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We study absorbing-state phase transitions (APTs) in two-dimensional Voronoi-Delaunay (VD) random
lattices with quenched coordination disorder. Quenched randomness usually changes the criticality and destroys
discontinuous transitions in low-dimensional nonequilibrium systems. We performed extensive simulations of
the Ziff-Gulari-Barshad model, and verified that the VD disorder does not change the nature of its discontinuous
transition. Our results corroborate recent findings of Barghathi and Vojta [H. Barghathi and T. Vojta, Phys. Rev.
Lett. 113, 120602 (2014)], stating the irrelevance of topological disorder in a class of random lattices that includes
VD, and raise the interesting possibility that disorder in nonequilibrium APT may, under certain conditions, be
irrelevant for the phase coexistence. We also verify that the VD disorder is irrelevant for the critical behavior of
models belonging to the directed percolation and Manna universality classes.
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I. INTRODUCTION

Nonequilibrium phase transitions from an active (fluctuat-
ing) to an inactive (absorbing) phase in spatially extended
systems is a topic of broad interest [1–3]. The so-called
absorbing-state phase transitions (APTs) arise in a wide variety
of problems as, for example, heterogeneous catalysis [4],
interface growth [5], population dynamics, and epidemiol-
ogy [6]. Recent experimental realizations in turbulent liquid
crystals [7], driven suspensions [8], and superconducting
vortices [9] highlight the importance of this kind of transition.

In analogy with equilibrium phase transitions, it is ex-
pected that continuous APTs can be classified in universality
classes [1,2]. Generically, single-component systems with
short-range interactions exhibiting a continuous APT, in the
absence of extra symmetries or conservation laws, belong to
the directed percolation (DP) universality class [10,11], but
other robust classes emerge when multiple absorbing states
and conservation laws are included [1,2].

Of particular interest is how spatially quenched disorder
affects the critical behavior of an APT. In real systems,
quenched disorder appears in the form of impurities and
defects [12]. On a regular lattice, quenched disorder can be
added in the forms of random deletion of sites or bonds [13–18]
or of random spatial variation of the control parameter [19–21].
In all the cases above, quenched randomness produces rare
regions which are locally supercritical even when the whole
system is subcritical. The lifetime of active rare regions is
exponentially long in the domain size. The convolution of
rare region and exceedingly large lifetimes can lead to a slow
dynamics, with nonuniversal exponents, for some interval
of the control parameter λ(0)

c < λ < λc, where λ(0)
c and λc

*On leave at: Theoretical Physics Division, School of Physics and
Astronomy, The University of Manchester, Manchester M13 9PL,
United Kingdom.
†Present address: Departamento de Fı́sica e Matemática, Universi-
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are the critical points of the clean and disordered systems,
respectively. This interval of singularities is called Griffiths
phase (GP) [22]. This GP behavior was verified in DP models
with uncorrelated disorder irrespective of the disorder strength
and corresponds to the universality class of the random
transverse Ising model [18,23–26].

These findings are in agreement with the heuristic Harris’
criterion [27], which states that uncorrelated quenched disor-
der is a relevant perturbation if

dν⊥ < 2, (1)

where d is the dimensionality and ν⊥ is the correlation length
exponent of the clean model. Note that in DP, this inequality is
satisfied for all dimensions d < 4, since ν⊥ = 1.096854(4),
0.734(4), and 0.581(5), for d = 1, 2, and 3, respectively
[28–30]. In the opposite way, simulations of the continuous
APT in models with a conserved field in the Manna universality
class [31], considering uncorrelated lattice dilution below the
lattice percolation threshold, provide strong evidence that this
kind of disorder is irrelevant although the Harris criterion is
satisfied for d < 4 [32–34].

For equilibrium discontinuous phase transitions, the Imry-
Ma criterion [35,36] governs the stability of macroscopic
phase coexistence and disorder destroys phase coexistence by
domain formation in dimensions d � 2. If the distinct phases
are related by a continuous symmetry, the marginal dimension
is d = 4 [36]. Therefore, first-order phase transitions become
rounded in the presence of disorder for d � 2.

Recent numerical results provide evidence that the Imry-
Ma argument for equilibrium systems can be extended to
nonequilibrium APTs: Irrespective of the uncorrelated dis-
order strength, Buendia and Rikvold [37–39] reported that the
absorbing discontinuous transition in the Ziff-Gulari-Barshad
(ZGB) model for heterogeneous catalysis turns to a continuous
one (see also the discussion in [40]). Analogous behavior
was observed more recently by Martı́n et al. [41] for a
two-dimensional quadratic contact process [42].

