

NE process z̄
with generator k̄

Conditioned NE
process z̄|j, f, p

Driven NE process
with generator K̄

Conditioned reference
process z|j, f, p

Driven reference
process with
generator K

NE micro-
canonical ensemble

L(j, f, p)

Canonical reference
process with
generator K

Ensembles of NE systems

Generators mapping

Ensemble

equivalence

CGF built from the EQ process

microcanonical

conditioning

microcanonical

conditioning

Optimization

problem

Optimization

problem

Tilted-operators mapping (κ ←→ κ̄)

Similarity transformation K = |π| · k̄ · |π|−1 ⇒ Asymptotic path equivalence

Generates the path ensemble

G
en

er
a
te

s
th

e
p
a
th

en
se

m
b
le

Asymptotic
path equivalence

process has a dynamics defined such that the mean value of
v is equal to the imposed value in the conditioned process. A
systematic method of constructing this driven process from a
variational approach was provided in Ref. [31]. A construction
of the canonical process was also proposed by Giardiná,
Kurchan, and Peliti in Ref. [32] for classical systems and by
Garrahan and Lesanovsky in Ref. [33] for dissipative quantum
systems. Jack and Sollich constructed a driven process for
classical systems in Ref. [34]. The questions of the validity
of the path ensemble equivalence has recently been studied in
Ref. [35].

Despite all these results, the structure of NE statistical
physics is incomplete as regards to EQ statistical physics.
For instance, the identification of the relevant coarse-grained
degrees of freedom, i.e., the NE thermodynamic variables,
is still missing. Accordingly, no general definition exists for
stationary NE thermodynamic potentials. To progress in this
direction, focusing on continuous-time Markov chains and sta-
tionary processes, we consider the following questions: Can we
describe the NE fluctuations of a system from the fluctuations
of the same system at EQ? If yes, can we define meaningful NE
thermodynamic potentials using the variables involved in this
correspondence? We positively answer these two questions
by finding an exact mapping between the statistics of EQ
and NE processes. This mapping involves, among others, the
affinities of the NE process and some dynamical biases. The
latter parameter enables to dilate the energy barriers separating
the various states of the system. The variables conjugated
to the affinities and the dynamical biases are, respectively,
the energy currents and the activities of the exchanges with

the environment. The existence of a simple mapping when
considering the appropriated couples of conjugated variables
suggests that a complete canonical structure for NE statistical
physics exists. With respect to previous works on conditioned
Markov processes, our main contribution is to identify the
constraints that do not modify the system dynamics, apart from
changing the temperatures of the heat reservoirs. Accordingly,
we define two ensembles of NE systems: the metacanonical
ensemble where the constrained variables are the affinities,
and the NE microcanonical ensemble where the constrained
variables are the energy currents. We prove the equivalence
of these ensembles and derive the NE thermodynamic po-
tentials conjugated by Legendre transformation. We also
obtain the NE equations of state connecting the conjugated
variables.

Our results and the structure of the theory are summarized in
Table I. Accordingly, the outline of the paper is as follows. We
start by studying the fluctuations of an EQ reference process
in Sec. II whose material corresponds to the middle row of
Table I. The definition of the EQ reference process and an
introduction to large deviation theory are provided in Secs. II A
and II B. After these introductory sections, we look for an
asymptotic approximation of the probability of the energy
currents, activities, and occupations of the systems states.
Since we are dealing with an EQ system, no mean energy
current exists. However, rare spontaneous fluctuations may
produce nonzero energy currents and some arbitrary activities
and occupations. We seek the probability of these events from
an optimization problem: given that some energy currents
j , activities f , and occupations p are observed, defining

012111-2



NONEQUILIBRIUM THERMODYNAMIC POTENTIALS FOR . . . PHYSICAL REVIEW E 93, 012111 (2016)

the conditioned reference process, which process (called the
driven reference process) reproduces these conditioned values
j , f , and p as typical values? We construct this driven process
in Sec. II C and obtain the LDF of j , f , and p. We use this result
to derive the corresponding scaled CGF from a variational
approach in Sec. II D.

We switch to the study of the fluctuations of a NE process
in Sec. III. This section corresponds to the third row of
Table I, which is obtained following exactly the same path
as for the EQ reference process, except that we start with a NE
process as defined in Sec. III A: we look for the NE driven
process that will typically reproduce the arbitrary energy
currents j and activities f imposed in the NE conditioned
process. Our first main result is to connect, in Sec. III B,
the EQ reference process and the NE process and, as a
consequence, also to connect their associated driven processes
(see the vertical arrows in Table I). Our second main result
is to prove, in Sec. III C, the asymptotic equivalence between
the path probabilities of the driven reference process with
the NE process. This equivalence is at the core of the
aforementioned equivalence between the NE microcanonical
ensemble and the metacanonical ensemble. In Sec. IV, we
comment the structure of the theory starting with a short
summary in Sec. IV A. We discuss the symmetries of the
NE potentials and the connection with close-to-equilibrium
and far-from-equilibrium perturbation theory in Secs. IV B
and IV C, respectively. We end by illustrating our work on a
two-level model in Sec. V.

For the sake of simplicity, we focus on systems exchanging
only energy with heat reservoirs. The generalization of our
results to include matter, volume, or other extensive variable
exchanges with reservoirs is straightforward [36].

II. EQUILIBRIUM FLUCTUATIONS

A. Definition of the EQ reference process

We consider an EQ reference process corresponding to
a physical system modeled by a continuous-time Markov
chain with a finite number M of discrete states. This system
exchanges energy with χ heat reservoirs labeled by ν = 1 . . . χ

at inverse temperatures β1 = 1/(kBT1), with kB = 1 the Boltz-
mann constant (see Fig. 1). The reference process is at EQ, i.e.,
all the heat reservoirs share the same inverse temperature β1.
We use several heat reservoirs to allow different mechanisms
of energy exchange. As a result, some rare events with net

EQ system
NE system

FIG. 1. System with M = 6 states connected to χ = 2 heat
reservoirs at the same temperature T1 = T2 for the EQ reference
process, or at different temperature T1 �= T2 for the NE process.

Energy

FIG. 2. Energy lanscape for the x ↔ y transition. The discrete
states x and y represent the locations of the minima in the energy
landscape. Changing the dilatation factor l1 modifies the height of all
energy barriers for the EQ reference process.

energy flow from one heat reservoir to another may occur. The
system states are generically denoted x, y, and z. The state at
time τ is z(τ ). A system state trajectory during time interval
[0,t] is denoted [z]. This trajectory includes the state z(τ ) at
all time τ ∈ [0,t] and the label ν(τ ) of the reservoir providing
the energy at each change of state in the trajectory.

The energy of state x is εx . The probability per unit time
of switching from state y to state x exchanging the energy
εx − εy with reservoir ν is given by the Arrhenius transition
rates

kν
xy ≡ γ ν

xye
−β1(εx−εy )/2−β1l1dxy . (1)

We have introduced the symmetric matrices γ ν , whose (x,y)
element yields the coupling with reservoir ν for a transition
from y to x. The (x,y) element of the symmetric matrix d
represents the height of the energy barrier that must be crossed
when the system switches between states y and x (see Fig. 2).
The dimensionless parameter l1 is a dilatation factor that
enables to modify the height of the energy barriers (l1 = 1
implies no dilatation). The transition rates defined in Eq. (1)
verify for all ν the local detailed balance relation

ln
kν
xy

kν
yx

= −β1(εx − εy), (2)

which ensures that the system will reach EQ [37]. The
reference probability per unit time of escaping from state
y, given that energy is exchanged with reservoir ν, is
denoted

λν
y ≡

∑
x �=y

kν
xy = −kν

yy, (3)

such that each column of the matrix k(ν) sums to zero
as required for continuous-time Markov chains. The refer-
ence transition rate matrix k ≡ ∑

ν k(ν) returns the transi-
tion probabilities per unit time disregarding the reservoir
involved in the energy exchanges. Similarly, λ ≡ ∑

ν λ(ν)

is the total escape-rate vector. As a convention, we drop
the subscripts of vector or matrix elements to refer to the
whole vector or matrix and use boldface letters for matrices.
We denote the ensemble average over all trajectories [z]
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generated with dynamics corresponding to k with the brackets
〈. . . 〉k.