Another important question is the role played by disorder
inherent in the underlying connectivity in a nonperiodic,
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random structure of integer dimension as the random lattice
generated by the Voronoi-Delaunay (VD) triangulation [43].
This random lattice can be generated from a random (uniform)
distribution of N points in a unitary square region. The triplets
that can be circumscribed by a circle that does not overlap
with any other point form a triangulation. The result is a two-
dimensional connected graph with a Poissonian distribution
of connectivity with average degree q̄ = 6 [44]. This lattice
plays an important role in the description of idealized statistical
geometries such as planar cellular structures, soap throats,
etc. [43,44].

Recently, it was found that such a kind of VD disorder
does not alter the character of the APT exhibited by the clean
contact process (CP) [45], which is a prototypical model
in the DP universality class. These results are in evident
contrast with those for uncorrelated disorder which lead to an
infinite-randomness critical point and strong GPs [18,26]. In
order to determine the relevance of the disorder in these cases,
we can apply the heuristic Harris-Luck criterion [46], in which
the regular critical behavior remains unchanged when the wan-
dering exponent1ω does not exceed a threshold value given by

ωc = 1 − 1

dν⊥
. (2)

For independent dilution, ω = 1/2, and Luck’s expression
reduces to the Harris criterion.

Former numerical estimates of wandering exponents for VD
triangulations indicated a value close to independent dilution
ω = 1/2 [47]. So, the clean critical behavior observed for CP
on VD lattices posed doubts on the validity of the Harris-Luck
criterion for the DP class [45]. This inconsistency was recently
unfolded [48] with the determination of the correct wandering
exponent of VD lattices as ω = 1/4 in d = 2, implying a
criterion ν⊥ > 2/3, not ν⊥ > 1, for a clean critical behavior.

In the present work, we investigate the role played by
the disorder of VD lattice on the phase coexistence of the
ZGB model. We provide evidence that the VD topological
disorder does not destroy the phase coexistence and thus
permits discontinuous phase transitions. We complement the
paper with more evidence for the irrelevance of VD disorder for
continuous APTs belonging to the DP [2] and Manna [31,49]
universality classes.

The reminder of this paper is organized as follows. In the
next section, we review the model’s definitions and the details
of the simulation methods we used. In Sec. III, we present our
results and discussions. Section IV is devoted to summarize
our conclusions.

II. MODELS AND METHODS

We constructed the Voronoi-Delaunay lattice with periodic
boundary conditions, following the method described in [50].
For the sake of simplicity, the length of the domain where N

nodes are randomly distributed will be expressed in terms of
L = √

N .

1The wandering exponent is associated with the decay of deviations
from the average as a function of patch sizes where the averages are
computed.

A. Discontinuous APT

The ZGB model [4], a lattice gas model introduced
to investigate the reaction of CO oxidation on a catalytic
substrate, follows the Langmuir-Hinshelwood mechanism,

COgas + ∗ → COads,

O2gas + 2∗ → 2Oads,

COads + Oads → CO2 + 2∗ ,

where ∗ denotes an empty site, and subscripts indicate the state
(gaseous or adsorbed) of each species. The O2gas dissociates
at the surface and requires two empty sites to adsorb, while
CO requires only one site to adsorb (the model is also
called the monomer-dimer model). The product CO2 desorbs
immediately on formation. COgas molecules arrive at rate Y per
site, while O2 arrives at rate (1 − Y ), with 0 � Y � 1. Varying
the control parameter Y , the model exhibits phase transitions
between an active steady state and one of the two absorbing or
“poisoned” states, in which the surface is saturated either by
oxygen (O) or by CO. The first transition (O poisoned) is found
to be continuous, while the second transition (CO poisoned)
is strongly discontinuous.

The computer implementation is the following: With a
probability Y , a CO adsorption attempt takes place, and with a
complementary probability (1 − Y ), an O2 adsorption attempt
takes place. In the former case, one site is randomly chosen.
If the site is occupied, either by O or CO, the attempt fails. If
it is empty but one of its nearest neighbors is occupied by one
O, both sites become empty (O and CO react instantaneously).
Otherwise, the site becomes occupied by an adsorbed CO
molecule. An analogous procedure is followed for an O2 ad-
sorption attempt, but in this case we have to choose at random
a pair of nearest-neighbor sites, and check for the opposite
species in all remaining nearest neighbors of the target pair.