B. Large deviations of empirical time-averaged variables

Throughout the paper, we assume that the long-time
statistics of time-extensive variables obey a large deviation
principle. For instance, let z(t) be the position at time t of a
random walker on a one-dimensional circular lattice and X[z]
the number of steps the walker takes during the trajectory
[z]. We remark that the variable X is a functional of the
trajectory [z] that is a realization of a stochastic process. X

is not a random variable in itself. When X is not evaluated on
a trajectory, it refers either to the physical variable “number
of step” or to a numerical value of this variable. The variable
X[z] is time extensive since X[z] + X[z′] = X[z,z′], where
[z,z′] denote the trajectory made with [z] followed by [z′].
Then, the number of transitions typically increases with time.
Accordingly, v[z] = X[z]/t is the number of steps per unit
time and is regarded as a time-averaged variable. At long
time, it converges to the step frequency of the walker. The
probability of v[z] = v, i.e., that the time-averaged number of
steps v[z] takes the value v at long time t , is Pt (v) 	 e−tI (v).
The function I is called a large deviation function (LDF).
It is non-negative and vanishes at v = 〈v[z]〉k, denoting that
the ensemble-average value is the most likely time averaged
v. Small (respectively large) deviations correspond to the
time-averaged number of steps that are close to (respectively
far from) the ensemble-average value. These events become
exponentially unlikely with increasing time for ergodic sys-
tems. The convexity of the LDF ensures that a large deviation
is less likely than a small fluctuation.

Following, we introduce the empirical time-averaged vari-
ables used to derive our central results. We name empirical
variables those that are defined from experimental observa-
tions of the system and that usually depend on the observed
trajectory [z]. First, we define the empirical occupation in x

by

px[z] ≡ 1

t

∫ t

0
dτ δx,z(τ ), (4)

where δ is the Kronecker symbol. Given the probability of each
state being gathered into the column vector p = (p1, . . . ,pM )†,
the Shannon entropy s = s(p) is

s(p) ≡ −
∑

x

px ln px = −(p† · ln p), (5)

and the energy e = e(p) is

e(p) ≡
∑

x

εxpx = ε† · p, (6)

with the central dot denoting the matrix product and † the
transposition. The time-averaged energy along trajectory [z]
can be written e[z] = e(p[z]), and similarly for the entropy.
Second, we define the empirical transition probability from y

to x induced by reservoir ν:

ων
xy[z] ≡ 1

t

∑
τ∈[0,t]

δx,z(τ+dτ )δy,z(τ )δν,ν(τ ), (7)

where the sum is over all time τ at which the system changes
from state z(τ ) to state z(τ + dτ ), exchanging energy with
reservoir ν(τ ). Given a transition probability ων

xy for each
possible transitions, the current of energy received from
reservoir ν by the system is

jν(ω) ≡ 1

2

∑
x,y

(
ων

xy − ων
yx

)
(εx − εy). (8)

Its empirical value during trajectory [z] is written jν[z] =
jν(ω[z]). These time-averaged currents describe the antisym-
metric part of fluctuations since they change sign upon time
reversal of the trajectories. On the contrary, the weighted
frequency of interaction with reservoir ν, named activity for
short and written

fν(ω) ≡ 1

2

∑
x,y �=x

(
ων

xy + ων
yx

)
dxy, (9)

describes the symmetric part of fluctuations. Indeed, fν[z] =
fν(ω[z]) does not change sign upon time reversal of the
trajectory [z]. When the activity is low (high), the system either
changes of state less (more) frequently or mostly switches
between states with low (high) dxy . The term “activity” was
proposed to qualify the symmetric part of the fluctuations in
[22,38–41] (see also references therein). Let us finally remark
that, in the definitions of the energy currents and activities, the
one-half factor is just a symmetry factor since we can sum over
transitions disregarding their directions (

∑
x,y) or for only one

direction (
∑

x>y). Half of the first sum is equivalent to the
second sum.

C. LDF of energy currents, activities, and occupation
from a variational approach

At long time t , the probability of observing an empirical
transition probability ω[z] = ω and an empirical occupation
p[z] = p is

Pt (ω,p) 	
t→∞ e−tI (ω,p). (10)

From the work of Maes and Netočný [27], Wynants [42], or
Bertini et al. [43], the LDF I (ω,p) of the empirical transition
probabilities and occupations for the continuous-time Markov
chain with generator k is

I (ω,p) =
∑

x,y �=x,ν

[
kν
xypy − ων

xy + ων
xy ln

ων
xy

kν
xypy

]
, (11)

where the sum is over ν from 1 to χ and all couples (x,y) such
that x �= y. The derivation of Eqs. (10) and (11) is reproduced
in Appendix A.

In Ref. [27], the LDF of the occupation and probability
current was obtained from a constrained optimization problem
constructed with I (ω,p). This procedure, called “contraction”
[4], is equivalent at the level of probabilities to marginalize
Pt (ω,p) to obtain the probability of currents and occupations.
We now proceed to the contraction of I (ω,p) to obtain the
LDF of energy currents, activities, and occupations denoted
L(j,f,p). The long-time asymptotic approximation of the
probability Pt (j,f,p) that j [z] = j , f [z] = f , and p[z] = p
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at time t will then read as

Pt (j,f,p) 	
t→∞ e−tL(j,f,p). (12)

We prove in Appendix B a sharper approximation of this
probability that involves a preexponential factor dictating the
thermodynamic behavior: it leads to the statistics of the usual
EQ thermodynamic variables that only depend on the system
state, such as energy for instance. It is the first correction to the
exponential decay of nontypical time-extensive variables after
a long time. This prefactor was first obtained in Ref. [41], but
we provide in Appendix B a logically independent derivation
(though restricted to the large time limit) that involves some
results of Sec. III.

At long time, the energy current j , activity f , and
occupation p mainly appear thanks to the most likely event
producing them. The probability of this event is associated
with smaller values of I (ω,p) with ω constrained by the value
of the energy currents and activity. For this reason, and in
virtue of the contraction principle, we minimize I (ω,p) under
the energy currents constraint

jν = jν(ω), (13)

for ν > 1, because current conservation imposes j1 =
−∑

ν �=1 jν . We also impose the activity constraint

fν = fν(ω). (14)

In addition, the probability currents should be compatible with
the conservation of the norm of the occupation vector, i.e., for
all y, ∑

x,ν

(
ων

xy − ων
yx

) = 0. (15)

To perform our optimization problem, we use the following
cost function:

F(ω,p)= I (ω,p) +
∑

ν

aν[jν − jν(ω)] +
∑

ν

bν[fν − fν(ω)]

+
∑
x,y,ν

uy

(
ων

xy − ων
yx

)
, (16)

where aν , bν , and uy are Lagrange multipliers that will be
chosen to satisfy the constraints of Eqs. (13)–(15). We choose
a1 = 0 so as not to constrain the current j1 that is already set by
the current conservation law. We now minimize the function
F with respect to ω, calculating ∂F/∂ων

xy = 0 to get

0 = ln
ων

xy

kν
xypy

− aν(εx − εy) − bνdxy + (uy − ux), (17)

where we have used Eqs. (11) and (13) and (14). Therefore,
the optimal transition probability in terms of the Lagrange
multipliers satisfies

ων
xy = Kν

xypy, (18)

where we have introduced K ν = K ν(a,b,u), the transition
probability for mechanism ν divided by the empirical occu-
pation of the state before transition. Its off-diagonal elements

are

Kν
xy ≡ kν

xye
aν (εx−εy )+bνdxy+ux−uy , (19)

or, more explicitly, using Eq. (1),

Kν
xy = γ ν

xye
−(β1/2−aν )(εx−εy )−(β1l1−bν )dxy+ux−uy , (20)

and the diagonal elements are

Kν
yy = −

∑
x �=y

Kν
xy ≡ −�ν

y, (21)

such that any column of any matrix K ν sums to zero.
We remark that the matrices K ν satisfy a modified
detailed-balance relation

ln
Kν

xy

Kν
yx

= (2aν − β1)(εx − εy) + 2(ux − uy). (22)

In this local detailed balance, the Lagrange multiplier aν

biases the inverse temperatures β1 to make typical the energy
exchanges corresponding to the energy currents constraint. The
reservoir ν behaves as if it had the temperature βν ≡ β1 − 2aν

in order to satisfy the current constraint. Thus, the variable

2aν = β1 − βν (23)

is an affinity [44–46], also called thermodynamic force
[47,48]. Notice that a1 = 0 as required. The similarity
between Eqs. (1) and (20) indicates that we can also introduce
new dilatation factors lν such that the dynamical bias

bν ≡ β1l1 − βνlν (24)

gives the modification of the dynamics in order to satisfy the
activity constraint. Finally, we call the variable u the drift
because it acts like a force biasing each transition.

The explicit solution ω of our variational problem dF = 0
is now almost reached. The next step is to use the constraints
of Eqs. (13)–(15) to obtain the Lagrange multipliers. More
explicitly, the constraint equations are

jν = 1

2

∑
x,y

(
Kν

xypy − Kν
yxpx

)
(εx − εy), (25)

fν = 1

2

∑
x,y

(
Kν

xypy + Kν
yxpx

)
dxy, (26)

0 = K · p, (27)

where K = ∑
ν K ν is the generator of the driven reference

process [29,31]. For the third equation, the conservation law
of the probability current of Eq. (15) is reformulated as a
requirement that the empirical occupation p is the stationary
probability of the continuous-time Markov chain with rate
matrix K = K (a,b,u). Inverting these three equations gives
the vectors a, b, and u as a function of (j,f,p).

The final step to obtain the asymptotic probability of energy
currents, activities, and occupations is to write the LDF of
Eq. (11) at the optimal transition probability of Eq. (18). This
leads to

L(j,f,p) = a† · j + b† · f + (λ − �)† · p, (28)

where we have used the antisymmetry of εx − εy or symmetry
of dxy in the exchange of x and y to make explicit the
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dependence in j and f . We also used Eq. (15) to get rid
of the term involving ux − uy .

D. Scaled CGF of energy currents, activities, and occupations
from a variational approach

In the previous section, we have obtained the LDF L from
the solution of an optimization problem. From now on, and
for the remainder of the paper, we assume the convexity of the
LDF. Our aim here is to derive the scaled CGF conjugated to L

from a variational approach, using the fact that LDF and scaled
CGF are conjugated by Legendre transformation [4,5,31]. On
the way, we obtain useful properties associated to the canonical
structure.

The scaled CGF of the energy current, activity, and
occupation is defined by

(a′,b′,m′) ≡ lim
t→∞

1

t
ln
〈
et(a′†·j [z]+b′†·f [z]+m′†·p[z])

〉
k, (29)

and is the Legendre transformation of L

(a′,b′,m′) = max
p,j,f

[a′† · j + b′† · f + m′† · p − L(p,j,f )].

(30)

The maximum on j and f is reached for a′ = a and b′ = b,
and the scaled CGF becomes

(a,b,m′) = max
p|K ·p=0

[(m′ + � − λ)† · p], (31)

where the maximum is taken over all occupations with the
Lagrange multiplier u in the generators of the driven process
K tuned such that K · p = 0. An alternative expression of the
scaled CGF of energy current, activity, and occupation is

(a,b,m′) = max
u

[(m′ + � − λ)† · p] (32)

with p the stationary probability associated to K . From
the optimal drift u = u(a,b,m′) realizing the maximum in
Eq. (32), we introduce the escape weight m ≡ m(a,b,u) giving
the value of m′ for given (a,b,u). In Eq. (G14) of the appendix
of Ref. [28], Nemoto and Sasa gave the scaled CGF of energy
current from a variational expression analogous to our Eq. (32).
We recover their result taking b = 0 and m′ = 0. We further
comment Eq. (32) noticing that the maximum is reached for u

satisfying

(a,b,m) = my + �y − λy, (33)

for all y. This equation allows us to derive the following
escape-rate rule

my + �y − λy = mx + �x − λx, (34)

that can be related to the exit rate constraint of Refs. [24,25,29]
taking m = 0. To prove Eq. (33), we introduce the tilted
operator κ = κ(a,b,m) for the EQ reference process

κyy ≡ −
∑

x �=y,ν

kν
xy + my, (35)

κxy ≡
∑

ν

kν
xye

aν (εx−εy )+bνdxy . (36)

The generator of the driven reference process K is connected
to this tilted operator by

Kxy = eux κxye
−uy − (my + �y − λy)δxy. (37)

Using this equation and K · p = 0, we find∑
y

eux κxye
−uy py = (mx + �x − λx)px, (38)

after summing over x and maximizing over u, it follows from
Eq. (32) that the drift giving the maximum satisfies∑

x,y

eux κxye
−uy py = . (39)

By definition [49], the scaled CGF (a,b,m) is the highest
eigenvalue of κ . Then, πx ≡ ±eux /Z(u) is the normalized
left eigenvector of κ with Z(u) a normalization constant such
that

∑
x πx = 1. The vector r ≡ π−1 · p is a right eigenvector

with πxy ≡ πxδxy . Its norm is set by
∑

x πxrx = ∑
x px = 1.

Notice that we cannot determine from the values of u the
sign of each component of the vectors π and r , but their x

components share the same sign. Now, summing Eq. (37) over
x leads to Eq. (33) since

∑
x Kxy = 0 and

∑
x eux κxye

−uy = .
Then, the optimal drift u = u(a,b,m), leading to the

maximum in Eq. (32), is simply obtained from the left
eigenvector of the tilted operator by ln |πx | = ux − ln |Z(u)|
up to a constant that plays no role since only differences of
drifts matter. The drift makes the escape-rate rule holds true
and, using Eqs. (28) and (33), leads to the Legendre structure
that one expects for LDFs and scaled CGFs. Finally, from
Eqs. (33) and (37), we recover the results of Refs. [29–31,34]
in which the generator K of the driven process corresponds to
the Doob’s transformation of the tilted operator κ :

Kxy = |πx |κxy |πy |−1 − δxy. (40)

Notice that in Refs. [29–31], the right eigenvector of the tilted
operator is used in the Doob’s transformation instead of the left
one since the tilted operator in these references is the adjoint
of κ .

III. NONEQUILIBRIUM FLUCTUATIONS

A. Definition of the NE process

The NE process is defined by the rate matrices k̄ν =
k̄ν

(aν,bν) associated to energy exchanges with each reservoir
ν at different temperatures βν = β1 − 2aν and with different
dilatation factors lν related to dynamical bias by bν = β1l1 −
βνlν . The elements of the rate matrices are

k̄ν
xy ≡ γ ν

xye
−(β1/2−aν )(εx−εy )−(β1l1−bν )dxy . (41)

Accordingly, the escape rate λ̄ν
y = λ̄ν

y(aν,bν) from state y is

λ̄ν
y ≡

∑
x �=y

k̄ν
xy = −k̄ν

yy . (42)

We define a total rate matrix by k̄ ≡ ∑
ν k̄ν

and a total escape-
rate vector by λ̄ ≡ ∑

ν λ̄ν . These rates are functions of the
affinities and dynamical bias; their analogs for the reference
process are recovered at the point of vanishing of a and b,
namely, k = k̄(0,0) and λ = λ̄(0,0). For the NE process, the
state at time τ is z̄(τ ). A system state trajectory during time
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interval [0,t] is denoted [z̄]. The ensemble average over all
trajectories [z̄] generated with dynamics corresponding to k̄ is
〈. . . 〉k̄.

B. Mapping typical NE fluctuations on rare EQ fluctuations

We now connect the statistics of the energy currents,
activities, and occupations for the EQ process with the statistics
of the same variables for the stationary NE process. This
mapping involves the escape-rate change c = c(a,b) defined
by

c ≡ λ − λ̄, (43)

that is zero at vanishing affinities and dynamical biases. We
emphasize that c cannot be adjusted independently of a and
b. This means that the affinity and the dynamical bias are
the central variables in determining the NESS reached by the
system.