B. Continuous APT

The CP [51] is the prototypical model of the DP class, and
is defined on a lattice with each site either active (σi = 1)
or inactive (σi = 0). Transitions from active to inactive occur
spontaneously at a rate of unity. The transition from inactive
to active occurs at rate σjλ/kj , for each edge between active
nearest neighbors j of site i. The computer implementation of
CP in graphs with arbitrary connectivity is as follows [1,18]:
An occupied site is chosen at random. With probability
p = 1/(1 + λ), the chosen particle is removed. With the com-
plementary probability 1 − p = λ/(1 + λ), a nearest neighbor
of the selected particle is randomly chosen and, if empty, is
occupied; otherwise, nothing happens and the simulation runs
to the next step. Time is incremented by δt = 1/n, where
n is the number of particles. So, the creation mechanism in
CP effectively compensates the local connectivity variation
with a reduction of the spreading rate through a particular
edge inversely proportional to the connectivity of the site that
transmits a new particle. If we modify these rules to create
offspring in all empty nearest neighbors of the randomly
chosen occupied site, we obtain the A model [52,53] (in the
A model, occupied sites become empty at unitary rate, as
in the CP). This means that sites with higher coordination
number produce more activity when compared with the CP,
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enhancing the possible “rare region effect” [22,54]. Since
contagion occurs more readily in the A model than in the CP,
the critical creation rate λc is smaller, but the two models share
the same critical behavior of the DP universality class [55].

The Manna model [31], a prototypical model of the Manna
class and introduced to investigate the dynamic of sandpiles
in the context of self-organized criticality, is defined on a
lattice where each site assumes integer values (mimicking
the number of “sand grains” deposited on the substrate). In
the version we investigate, an unlimited number of particles
per site is permitted. Sites with a number below a threshold
Nc = 2 are inactive, while those where this number is equal
to or larger than Nc are active. The active sites redistribute
their particles among its nearest neighbors chosen at random,
generating a dynamics that conserves the number of particles
when considering the periodic boundary condition. The Manna
model exhibits a continuous phase transition from an active to
an inactive state depending on the control parameter p that
is given by the density of particles on the lattice [56]. The
absorbing stationary state, where all sites have a number of
particles below Nc, is characterized by an infinite number
of configurations. The computer implementation is analogous
to that of the CP: one active site i (Ni ≥ Nc) is randomly
chosen. Each of the Ni particles is sent to a randomly chosen
nearest neighbor, irrespective of its state. The site i becomes
empty (inactive) and the nearest neighbors with Nj ≡ Nc − 1
particles that received a new one are activated.

C. Simulation methods

The central method we used involves the quasistationary
state, in which averages are restricted to samples that did not
visit an absorbing state [1]. To perform the quasistationary
(QS) analysis, we applied the simulation method of Ref. [57].
The method is based on maintaining, and gradually updating,
a set of configurations visited during the evolution; when a
transition to the absorbing state is imminent, the system is
instead placed in one of the saved configurations. Otherwise,
the evolution is exactly that of a conventional simulation [58].
Each realization of the process is initialized in an active state
and runs for at least 108 Monte Carlo time steps. Averages are
taken in the QS regime after discarding an initial transient of
107 or more time steps. This procedure is repeated for each
realization of disorder. The number of disorder realizations
ranged from 20 (for the largest size used, L = 2048) to 103.
Another important quantity is the lifetime in the QS regime,
τ . In QS simulations, we take τ as the mean time between
successive attempts to visit the absorbing state.

For discontinuous APTs, we estimated the transition point
through the jump in the order parameter and the finite-size
scaling of the maximum of the susceptibility. In the DP
class, the spreading analysis starting from a single active
site (a preabsorbing configuration) is a very accurate and
computationally efficient method [1]. For the Manna class,
spreading analysis is more cumbersome [2] due to infinitely
many preabsorbing configurations. So, we proceeded using
dimensionless moment ratios analysis in the QS state [53],
which are size independent at criticality. Here, we analyze
the critical moment ratio m = 〈ρ2〉/〈ρ〉2, which assumes a
universal value mc at the clean critical point.

III. RESULTS

A. Discontinuous APT

First-order transitions are characterized by a discontinuity
in the order parameter and thermodynamic densities, with an
associated δ-peak behavior in the susceptibility [2]. However,
at finite volume, thermodynamic quantities become continuous
and rounded. According to the finite-size theory, rounding
and shifting of the coexistence point scale inversely propor-
tional to the system volume Ld [59]. Although there is no
established similar scaling theory for nonequilibrium systems,
some studies show evidence of an analogous behavior for
APTs [60–62].

Quasistationary analysis remains useful in the context of
discontinuous APTs [62]. Considering the QS simulations, we
observe a discontinuous phase transition from a low-density
to a poisoned (absorbing) CO state, as shown in Fig. 1, instead
of a rounded (continuous) transition expected for APTs in the
presence of relevant disorder [41]. The inset of Fig. 1 shows
the QS probability distribution for the density of active sites
near the transition. We clearly observe a bimodal distribution,
which is a hallmark of discontinuous phase transition [62].

In analogy to an equilibrium first-order phase transition,
where at the transition point a thermodynamical potential (such
as the free energy) is equal for both phases [59], we can define
the coexistence value of the order parameter in which the
areas under the peaks of the QS distribution related to each
phase (active and absorbing) are equal [62]. The intercept of
the linear fit from this equal histogram method yields Yc =
0.55928(3). Such a value is very close to the coexistence value
Yc = 0.5596(5) that we found for the regular triangular lattice
(see inset of Fig. 2).

The location of the maximum of the susceptibility χ ,
defined as variance of the order parameter χ = Ld (〈ρ2〉 −
〈ρ〉2), scales as Ld in a discontinuous APT [60–62]. Figure 2
shows the finite-size scaling of the transition point, which
clearly scales inversely to the volume, confirming again that
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FIG. 1. QS density of CO sites in the ZGB model on triangular
and Voronoi lattices of linear system size L = 100, showing a
discontinuous phase transition to the CO-poisoned absorbing state
close to Y = 0.56. Inset shows the QS distribution for Y = 0.5590
where the APT takes place.
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FIG. 2. Quasistationary susceptibility on the ZGB model on VD
lattices as a function of Y for different sizes. Inset: Finite-size scaling
for the susceptibility maxima in the range L = 40 to 320.

the disordered lattice does not alter the discontinuous nature
of the transition.

Further evidence of discontinuity of the phase transition in
the presence of quenched coordination disorder is shown in
Fig. 3. Using conventional simulations, we observe the system
bistability around the transition point: depending on the initial
density, a homogeneous steady state may converge either to
a stationary active state of high CO2 production (and small
CO density) or to the CO-poisoned (absorbing) state. These
results contrast with those for uncorrelated disorder, for which
no matter its strength, the discontinuous transition is replaced
by a continuous one.

B. Continuous APT

The spreading analysis for the A model on VD lattices using
the mean number of active sites against time, with a single
occupied site as the initial condition, provides a critical value

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

 
C

O

t

ρ

FIG. 3. Density of CO as a function of time for distinct initial
conditions close to the transition point. Initial densities ρCO =
0.0,0.1,0.2, . . . ,0.9, from bottom to top. Linear system size L = 100
and Y = 0.5560.
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FIG. 4. Finite-size scaling of the critical A model. Quasistation-
ary density of active sites ρ (stars) and lifetime of the QS state τ

(crosses) as a function of the system sizes L for λ = 0.32243. Solid
lines are power-law regressions. Inset: Quasistationary moment ratio
m vs 1/L, for λ = 0.32238, λ = 0.32242, and λ = 0.32246, from top
to bottom.

λc = 0.322430(5), which is smaller than λc = 0.34047(1)
found for the regular triangular lattice with q = 6. This
difference is more significant than that obtained for CP for
these same lattices [45], showing that the effect of disorder
in the A model is stronger than in CP. However, the critical
behavior remains that of the clean system, exhibiting power
laws with spreading exponents very consistent with the DP
class (results not shown).