To connect EQ and NE fluctuations, one needs to redo all
the calculations of Secs. II C and II D, but for the NE process,
introducing the NE scaled CGF ̄ = ̄(ā,b̄,m̄) and LDF L̄ =
L̄(j,f,p), the NE tilted operator κ̄ = κ̄(ā,b̄,m̄), the generator
of the NE driven process K̄ = K̄ (ā,b̄,ū), and associated escape
rate �̄ = �̄(ā,b̄,ū), the affinity increment 2ā, the dynamical
bias increment b̄, the NE drift ū, and the NE escape weight
m̄ = m̄(ā,b̄,ū), all denoted with a bar to distinguish them from
their equivalent for the EQ reference process. One obtains all
these objects replacing k by k̄ and the Lagrange multipliers
(a,b,u) by (ā,b̄,ū) in all the definitions. For instance, for the
NE tilted operator, we have

κ̄yy ≡ −
∑

x �=y,ν

k̄ν
xy + m̄y, (44)

κ̄xy ≡
∑

ν

k̄ν
xye

āν (εx−εy )+b̄νdxy . (45)

Notice that we call 2ā an affinity “increment” since we already
deal with a NE process: a deviation from the typical current
is associated with an “increase” of affinity that will make this
fluctuation typical. For the same reason, the dynamical bias b̄

is also qualified as an increment.
The mapping between EQ and NE fluctuations now comes

from the connection between the EQ and NE tilted operators

κ̄(ā,b̄,m̄) = κ(ā + a,b̄ + b,m̄ + c), (46)

that we obtain by comparing Eqs. (35) and (36) with Eqs. (44)
and (45). Hence, the same symmetry exists between the
eigenvalues and between the eigenvectors: the full spectrum of
the two operators is connected. In particular, the scaled CGFs
are connected by

̄(ā,b̄,m̄) = (ā + a,b̄ + b,m̄ + c), (47)

and, from the Legendre transformation, the LDFs verify

L̄(j,f,p) = L(j,f,p) − a† · j − b† · f − c† · p. (48)

The left eigenvectors of the tilted operators satisfy

π̄ (ā,b̄,m̄) = π (ā + a,b̄ + b,m̄ + c) (49)

or, equivalently,

ū(ā,b̄,m̄) = u(ā + a,b̄ + b,m̄ + c). (50)

The mapping also holds for the right eigenvectors and this
leads to

p̄(ā,b̄,m̄) = p(ā + a,b̄ + b,m̄ + c). (51)

Finally, the generators of the driven processes also verify

K̄ (ā,b̄,ū) = K (ā + a,b̄ + b,u), (52)

where ū and u are, respectively, the left- and right-hand sides
of Eq. (50).

Thus, the EQ and NE processes are tightly connected
and one can focus on the EQ process’ fluctuations only:
Eq. (47) shows that the statistics of energy currents, activities,
and occupations for any NE process with affinity 2a and
dynamical bias b is known from the statistics of the same
variables computed for the EQ process. Indeed, the derivatives
of Eq. (47) with respect to ā, b̄, or m̄ evaluated in (ā,b̄,m̄) =
(0,0,0) yields the NE cumulants of the energy currents,
activities, and occupations from the scaled CGF for the EQ
reference process, e.g., for jν we have

〈jν[z̄]〉k̄ = ∂̄

∂āν

(0,0,0) = ∂

∂aν

(a,b,c). (53)

Notice that evaluating Eq. (47) at the point of vanishing of
(ā,b̄,m̄) returns by definition of a scaled CGF

0 = ̄(0,0,0) = (a,b,c), (54)

for all a and b, with c = (λ − λ̄). Accordingly, the total
derivatives of (a,b,c) with respect to a or b also vanish
exactly such that  remains constant and equal to zero in
the direction (a,b,c). We call the subspace where  vanishes
the physical system subspace: each point (a,b,c) in this
subspace defines a precise physical process with affinity
2a and dynamical bias b. The function  includes the full
thermodynamic information on any system defined with the
same energy levels ε, coupling matrices γ ν , and energy barriers
d (up to a reservoir specific dilatation), and so does the LDF L.
One simply changes the degree of NE or the type of dynamics,
encoded into the dilatation factors, by moving into the physical
system subspace.

We end by remarking that the idea of mapping EQ and
NE fluctuations was first proposed by Andrieux in Ref. [50],
but for the statistics of energy currents only. However, this
mapping had no concrete application since the NE statistics of
the currents were needed to define the EQ dynamics involved
in the mapping. On the contrary, the mapping of Eqs. (47)
and (48) is explicit, with the price that, when comparing with
Ref. [50], the EQ statistics of activities and occupations must
be known in addition to the energy currents statistics.

C. Asymptotic equivalence of the driven reference
process and the NE process

We now discuss the asymptotic equivalence of the driven
reference process and the NE process. We first prove the
equality of their escape rates and on the way give a slightly
simplified expression of L. Using this result, we demonstrate
the equivalence of the path probabilities of the driven reference
process and the NE process.

From Eqs. (33) and (54), we find c + � − λ = 0. This leads
with Eq. (43) to the equality of the escape rates of the driven
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reference process and the NE process

� = λ̄, (55)

even though these two processes are different in general due
to the drift u, i.e., Kxy �= k̄xy if x �= y. As a consequence, the
LDF is written as

L(j,f,p) = a† · j + b† · f + c† · p. (56)

The equality of the escape rates indicates that the driven
reference process and NE process look alike. Their generators
are connected by the similarity transformation

K = |π | · k̄ · |π |−1, (57)

that follows from the comparison of Eqs. (20) and (41). We
denote |π | the positive and diagonal matrix obtained by taking
the absolute value of the elements of π . The equality of the
diagonal part of the Markov matrices of the two processes
is granted by Eq. (55). From this similarity transformation,
one can show the asymptotic equality of the path probabilities
associated to each process

PK [y] 	
t→∞ Pk̄[y] (58)

for any trajectory [y]. We have defined the path probabilities
knowing the initial state y(0)

Pk̄[y] ≡ exp

(
−
∫ t

0
dτ λ̄y(τ )

) ∏
τ∈[0,t]

k̄
ν(τ )
y(τ+dτ )y(τ ) (59)

for the NE process, and

PK [y] ≡ exp

(
−
∫ t

0
dτ�y(τ )

) ∏
τ∈[0,t]

K
ν(τ )
y(τ+dτ )y(τ ) (60)

for the driven reference process. In these equations, the product
applies for all times τ at which the system changes of state
during the trajectory [y], with y(τ ) [respectively y(τ + dτ )]
the system state before (respectively after) the transition at
time τ . The exponential terms appearing in these two path
probabilities are equal. Concerning the product terms, they
differ from boundary terms only:∏

τ

K
ν(τ )
y(τ+dτ )y(τ ) =

∏
τ

|πy(τ+dτ )|k̄ν(τ )
y(τ+dτ )y(τ )|πy(τ )|−1,

= |πy(t)|
(∏

τ

k̄
ν(τ )
y(τ+dτ )y(τ )

)
|πy(0)|−1. (61)

Then, the path probabilities of the driven reference process
and NE process verify

lim
t→∞

1

t
ln

Pk̄[y]

PK [y]
= 0, (62)

and are asymptotically equivalent [29]. Since the driven
reference process is the dynamics that typically reproduces
the conditioned reference process, we conclude that there is
an ensemble equivalence between the NE process and the
conditioned reference process. This central result is similar
to the path-ensemble equivalence derived in Refs. [29,30]. In
Appendix C, we show that the NE process is asymptotically
equivalent to the canonical process that is defined by expo-
nentially weighting each trajectory, even though these two
processes are not exactly identical.

IV. DISCUSSION AND GENERAL SUMMARY

In Sec. II, we have studied the fluctuations of an EQ system
exchanging energy with several heat reservoirs at the same
temperature. We have seen that energy may spontaneously
flow from one reservoir to another, even if it does not on
average. Each of these current fluctuations has been associated
to a temperature difference that would typically reproduce it.
Similarly, we have shown that a fluctuation of the activity of the
exchanges with each reservoir would be typically reproduced
by dilating the appropriated energy barriers. From these
observations, we have identified two couples of conjugated
variables and provided the corresponding LDF and CGF from
a variational approach.

In Sec. III, we have considered the fluctuations of the
system defined in Sec. II, but driven out of equilibrium
by temperature differences between the heat reservoirs. We
have found an exact mapping between the statistics of the
energy currents, activities, and occupations for the EQ and NE
systems. We have also discussed the asymptotic equivalence
of the trajectory ensembles generated by the conditioned EQ
process and the NE process. From the existence of the mapping
between EQ and NE systems, we have concluded that the study
of a NE system amounts to the calculation of the probability
of rare fluctuations of the same system at EQ. Now that the
distinction between the dynamical fluctuations of EQ and NE
systems has been dispelled, we come back to the results of
Sec. II and summarize the canonical structure satisfied by the
two ensembles of NE systems.