Figure 4 shows that at the critical point we found, the
QS density ρ decays as a power law, ρ ∼ L−β/ν⊥ , with
β/ν⊥ = 0.79(1). Besides, we observe that the lifetime of the
QS state also follows a power law at criticality, with τ ∼ Lz,
z = 1.73(5). Both values of the exponents are close to the DP
ones of β/ν⊥ = 0.797(3) and z = 1.7674(6) [2]. The inset of
Fig. 4 shows the ratio m = 〈ρ2〉/〈ρ〉2 around the criticality for
varying system sizes. From these data, we found mc = 1.33(1),
in agreement with the value mc = 1.3257(5) found for the DP
class in two dimensions [53]. All of the results presented here
confirm the irrelevance of disorder of the VD lattice for the
critical behavior of the A model.

Let us now turn our attention to the Manna class. The
correlation length exponent ν⊥ = 0.799 [63], which is larger
than the DP value 0.7333, makes the modified Harris-Luck
modified criterion (d + 1)ν⊥ < 2 still not fulfilled for VD
lattices [48]. The critical point determination using moment
ratios is shown in the inset of Fig. 5, resulting in the estimate
pc = 0.688808(2) that is smaller than the triangular lattice
threshold pc = 0.69375(5). The critical moment ratio is mc =
1.35(1), which agrees with the value we found for square
lattices2 mc = 1.348(7) at the threshold pc = 0.716957(2).
The critical exponents we obtained using L ≥ 256 were

2Our estimate of m does not agree with that of Ref. [64], where a
restricted version of the Manna model, in which Ni > 2 is forbidden,
was considered.

012110-4



CONTINUOUS AND DISCONTINUOUS ABSORBING-STATE . . . PHYSICAL REVIEW E 93, 012110 (2016)

0 0.001 0.002 0.003 0.004
1/L

1.3

1.35

1.4

m

102 103

100

101

102

103

104

10
ρ 

,  
   

 τ

L

3

FIG. 5. Critical Manna model on VD lattices. Critical density of
active sites (crosses) and lifetime (stars) against lattice size. Solid
lines are power-law regressions. Inset: Moment ratio m = 〈ρ2〉/〈ρ〉2

against inverse of size for p = 0.688800,0.688805,0.688810, and
0.688815, from top to bottom.

β/ν⊥ = 0.78(1) and ν‖/ν⊥ = 1.54(2) and are also in striking
agreement with the Manna class exponents β/ν⊥ = 0.80(2)
and ν‖/ν⊥ = 1.53(5).

It is known that critical exponents and moment ratios of
the Manna class in d = 2 obtained via QS analysis are hardly
distinguishable from the DP class [2,65]. In order to provide
a more incisive verification that the Manna model on the VD
lattice has exponents different from DP, we considered density
around the critical point, which scales as [66]

ρ(�,L) = 1

Lβ/ν⊥
Fρ(L1/ν⊥�), (3)

FIG. 6. Determination of critical exponent ν⊥ for the Manna
model on VD lattices using different quantities x = ln ρ, ln τ , and
m. Inset: Moment ratio against control parameter around the critical
point for L = 256, 512, 1024, and 2048 (the steeper the curve, the
larger the size).

where � = p − pc. This implies that
∣
∣
∣
∣

∂ ln ρ

∂p

∣
∣
∣
∣
∼ L1/ν⊥ (4)

can be used to obtain the exponent ν⊥ explicitly. Similarly, for
the moment ratio, we have m(�,L) = Fm(L1/ν⊥�), implying
that ν⊥ can also be directly obtained from

∣
∣
∣
∣

∂m

∂p

∣
∣
∣
∣
∼ L1/ν⊥ . (5)

A similar scaling law is expected for τ . The inset of Fig. 6
shows the moment ratios around the critical point where the
slope clearly increases (in absolute values) with size. The
main plot shows the derivatives against size. Using the three
methods, we estimate a critical exponent 1/ν⊥ = 1.252(10),
which is remarkably close to the exponent for the Manna class
1/ν⊥ = 1.250(18) [2] and definitely rules out the DP value
1/ν⊥ = 1.364(10) [1].

IV. CONCLUSIONS

We investigate the effects of quenched coordination dis-
order in continuous and discontinuous absorbing-state phase
transitions. Our extensive simulations of the ZGB model
on the VD lattices reveal that the discontinuous nature of
the absorbing-state transition featured by this model remains
unchanged under this kind of disorder. Recently, it was shown
that the Imry-Ma argument can be extended to nonequilibrium
situations, including absorbing states, and, in addition, it was
conjectured that first-order phase transitions cannot appear
in low-dimensional disordered systems with an absorbing
state. We show that this is not always true: Our results for
the ZGB model raise the interesting possibility that disorder
in nonequilibrium APT may, under certain conditions, be
irrelevant for the phase coexistence. The underlying reason for
this is that the fluctuations induced by correlated coordination
disorder exhibited by the VD lattice decay faster and are not
able to preclude phase coexistence.