A. Summary of the NE canonical structure

The ensemble of systems in contact with several heat
reservoirs at different temperatures is called the metacanonical
ensemble. The trajectories of the systems in the metacanonical
ensemble are generated by the NE process with generator k̄.
All the systems in this ensemble have the same energy levels
εx , and the same dynamical parameters, i.e., energy barriers
dxy and couplings with the heat reservoirs γ ν

xy . By convention,
the heat reservoir of smallest temperature is the reference
reservoir (ν = 1) such that all the affinities 2aν = β1 − βν are
positive. Notice that the temperature of the reference reservoir
sets the energy scale and has no physical relevance. On the
opposite, the affinities aν are the central variables of the
metacanonical ensemble that are set by the environmental
constraints. The affinities are naturally conjugated to the
energy currents. However, we know from the previous sections
that considering (a,j ) as the unique couple of conjugated
variables does not afford to study all NE systems from the same
NE potential. Intuitively, a change of an affinity also impacts
the system activity and the occupation of the various states.
Hence, we have introduced additional intensive variables to
take into account these effects separately: the dynamical biases
connected to the dilatation factors of the energy barriers
and the escape weights modifying the escape probability of
each state. These two intensive variables cannot be adjusted
independently of the affinities if we want to avoid a change
of the system dynamics: no dilatation should be applied to the
energy barriers (lν = 1 for all ν) yielding to dynamical biases
that are equal to the affinities (b = 2a); the dynamics should
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TABLE II. EQ and NE thermodynamic potentials.

Ensemble Microcanonical Canonical NE microcanonical Metacanonical

Potential s = −∑
x px ln px ϕ = − ln 〈exp (−β1e[z])〉k L(j,f,p) (a,b,m)

Variational principle max min max max
Free variables β1 e a, b, m j , f , p

Constrained variables e β1 j , f , p a, b, m

Physical system subspace m(j,f,p) = c(a(j,f,p),b(j,f,p)) m = c(a,b)
No dilatation space b(j,f,p) = 2a(j,f,p) b = 2a

Legendre structure s + ϕ = β1e L +  = a† · j + b† · f + m† · p

conserve the norm of the occupation vector imposing that an
affinity must be associated with an escape weight equal to
the escape-rate change m = c(a,2a). Therefore, in the meta-
canonical ensemble, the environment sets the affinity vector
a which in turn constrains the dynamical intensive variables,
namely, the dynamical biases and the escape weights. The NE
potential of the metacanonical ensemble is the CGF of energy
currents, activities, and occupations (a,b,m). It vanishes for
all a when b = 2a and m = c(a,2a), but its partial derivatives
with respect to a, b, and m produce all the NESS cumulants
of energy currents, activities, and occupations for any affinity.
For instance, the thermodynamic behavior follows from the
NE equations of state

∂

∂aν

∣∣∣∣
a\ν ,b,m

= jν, (63)

∂

∂bν

∣∣∣∣
a,b\ν ,m

= fν, (64)

∂

∂mx

∣∣∣∣
a,b,m\x

= px, (65)

where the subscripts on the vertical bars indicate variables that
remain constant when taking the partial derivative. We denote
a\ν the vector a without the νth component. The cumulants
of EQ thermodynamic variables are obtained with the NESS
occupations defined by p∗ = p(a,2a,c) that only depend on
χ − 1 affinities. The mean energy in the NESS is 〈e[z̄]〉k̄ =
e(p∗), and the mean entropy is 〈s[z̄]〉k̄ = s(p∗).

The ensemble of systems conditioned on the energy
currents they received from their environment is called the
NE microcanonical ensemble. The trajectories of the systems
in this ensemble are generated by the EQ reference process
with generator k filtrated to achieve the condition on the
energy currents. The physical implementation of systems in
the NE microcanonical ensemble would require the existence
of energy sources with no fluctuations. These sources will very
likely not exist in practice [51], even though this problem is
not specific to NE ensembles (see for instance p. 83 of Ref. [3]
for an example in EQ thermodynamic theory). If we assume
that an energy current can be imposed from the outside, the
activities and the occupations must take precise values so that
the system can sustain the energy current. On the opposite,
the conjugated intensive variables become free to fluctuate.
The relationship between currents, activities, and occupations
is obtained from the correspondence between the conjugated
variables (j,f,p) and (a,b,m), as summarized in Table II. The

NE microcanonical potential is the LDF L(j,f,p) and the
statistics of the intensive variables (a,b,m) follows from its
partial derivative

∂L

∂jν

∣∣∣∣
j\ν ,f,p

= aν, (66)

∂L

∂fν

∣∣∣∣
j,f\ν ,p

= bν, (67)

∂L

∂px

∣∣∣∣
j,f,p\x

= mx. (68)

We proved in Secs. II and III C the equivalence of the
ensembles of trajectories generated by the NE process and the
conditioned EQ reference process assuming that the NE po-
tentials are convex. Accordingly, the metacanonical ensemble
and NE microcanonical ensembles are ensemble equivalent. In
other words, systems submitted to temperature gradients are
equivalent, at the thermodynamic level, to systems subjected to
stationary energy injection (and extraction). By construction,
the NE potentials are conjugated by Legendre transformation

L(j,f,p) + (a,b,m) = a† · j + b† · f + m† · p, (69)

and the NE stationary state can be obtained from a variational
approach. If we consider a† · j + b† · f + m† · p − (a,b,m)
as the potential L that would be obtained from Eq. (69) by
assuming the independence of the conjugated variables, then
the NESS affinity, dynamical bias, and escape weight reached
by the system at constant imposed energy current j , activity
f , and occupation p maximize this potential in the subspace
of constant (j,f,p):

(a,b,m) = argmax
a,b,m|j,f,p

[
a† · j + b† · f + m† · p − (a,b,m)

]
,

(70)
which are exactly Eqs. (63)–(65). The same argument holds
the other way around. If we consider a† · j + b† · f + m† ·
p − L(j,f,p) as the potential  that would be obtained
from Eq. (69) assuming the independence of the conjugated
variables, then the NESS energy currents, activities, and
occupations reached by the system at constant imposed affinity
a, dynamical bias b, and escape weight m maximize this
potential in the subspace of constant (a,b,m):

(j,f,p) = argmax
j,f,p|a,b,m

[a† · j + b† · f + m† · p − L(j,f,p)],

(71)
which are exactly Eqs. (66)–(68).
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B. Symmetries of the NE potentials

The metacanonical potential is even under the sign change
of all affinities. We prove in Appendix D that this symmetry
leads to the fluctuation theorem (FT), a fundamental result
regarding the asymptotic statistics of entropy production first
studied in Refs. [52–54]. Another fundamental symmetry is
obtained from the equality of second derivatives of the NE
potentials. This symmetry is the NE equivalent of the Maxwell
relations and reads as

∂2

∂hα∂h′
α′

= ∂2

∂h′
α′∂hα

and
∂2L

∂vα∂v′
α′

= ∂2L

∂v′
α′∂vα

, (72)

where h and h′ are two vectors in (a,b,m) and similarly v and
v′ in (j,f,p). The subscripts α and α′ indicate two arbitrary
components of these vectors. At EQ, Maxwell’s relations
deeply constrain the number of EQ response coefficients that
should be introduced to completely describe a system. Here,
they constrain the derivatives of the nonlinear functions giving,
for instance, the currents in terms of the affinities. In the
close-to-EQ limit, Eq. (72) implies that the linear response
matrix is symmetric or, in other words, it implies the Onsager
reciprocity relations [55,56], as we will see in the next section.

C. NE linear response theory

We study the linear response of a system in an arbitrary
NESS and further perturbed by a change of temperature
βν → β ′

ν = βν + �βν or of dilatation factor lν → l′ν = lν +
�lν . More precisely, we want to determine the change of
the energy currents and activities when the half affinities
aν = (β1 − βν)/2 and dynamical biases bν = (β1l1 − βνlν) are
slightly changed to the new values aν + �aν and bν + �bν .
We assume that l1 and β1 do not change during the perturbation.
Then, the perturbations are written as

�aν = −�βν/2, (73)

�bν = (−βν + 2�aν)�lν + 2lν�aν

	 −βν�lν + 2lν�aν (74)

at linear order. We remark that the dynamical biases change
when perturbing the affinities, but the converse is not true.