In the case of continuous APT, we performed large-scale
simulations of the A and Manna models on VD lattices. Our
results confirm, as expected, that this kind of disorder does not
alter the universality of the continuous transitions, supporting
that strong anticorrelations present in the VD random lattice
make topological disorder less relevant than uncorrelated
randomness.

Our findings corroborate a recent work of Barghathi and
Vojta [48], which shows systematically that the disorder
fluctuations of the VD lattice are featured by strong anticorre-
lations and decay faster than those of random uncorrelated
disorder. In particular, it was shown that the random VD
lattice has wandering exponent ω = 1/4 [48]. Hence, in this
case, the Harris-Luck criterion yields that random connectivity
is irrelevant at a clean critical point for ν⊥ > 2/3 that is
satisfied for both the Manna and DP universality classes.
It is important to mention that in contrast to the A model,
which belongs to the DP class, even the strong disorder of
uncorrelated lattice dilution (below the lattice percolation
threshold) was found to be irrelevant for the Manna class
[32–34]. Therefore, our results are consistent with these
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findings, since the coordination disorder of the VD lattice is
weaker than lattice dilution. In addition, we determined that
the exponent 1/ν⊥ = 1.252(10) for the Manna class on the VD
lattice definitely rules out the DP value 1/ν⊥ = 1.364(10).

Further work should include the study of absorbing phase
transitions on a three-dimensional random VD lattice, since
it does not belong to the class of lattices with constrained
total coordination [54]. In particular, according to the Harris
criterion, the disorder might be relevant for the Manna class
at least in three dimensions and there might be a dimensional
difference between two and three dimensions. It would also be

interesting to investigate if other kinds of correlated disorder
are irrelevant for phase coexistence.
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Z. Phys. B 47, 365 (1982).

[12] H. Hinrichsen, On possible experimental realizations of directed
percolation, Braz. J. Phys. 30, 69 (2000).

[13] A. J. Noest, New Universality for Spatially Disordered Cellular
Automata and Directed Percolation, Phys. Rev. Lett. 57, 90
(1986).

[14] A. J. Noest, Power-law relaxation of spatially disordered
stochastic cellular automata and directed percolation, Phys. Rev.
B 38, 2715 (1988).

[15] A. G. Moreira and R. Dickman, Critical dynamics of the
contact process with quenched disorder, Phys. Rev. E 54, R3090
(1996).

[16] R. Dickman and A. G. Moreira, Violation of scaling in the
contact process with quenched disorder, Phys. Rev. E 57, 1263
(1998).

[17] T. Vojta and M. Y. Lee, Nonequilibrium Phase Transition on a
Randomly Diluted Lattice, Phys. Rev. Lett. 96, 035701 (2006).

[18] M. M. de Oliveira and S. C. Ferreira, Universality of the contact
process with random dilution, J. Stat. Mech.: Theor. Expt. (2008)
P11001.

[19] M. Bramson, R. Durrett, and R. H. Schonmann, The contact
processes in a random environment, Ann. Probab. 19, 960
(1991).

[20] M. S. Faria, D. J. Ribeiro, and S. R. Salinas, Critical behaviour of
a contact process with aperiodic transition rates, J. Stat. Mech.:
Theor. Expt. (2008) P01022.

[21] H. Barghathi, D. Nozadze, and T. Vojta, Contact process on
generalized fibonacci chains: Infinite-modulation criticality and
double-log periodic oscillations, Phys. Rev. E 89, 012112
(2014).

[22] T. Vojta, Rare region effects at classical, quantum and non
equilibrium phase transitions, J. Phys. A: Math. Gen. 39, R143
(2006).
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between directed-percolation and Manna scaling, Phys. A 384,
89 (2007).

[66] R. Dickman, Critical exponents for the restricted sandpile, Phys.
Rev. E 73, 036131 (2006).