A Taylor expansion of the metacanonical potential  gives
the following quadratic function:

(a + �a,b + �b,m + �m)

= (a,b,m) +
∑

h=a,b,m

�h† · ∇h

+ 1

2

∑
h =a,b,m

h′=a,b,m

�h† · ∇hh′ · �h′, (75)

where �m is not yet specified. We have used the short notations
for the derivatives of the metacanonical potential

(∇h)α ≡ ∂

∂hα

(a,b,m), (76)

(∇hh′)αα′ ≡ ∂2

∂hα∂h′
α′

(a,b,m). (77)

The perturbation induces a variation �j of the energy currents,
�f of the activities or �p of the occupation. Taking the partial
derivative of Eq. (75) with respect to �a, �b, or �m and
evaluated in �m = �c, with �c the variation of the escape-
rate change due to the perturbation, leads to the linear response
equation⎛

⎝�j

�f

�p

⎞
⎠ 	

⎡
⎣∇aa ∇ab ∇am

∇ba ∇bb ∇bm

∇ma ∇mb ∇mm

⎤
⎦ ·

⎛
⎝�a

�b

�c

⎞
⎠. (78)

From Eq. (72), the response matrix above is symmetric even
close to an arbitrary NESS. However, the chain rule yields

�c = ∇ac · �a + ∇bc · �b, (79)

and the variation of the currents and activities becomes

�j = (∇aa + ∇am · ∇ac) · �a

+ (∇ab + ∇am · ∇bc) · �b, (80)

�f = (∇ab + ∇bm · ∇ac) · �a

+ (∇bb + ∇bm · ∇bc) · �b. (81)

The response matrix defined from Eqs. (80) and (81) is no
longer symmetric in general as already emphasized in former
works on NE linear response theory [38,39,57–62]. The second
derivatives of the metacanonical potential appearing in Eq. (80)
are

(∇aa)νν ′ = lim
t→∞ t

{〈jν[z̄]jν ′[z̄]〉k̄ − 〈jν[z̄]〉k̄〈jν ′ [z̄]〉k̄

}
,

(∇ab)νν ′ = lim
t→∞ t

{〈jν[z̄]fν ′ [z̄]〉k̄ − 〈jν[z̄]〉k̄〈fν ′[z̄]〉k̄

}
,

(∇am)νx = lim
t→∞ t

{〈jν[z̄]px[z̄]〉k̄ − 〈jν[z̄]〉k̄〈px[z̄]〉k̄

}
, (82)

and correspond, respectively, to the current-current, the
current-activity, and the current-occupation covariances in the
unperturbed NESS [63]. In addition to the above covariances,
the response functions include another contribution involving
the derivatives of the escape-rate change c. Since the escape-
rate change satisfies

− ∂cx

∂aν

=
∑

y

k̄ν
yx(εy − εx), (83)

the unperturbed mean occupation multiplied by this derivative
returns the unperturbed mean energy current

−
∑

x

∂cx

∂aν

〈px[z̄]〉k̄ =
∑
x,y

k̄ν
yx〈px[z̄]〉k̄(εy − εx) = 〈jν[z̄]〉k̄.

(84)
Therefore, the response to the affinity perturbation is

(∇aa + ∇am · ∇ac)νν ′

= lim
t→∞ t

{
〈jν[z̄]jν ′[z̄]〉k̄ −

〈
jν[z̄]

∂

∂aν ′
(p†[z̄] · λ̄)

〉
k̄

}
. (85)

As expected, the response has an additive structure with an
equilibriumlike part given by a currents correlation function,
and a NE part corresponding to a current and traffic-excess
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correlation function. We call traffic excess the derivative of
the empirical escape rate p†[z̄] · λ̄ with respect to the perturbed
variable [38,39]. Similarly, the response of the energy current
to a perturbation of the dynamical bias in the second line
of Eq. (80) has two parts with an activity-current correlation
function and a current-traffic excess correlation function.

As regards the perturbation of an EQ system, i.e., all β ′
ν are

close to the reference inverse temperature β1, one recovers
the Yamamoto-Zwanzig formula expressing the response
coefficients to a temperature perturbation from the covariances
of energy currents [64,65]. In order to see this, let us first
consider a reference system at EQ only perturbed by a change
of the dilatation factors, i.e., �a = 0 and �b = −β1�l.
Thanks to Eq. (80), the variation of the energy currents is
written as

�j = (∇ab + ∇am · ∇bc) · �b = 0. (86)

It vanishes for any perturbations �b since no mean energy
current exists at EQ. Thus, we find

∇ab + ∇am · ∇bc = 0, (87)

if the derivatives are taken in a = 0. This removes the contribu-
tion due to the dynamical bias from the EQ response. Another
contribution disappears in the close-to-equilibrium limit due to
the decoupling between occupations and energy currents [42].
Indeed, from the symmetry of the metacanonical potential with
sign change of the affinities, namely (a,b,m) = (−a,b,m),
we have

∂2

∂aν∂mx

(a,b,m) = − ∂2

∂aν∂mx

(−a,b,m). (88)

Accordingly, ∇am = 0 if the derivatives are taken in a = 0.
From the third line of Eq. (82), we can conclude that the energy
currents and occupations are decoupled. The Yamamoto-
Zwanzig formula follows from Eq. (80):

�j = ∇aa

2
· (β1 − β ′), (89)

where ∇aa is given in the first line of Eq. (82) with EQ
averages 〈. . . 〉k instead of the NE averages 〈. . . 〉k̄. Therefore,
we recover the Onsager reciprocity relations from the NE
Maxwell relations.

V. ILLUSTRATIVE EXAMPLE: A TWO-LEVEL SYSTEM

We now illustrate our results on a two-level system with
states z = 1,2 and mechanisms ν = 1,2, . . . ,χ enabling en-
ergy exchanges with χ different heat reservoirs. The coupling
strength with reservoir ν is denoted γν in this section since it
is not a matrix but a vector when there are only two states.
The energy states are ε1 and ε2. Let ε± = ε1 ± ε2 to shorten
notations. The transition rate matrix of the EQ reference
process for each mechanism ν is

kν =
[
−γνe

β1ε−
2 γνe

− β1ε−
2

γνe
β1ε−

2 −γνe
− β1ε−

2

]
, (90)

where we assume vanishing dilatation factors l1 [see Eq. (1)].
The rate matrices for the NE system are

k̄ν =
[−γνe

(β1/2−aν )ε−+bνε+ γνe
−(β1/2−aν )ε−+bνε+

γνe
(β1/2−aν )ε−+bνε+ −γνe

−(β1/2−aν )ε−+bνε+

]
, (91)

if we choose d12 = ε+. The escape-rate changes for this model
are

c1 =
∑

ν

γνe
β1ε−/2(1 − e−aνε−+bνε+), (92)

c2 =
∑

ν

γνe
−β1ε−/2(1 − eaνε−+bνε+). (93)

The tilted operator κ = κ(a,b,m) for the EQ reference system
is

κ =
[

−∑
ν γνe

β1ε−
2 + m1

∑
ν γνε

−(β1/2−aν )ε−+bνε+∑
ν γνe

(β1/2−aν )ε−+bνε+ −∑
ν γνε

− β1ε−
2 + m2

]
.

(94)

The highest eigenvalue of this matrix is the metacanonical
potential

 = −
∑

ν

γν cosh (β1ε−/2) + m1 + m2

2

+
√

γ̂ 2 +
∑
ν,ν ′

γνγν ′e(aν−aν′ )ε−+(bν+bν′ )ε+ , (95)

where we have introduced

γ̂ ≡ −
∑

ν

γν sinh

(
β1ε−

2

)
+ m1 − m2

2
. (96)

The metacanonical potential  provides the statistics of jα

the energy current flowing from the αth reservoir toward the
system and of fα the activity induced by the αth mechanism.
From direct derivation of  with respect to aα , bα , or mz, the
energy current coming from reservoir α > 1 is

jα =
∑

ν ε−γαγνe
(bν+bα )ε+ sinh [(aα − aν)ε−]√

γ̂ 2 +∑
ν,ν ′ γνγν ′e(aν−aν′ )ε−+(bν+bν′ )ε+

, (97)

the activity for the transitions induced by mechanism α is

fα =
∑

ν ε+γαγνe
(bν+bα )ε+ cosh [(aα − aν)ε−]√

γ̂ 2 +∑
ν,ν ′ γνγν ′e(aν−aν′ )ε−+(bν+bν′ )ε+

, (98)

and the occupation of state z is

pz = 1

2
+ (δz,1 − δz,2)γ̂ /2√

γ̂ 2 +∑
ν,ν ′ γνγν ′e(aν−aν′ )ε−+(bν+bν′ )ε+

, (99)

where γ̂ of Eq. (96) is evaluated in m = c(a,2a), and taking
b = 2a to obtain the mean values of j , f , and p in the NESS
with affinity 2a. Deriving once more with respect to aα′ , bα′ , or
mz′ leads to the symmetric response matrix [see Eq. (78)]. The
left and right eigenvectors of κ associated to the eigenvalue 

are, respectively, π and r = π−1 · p. We find for the two-level
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FIG. 3. (a) Metacanonical potential for various (a2,m2) with b = 0, (b) energy current, (c) energy, (e) activity, and (f) entropy as a function
of the affinity a2 and the dynamical bias b2. (d) NE microcanonical potential for the energy current j2 and the activity f2 after a contraction on
f1, p1, and p2. Other parameters are b1 = 0, β2 = β1 − 2a2, γ2 = 0.5, ε1 = 1, and ε2 = 0.5. For all figures, β1 = 1 set the energy scale and
γ1 = 1 the time scale. The variables a and b are in unit of 1/β1, the variables j and f are in unit of γ1/β1, and L, , and m are in unit of γ1.

model

π1 =
∑

ν γνe
(β1/2−aν )ε−+bνε+∑

ν γνe(β1/2−aν )ε−+bνε+ +∑
ν γνeβ1ε−/2 − m1 + 

, (100)

π2 =
∑

ν γνe
β1ε−/2 − m1 + ∑

ν γνe(β1/2−aν )ε−+bνε+ +∑
ν γνeβ1ε−/2 − m1 + 

, (101)

r1 =
(∑

ν γνe
−(β1/2−aν )ε−+bνε+

)(∑
ν γνe

(β1/2−aν )ε−+bνε+ +∑
ν γνe

β1ε−/2 − m1 + 
)

∑
ν,ν ′ γνγν ′e(aν−aν′ )ε−+(bν+bν′ )ε+ + (∑

ν γνeβ1ε−/2 − m1 + 
)2 , (102)

r2 =
(∑

ν γνe
β1ε−/2 − m1 + 

)(∑
ν γνe

(β1/2−aν )ε−+bνε+ +∑
ν γνe

β1ε−/2 − m1 + 
)

∑
ν,ν ′ γνγν ′e(aν−aν′ )ε−+(bν+bν′ )ε+ + (∑

ν γνeβ1ε−/2 − m1 + 
)2 . (103)

We can now illustrate the consistency of the theory: from
Eqs. (100)–(103) and the product π · r , we recover the
NESS probability of Eq. (99) obtained from derivation of
the metacanonical potential; Eqs. (100) and (101) allow us
to compute the drift u to get the current and activity of
Eqs. (97) and (98) from Eqs. (25) and (26) knowing the NESS
probability.

We turn to the discussion of the properties of the two-level
system with χ = 2 heat reservoirs in light of Fig. 3 obtained
from our analytic results. For simplicity, we choose b1 = 0.
We set the energy scale and the time scale taking, respectively,
β1 = 1 and γ1 = 1. Figure 3(a) shows that the metacanonical
potential is a symmetric function of the affinity a2 and is
strictly convex. From this symmetry, one should not conclude
that the energy current j2 is an antisymmetric function of a2.
Indeed, the energy current comes from the derivative of the

metacanonical potential with respect to a2 evaluated in m = c

that has no particular symmetry when changing the sign of a2.
The absolute value of the energy current |j2| and the activity

f2 always increases with the absolute value of the affinity |a2| at
given dynamical bias b2 [see Figs. 3(b) and 3(e)]. A decrease
of |j2| with increasing |a2| would mean that the system has
negative response for some affinities. Such a behavior is not
expected for a simple two-level model. Another general trend
is that |j2| and f2 increase with b2. Indeed, a higher dynamical
bias increases the value of the transition rates corresponding to
ν = 2, if one has ε+ > 0 [see Eq. (91)]. Then, a high dynamical
bias accelerates the dynamics associated to reservoir ν = 2,
whereas a small one slows it down, letting the reference
dynamics associated to reservoir ν = 1 dominates in the
transition rate matrix. Therefore, in the limit of low dynamical
bias with respect to the affinity, the system approaches the
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EQ state at temperature β1, with current j2 and activity f2

decreasing to zero.
To represent the NE microcanonical potential L, one has to

focus on the statistics of some specific variables by contraction:
this step consists in evaluating the NE microcanonical potential
at the mean value of the disregarded variables, for instance,
f1, p1, and p2 in the case of Fig. 3(d). However, it is much
more convenient to obtain L(j2,f2) directly from a parametric
plot of (j2,f2,L) with (a2,b2) being the parameters and taking
b1 = 0. In this way, we have obtained Fig. 3(d) showing the
NE microcanonical potential as a convex function of (j2,f2).
This function is undefined in the regions corresponding to low
activities in comparison to the energy current. The explanation
is that a current can only flow if some minimal activity holds,
i.e., if the system changes state regularly enough.

Finally, the system energy e and Shannon entropy s are,
in our framework, functions of the affinity and dynamical
bias. We see in Figs. 3(c) and 3(f) that these functions have
a very similar shape in a large area corresponding to the EQ
limit. The dimensionless free energy of the reference system at
temperature β1 is ϕ = β1e − s and should reach its minimum
value for low affinity |a2| or low dynamical bias b2. There,
since β1 = 1, the system energy and entropy differ only in the
value of the dimensionless free energy of the EQ reference
system. On the contrary, at high affinity |a2|, most of the time
the system is either in energy state ε1 = 1 for positive a2 or
ε2 = 0.5 for negative a2. The system is driven to a state where
the entropy is lower than at EQ and the NE mean energy is
moved away from the EQ mean value for the reference process.

VI. CONCLUSION

In this paper, we have established that the asymptotic
probability of the energy currents, the activities, and the
occupations in a NE process proceeds from the long-time
statistics of the same variables at EQ. We have connected
the affinities of the NE process, the dynamical biases, and
the escape-rate changes to constraints imposed on the EQ
reference process, respectively, on the energy currents, on
the activities, and on the occupations of each state. This
connection is the analog of the ensemble equivalence between
the canonical and microcanonical ensembles of EQ statistical
physics for which the temperature of the heat reservoir is
associated to an energy constraint. We have argued that
the mapping between EQ and NE fluctuations allows us to
distinguish the reduced set of variables which play a key role
in the description of NESSs.

Beyond the understanding of the structure of NE statistical
physics, phenomenological and/or operational methods must
be developed to compute the NE potentials of real complex
systems. In this regard, it was shown that efficient algorithms
exist to compute the scaled cumulants of currents [66] or
to simulate samples of rare trajectories [13]. A promising
technique for macroscopic systems relies on the saddle point
approximation of a path integral producing the cumulant
generating function [67]. This calculation leads to a dynamical
problem with a small number of degrees of freedom compared
to the original problem. Solving this dynamical problem seems
easier than finding the highest eigenvalue of a large tilted
operator.
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APPENDIX A: LDF OF EMPIRICAL OCCUPATION
AND TRANSITION PROBABILITY

We derive in this appendix the LDF of transition probability
and occupation I (ω,p) for the EQ process. By definition,
the probability that ω[z] = ω and p[z] = p when the system
trajectories are generated by the EQ reference process is

Pt (ω,p) =
∑
[z]

Pk[z]δp,p[z]δω,ω[z] (A1)

=
∑
[z]

Pω/p[z]e−A[z]δp,p[z]δω,ω[z], (A2)

where
∑

[z] is the sum over all path [z]. We have introduced
the action

A[z] = ln
Pω/p[z]

Pk[z]
, (A3)

and the path probabilities with given initial state z(0):

Pk[z] = exp

⎛
⎝−

∫ t

0
dτ

∑
x �=z(τ ),ν

kν
xz(τ )

⎞
⎠∏
τ∈[0,t]

k
ν(τ )
z(τ+dτ )z(τ ),

Pω/p[z] = exp

⎛
⎝−

∫ t

0
dτ

∑
x �=z(τ ),ν

ων
xz(τ )

pz(τ )

⎞
⎠∏
τ∈[0,t]

ω
ν(τ )
z(τ+dτ )z(τ )

pz(τ )
.