012110-7

http://dx.doi.org/10.1103/PhysRevE.87.032117
http://dx.doi.org/10.1103/PhysRevE.87.032117
http://dx.doi.org/10.1103/PhysRevE.87.032117
http://dx.doi.org/10.1103/PhysRevE.87.032117
http://dx.doi.org/10.1103/PhysRevLett.110.159601
http://dx.doi.org/10.1103/PhysRevLett.110.159601
http://dx.doi.org/10.1103/PhysRevLett.110.159601
http://dx.doi.org/10.1103/PhysRevLett.110.159601
http://dx.doi.org/10.1103/PhysRevLett.35.1399
http://dx.doi.org/10.1103/PhysRevLett.35.1399
http://dx.doi.org/10.1103/PhysRevLett.35.1399
http://dx.doi.org/10.1103/PhysRevLett.35.1399
http://dx.doi.org/10.1103/PhysRevLett.62.2507
http://dx.doi.org/10.1103/PhysRevLett.62.2507
http://dx.doi.org/10.1103/PhysRevLett.62.2507
http://dx.doi.org/10.1103/PhysRevLett.62.2507
http://dx.doi.org/10.1103/PhysRevE.85.031143
http://dx.doi.org/10.1103/PhysRevE.85.031143
http://dx.doi.org/10.1103/PhysRevE.85.031143
http://dx.doi.org/10.1103/PhysRevE.85.031143
http://dx.doi.org/10.1016/j.physa.2015.01.011
http://dx.doi.org/10.1016/j.physa.2015.01.011
http://dx.doi.org/10.1016/j.physa.2015.01.011
http://dx.doi.org/10.1016/j.physa.2015.01.011
http://dx.doi.org/10.1103/PhysRevE.88.012132
http://dx.doi.org/10.1103/PhysRevE.88.012132
http://dx.doi.org/10.1103/PhysRevE.88.012132
http://dx.doi.org/10.1103/PhysRevE.88.012132
http://dx.doi.org/10.1103/PhysRevE.62.8768
http://dx.doi.org/10.1103/PhysRevE.62.8768
http://dx.doi.org/10.1103/PhysRevE.62.8768
http://dx.doi.org/10.1103/PhysRevE.62.8768
http://dx.doi.org/10.1103/PhysRevE.89.012145
http://dx.doi.org/10.1103/PhysRevE.89.012145
http://dx.doi.org/10.1103/PhysRevE.89.012145
http://dx.doi.org/10.1103/PhysRevE.89.012145
http://dx.doi.org/10.1103/PhysRevLett.98.050601
http://dx.doi.org/10.1103/PhysRevLett.98.050601
http://dx.doi.org/10.1103/PhysRevLett.98.050601
http://dx.doi.org/10.1103/PhysRevLett.98.050601
http://dx.doi.org/10.1140/epjb/e2008-00003-7
http://dx.doi.org/10.1140/epjb/e2008-00003-7
http://dx.doi.org/10.1140/epjb/e2008-00003-7
http://dx.doi.org/10.1140/epjb/e2008-00003-7
http://dx.doi.org/10.1103/PhysRevE.78.031133
http://dx.doi.org/10.1103/PhysRevE.78.031133
http://dx.doi.org/10.1103/PhysRevE.78.031133
http://dx.doi.org/10.1103/PhysRevE.78.031133
http://dx.doi.org/10.1209/0295-5075/24/5/007
http://dx.doi.org/10.1209/0295-5075/24/5/007
http://dx.doi.org/10.1209/0295-5075/24/5/007
http://dx.doi.org/10.1209/0295-5075/24/5/007
http://dx.doi.org/10.1103/PhysRevB.69.144208
http://dx.doi.org/10.1103/PhysRevB.69.144208
http://dx.doi.org/10.1103/PhysRevB.69.144208
http://dx.doi.org/10.1103/PhysRevB.69.144208
http://dx.doi.org/10.1103/PhysRevLett.113.120602
http://dx.doi.org/10.1103/PhysRevLett.113.120602
http://dx.doi.org/10.1103/PhysRevLett.113.120602
http://dx.doi.org/10.1103/PhysRevLett.113.120602
http://dx.doi.org/10.1088/0034-4885/62/10/201
http://dx.doi.org/10.1088/0034-4885/62/10/201
http://dx.doi.org/10.1088/0034-4885/62/10/201
http://dx.doi.org/10.1088/0034-4885/62/10/201
http://dx.doi.org/10.1016/0550-3213(84)90501-7