Notice that the second line is identical to the first line where
the empirical transition rate matrices ων[z]/p[z] replace the
real EQ rate matrices kν . From these path probabilities, the
action becomes

A[z] =
∫ t

0
dτ

∑
x �=z(τ ),ν

(
kν
xz(τ ) − ων

xz(τ )

pz(τ )

)

+
∑

τ∈[0,t]

ln
ω

ν(τ )
z(τ+dτ )z(τ )

k
ν(τ )
z(τ+dτ )z(τ )pz(τ )

(A4)

or, equivalently, when introducing the empirical transition
probabilities and occupations

A[z] =
∫ t

0
dτ

∑
y,x �=y,ν

δy,z(τ )

(
kν
xy − ων

xy

py

)

+
∑

τ∈[0,t]

∑
y,x �=y,ν

δx,z(τ+dτ )δy,z(τ )δν,ν(τ ) ln
ων

xy

kν
xypy

= t
∑

x,y �=x,ν

[
py[z]

(
kν
xy − ων

xy

py

)
+ ωxy[z] ln

ων
xy

kν
xypy

]
.

(A5)
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Then, using the Kronecker symbols in Eq. (A2) one can take
p[z] = p and ω[z] = ω to move the action out of the sum and
write

Pt (ω,p) = e−tI (ω,p)
∑
[z]

Pω/p[z]δp,p[z]δω,ω[z]. (A6)

The remaining sum over all paths [z] is the probability that p[z]
and ω[z] take their typical value since the path probability is
generated by ω/p. We expect this probability to converge to 1
in the long-time limit. Then, we get the asymptotic probability
of transitions and occupations of Eqs. (10) and (11) in the main
text.

APPENDIX B: PREEXPONENTIAL FACTOR FOR THE
ASYMPTOTIC PROBABILITY OF ENERGY CURRENTS,

ACTIVITIES, AND OCCUPATIONS

Following, we provide an asymptotic approximation of the
long-time probability of the energy currents, activities, and
occupations when the final state is known. The variables are
defined by

jν[z] = 1

t

∑
τ∈[0,t]

[εz(τ+dτ ) − εz(τ )]δν,ν(τ ), (B1)

fν[z] = 1

t

∑
τ∈[0,t]

dz(τ+dτ )z(τ )δν,ν(τ ), (B2)

px[z] = 1

t

∫ t

0
dτ δx,z(τ ). (B3)

The corresponding generating function with given final state
x is by definition

gx(a,b,m) ≡ 〈
δxz(t)e

t(a†·j [z]+b†·f [z]+m†·p[z])
〉
k. (B4)

It satisfies the linear equation ∂g/∂t = κ · g with κ the tilted
operator defined in the main text in Eqs. (35) and (36). We
now look for a long-time asymptotic approximation of g:

gx(a,b,m) = (
eκ(a,b,m)t · p0

)
x

(B5)

	
t→∞

∑
y

e(a,b,m)t (r · π †)xyp
0
y (B6)

	
t→∞ e(a,b,m)t rx(a,b,m)(π † · p0), (B7)

where p0 is the initial state probability. We remind that π and
r are, respectively, the left and right eigenvectors of κ for the
highest eigenvalue . Using an asymptotic approximation to
compute the inverse Laplace transformation of gx(a,b,m), one
recovers the exponent appearing in Eq. (12).

Then, the preexponential factor in Eq. (B7) must be
evaluated in a = a(j,f,p), b = b(j,f,p), and m = m(j,f,p).
We now assume that j, f , and p are related to each other via
the physical system subspace constraint (see Table II). From
Eq. (49), we find πx(a,b,c) = π̄x(0,0,0) = 1 for all x, where
the second equality stands from the fact that the left eigenvector
of a Markov matrix has all its components equal to one. Then,
π † · p0 = 1 by normalization of p0 and the right eigenvector
of κ in the physical system subspace is the NESS probability
r(a,b,c) = p∗ for the dynamics with energy current j and
activity f . This leads to the asymptotic probability of energy

currents, activities, and occupations when the final state at time
t is x:

Pt (j,f,p∗,x) 	
t→∞ e−tL(j,f,p∗)p∗

x . (B8)

APPENDIX C: ASYMPTOTIC EQUIVALENCE OF THE NE
PROCESS AND THE CANONICAL PROCESS

The path probability of the canonical process, with gen-
erator K, is defined by exponentially weighting the path
probability of the EQ reference process:

PK[y] ≡ Pk[y]et(a†·j [y]+b†·f [y]+m†·p[y])

〈et(a†·j [z]+b†·f [z]+m†·p[z])〉k
. (C1)

This tilting procedure is sometimes referred to as canonical
conditioning. We show in this appendix that the above
canonical process is asymptotically equivalent to the NE
process defined in Sec. III A. From Sec. III C, it is also
equivalent to the driven process. The connection between the
driven process and the canonical process was first obtained in
Refs. [33,34] and studied in depth in Refs. [29,31].

From the definition of the CGF in Eq. (29), we have

PK[y] 	
t→∞ Pk[y]et(a†·j [y]+b†·f [y]+m†·p[y])−t. (C2)

Since Eq. (33) is satisfied for all y, we can write it for any state
y(τ ) along the trajectory [y]:

 = my(τ ) + �y(τ ) − λy(τ ), (C3)

and upon integration over the time τ , one finds

t = tm† · p[y] +
∫ t

0
dτ (λ̄y(τ ) − λy(τ )) (C4)

since � = λ̄ from Eq. (55). Finally, Eqs. (C2)–(C4) lead to the
asymptotic equivalence of the path probabilities

PK[y] 	
t→∞ e− ∫ t

0 dτ λ̄y(τ )+t(a†·j [y]+b†·f [y])
∏

τ∈[0,t]

k
ν(τ )
y(τ+dτ )y(τ )

	
t→∞ e− ∫ t

0 dτ λ̄y(τ )
∏

τ∈[0,t]

k̄
ν(τ )
y(τ+dτ )y(τ ) (C5)

	
t→∞ Pk̄[y]. (C6)

Hence, we have proved that the canonical process corresponds
at long time to a NE process that can be realized experimentally
changing the temperatures of the heat reservoirs and the
dynamical biases.

APPENDIX D: FLUCTUATION THEOREM

The fluctuation theorem (FT) is an essential property of
the stochastic entropy production [36,68]. According to this
theorem, a stochastic positive entropy production is exponen-
tially more likely than the opposite entropy production, i.e., an
entropy destruction. On average, this implies a positive entropy
production in agreement with the second law. Therefore, the
FT is a probabilistic statement of the second law, and as such
it is a very fundamental property of NE phenomena. It was
first derived with a long-time approximation, but since the
mean entropy production always increases, a FT should hold
at all time [69,70]. Because the entropy production may be
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appropriately defined using different NE variables such as
work, heat, or particle currents, depending on the experimental
setup, the FT has many faces [56,71–78]. Generally, the joint
probability distribution of a set of time antisymmetric variables
summing to entropy production will satisfy a FT [79]. In our
case, a linear combination of the currents gives the entropy
production rate

σ = 2a† · j. (D1)

Accordingly, the LDF and scaled CGF for the NE process
have a FT symmetry. This symmetry strongly relies on local
detailed balance, in other words, on the symmetry of transition
rates. We already used the local detailed balance to show
the equivalence of EQ and NE fluctuations. We show in this
appendix that the fluctuation theorem is a consequence of the

mapping between EQ and NE fluctuations associated to the
symmetric nature of energy-currents fluctuations at EQ. Using
Eq. (47), we find

̄(−2a − ā,b̄,m̄) = (−2a − ā + a,b̄ + b,m̄ + c)

= (ā + a,b̄ + b,m̄ + cb̄ + b,m̄ + c)

= ̄(ā,b̄,m̄), (D2)

where we have used the fact that EQ fluctuations are symmetric
in the reversal of affinities (a,b,m) = (−a,b,m). Similarly,
from Eq. (48), it is straightforward to see that

L̄(j,f,p) − L̄(−j,f,p) = −2a† · j = −σ (D3)

since we have L(j,f,p) = L(−j,f,p).
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