http://dx.doi.org/10.1016/0550-3213(84)90501-7
http://dx.doi.org/10.1016/0550-3213(84)90501-7
http://dx.doi.org/10.1016/0550-3213(84)90501-7
http://dx.doi.org/10.1214/aop/1176996493
http://dx.doi.org/10.1214/aop/1176996493
http://dx.doi.org/10.1214/aop/1176996493
http://dx.doi.org/10.1214/aop/1176996493
http://dx.doi.org/10.1016/0375-9601(88)90087-4
http://dx.doi.org/10.1016/0375-9601(88)90087-4
http://dx.doi.org/10.1016/0375-9601(88)90087-4
http://dx.doi.org/10.1016/0375-9601(88)90087-4
http://dx.doi.org/10.1103/PhysRevE.58.4266
http://dx.doi.org/10.1103/PhysRevE.58.4266
http://dx.doi.org/10.1103/PhysRevE.58.4266
http://dx.doi.org/10.1103/PhysRevE.58.4266
http://dx.doi.org/10.1103/PhysRevLett.112.075702
http://dx.doi.org/10.1103/PhysRevLett.112.075702
http://dx.doi.org/10.1103/PhysRevLett.112.075702
http://dx.doi.org/10.1103/PhysRevLett.112.075702
http://dx.doi.org/10.1016/0378-4371(94)90151-1
http://dx.doi.org/10.1016/0378-4371(94)90151-1
http://dx.doi.org/10.1016/0378-4371(94)90151-1
http://dx.doi.org/10.1016/0378-4371(94)90151-1
http://dx.doi.org/10.1103/PhysRevE.64.056104
http://dx.doi.org/10.1103/PhysRevE.64.056104
http://dx.doi.org/10.1103/PhysRevE.64.056104
http://dx.doi.org/10.1103/PhysRevE.64.056104
http://dx.doi.org/10.1103/PhysRevE.71.016129
http://dx.doi.org/10.1103/PhysRevE.71.016129
http://dx.doi.org/10.1103/PhysRevE.71.016129
http://dx.doi.org/10.1103/PhysRevE.71.016129
http://dx.doi.org/10.1016/j.physa.2005.05.051
http://dx.doi.org/10.1016/j.physa.2005.05.051
http://dx.doi.org/10.1016/j.physa.2005.05.051
http://dx.doi.org/10.1016/j.physa.2005.05.051
http://dx.doi.org/10.1088/0034-4885/50/7/001
http://dx.doi.org/10.1088/0034-4885/50/7/001
http://dx.doi.org/10.1088/0034-4885/50/7/001
http://dx.doi.org/10.1088/0034-4885/50/7/001
http://dx.doi.org/10.1088/1742-5468/2009/07/P07023
http://dx.doi.org/10.1088/1742-5468/2009/07/P07023
http://dx.doi.org/10.1088/1742-5468/2009/07/P07023
http://dx.doi.org/10.1007/s10955-011-0414-5
http://dx.doi.org/10.1007/s10955-011-0414-5
http://dx.doi.org/10.1007/s10955-011-0414-5
http://dx.doi.org/10.1007/s10955-011-0414-5
http://dx.doi.org/10.1103/PhysRevE.92.062126
http://dx.doi.org/10.1103/PhysRevE.92.062126
http://dx.doi.org/10.1103/PhysRevE.92.062126
http://dx.doi.org/10.1103/PhysRevE.92.062126
http://dx.doi.org/10.1103/PhysRevE.66.046114
http://dx.doi.org/10.1103/PhysRevE.66.046114
http://dx.doi.org/10.1103/PhysRevE.66.046114
http://dx.doi.org/10.1103/PhysRevE.66.046114
http://dx.doi.org/10.1088/1742-5468/2014/08/P08003
http://dx.doi.org/10.1088/1742-5468/2014/08/P08003
http://dx.doi.org/10.1088/1742-5468/2014/08/P08003
http://dx.doi.org/10.1016/j.physa.2007.04.110
http://dx.doi.org/10.1016/j.physa.2007.04.110
http://dx.doi.org/10.1016/j.physa.2007.04.110
http://dx.doi.org/10.1016/j.physa.2007.04.110
http://dx.doi.org/10.1103/PhysRevE.73.036131
http://dx.doi.org/10.1103/PhysRevE.73.036131
http://dx.doi.org/10.1103/PhysRevE.73.036131
http://dx.doi.org/10.1103/PhysRevE.73.036131



