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Phase transition of anisotropic frustrated Heisenberg model on the square lattice
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We have investigated the J1-J2 Heisenberg model with exchange anisotropy on a square lattice and focused on
possible AF1-AF2 phase transition below the Néel point and its dependence on the exchange anisotropy, where
AF1 and AF2 represent Néel state and collinear state, respectively. We use the double-time Green’s-function
method and adopt the random-phase approximation. The less the exchange anisotropy, the stronger the quantum
fluctuation of the system will be. Both the Néel state and collinear state can exist and have the same Néel
temperature for arbitrary anisotropy and spin quantum number S when J2/J1 = 0.5. Under such parameters,
the calculated free energies show that there may occur a first-order phase transition between the Néel state and
collinear state for an arbitrary S when anisotropy is not strong.
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I. INTRODUCTION

The antiferromagnetic systems described by the J1-J2

Heisenberg exchange Hamiltonian on the square lattice have
been investigated by many researchers [1]. The Hamiltonian
of the J1-J2 model reads

H = J1

∑
〈i,j〉

Si · Sj + J2

∑
[i,j ]

Si · Sj , (1)

where Si is the spin at site i. J1 and J2 are the nearest-neighbor
(NN) and next-nearest-neighbor (NNN) antiferromagnetic
(AF) exchange interactions, respectively. The sums in the first
and second terms in Eq. (1) run over the NN and NNN spin
pairs, respectively. For J2 = 0, the Hamiltonian is an ordinary
NN AF system with Néel order, i.e., all the NN spins are
antiparallel to each other. When J2 �= 0, the Hamiltonian is
the so-called J1-J2 model, and the magnetic properties of the
system depend on J2. In this model, the strong frustration is
induced by the NNN AF exchange, which may break the Néel
order. The frustration is caused by the mutual competition be-
tween J1 and J2, which can trigger a rich phase diagram [1–10].

The investigations indicated that for a two-dimensional
square lattice a Néel state (AF1) was envisaged at J2/J1 � 0.5,
while a collinear state (AF2) should develop for J2/J1 �
0.5 [3–12]. The AF1 was characterized by an antiparallel
alignment of NN spins with a corresponding magnetic wave
vector QAF1(π,π ). The AF2 was twofold degenerated and
the corresponding magnetic wave vectors are Q1

AF2(π,0) and
Q2

AF2(0,π ), which are characterized by the fact that the NN
spins take a parallel orientation in the vertical (horizontal)
direction and an antiparallel orientation in the horizontal
(vertical) direction, respectively. The magnetic wave vector Q

gives a classical description of the magnetic order. However,
in this paper, we study the quantum behavior of the system.

There might occur transition between the AF1 and AF2
states. The phase transition may be sensitive to anisotropy.
It is well known that for isotropic two-dimensional magnetic
systems there was no long-range order at finite temperature
[13], but at zero temperature the ordering can occur and
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depends on the Hamiltonian. For the two-dimensional J1-J2

model, the AF1 and AF2 configurations exist at small and
large J2 value, respectively, separated by an intermediate
quantum paramagnetic phase (see, e.g., [7], and references
cited therein). Nevertheless, an anisotropy, no matter how faint,
would cause a long-range order at finite temperature [4,5].

Numerous efforts have been focused on the transition points
in the J1-J2 square-lattice antiferromagnet. For instance, for
the isotropy case, the key question is to obtain the precise
values of the ground-state transition point subject to the com-
petition between J1 and J2 [1,14–18]. For the anisotropy case,
the investigative emphasis is to discuss the effect of anisotropy
on the phase diagram [2–10]. However, compared to the case
of zero temperature, the discussion about the case of finite
temperature appears to be much less. There may be some in-
teresting features still hidden in the cases of finite temperature.

Motivated by that, we will study the magnetic properties of
the two-dimensional J1-J2 model with an exchange anisotropy
at finite temperatures by means of the many-body Green’s-
function method under the random-phase approximation
(RPA). Our results show that both the AF1 and AF2 states
can exist and have the same critical temperature for arbitrary
anisotropy and spin quantum number S at finite temperature
when J2/J1 = 0.5. The calculated free energies show that there
can occur a phase transition between the two states below the
critical point for appropriate anisotropic parameters, and the
internal energies indicate that this is a first-order transition.

This paper is organized as follows. In Sec. II, after introduc-
ing the Hamiltonian, we present the formulism of the Green’s
function and establish the self-consistent equation for evalu-
ation of magnetizations. In Sec. III, the numerical results are
presented and discussed. Section IV presents our conclusions.

II. HAMILTONIAN AND METHOD

Our two-dimensional anisotropic J1-J2 Heisenberg antifer-
romagnets model is described by the following Hamiltonian:

H = J1

∑
〈i,j〉

[
Sz

i S
z
j + η

(
Sx

i Sx
j + S

y

i S
y

j

)]

+ J2

∑
[i,j ]

[
Sz

i S
z
j + η

(
Sx

i Sx
j + S

y

i S
y

j

)]
, (2)
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where Sx
i , S

y

i , and Sz
i represent the three components of the

spin-S operator for a spin at site i, and η denotes the anisotropic
parameter with 0 � η � 1. In this paper, our primary purpose
is to study the magnetic properties of the system at finite
temperature. When η = 1, the model is isotropic, and there
will be no long-range order at finite temperature [13]. Thus
we consider the cases when η < 1. The exchange anisotropy
did appear in real materials [11,19,20]. Therefore, the study
of the Hamiltonian Eq. (1) is meaningful. For the sake of
convenience, we let Boltzmann constant kB = 1 so that all
the quantities—including exchange parameters, temperature
T , and sublattice magnetization m = 〈Sz〉—become dimen-
sionless, where 〈Sz〉 is the assembly statistical average of spin
operator Sz. In calculation J1 = 1 is fixed and J2 varies.

We apply the double-time Green’s-function method to deal
with the Hamiltonian (2). The temperature-dependent retarded
Green’s function of operators A+ and B− is defined as [21]

Gij =� A+
i (t); euBz

j B−
j �= −iθ (t)

〈[
A+

i (t); euBz
j B−

j

]〉
, (3)

where θ (t) is the step function, and u is a parameter [21]
(denoted by w in [22]). After the Fourier transformation, the
Green’s function observes the equation of motion:

ω � A+
i ; euBz

j B−
j �

= 〈[
A+

i ; euBz
j B−

j

]〉+ � [A+
i ,H ]; euBz

j B−
j � . (4)

The high-order Green’s function � [A+
i ; H ]; euBz

j B−
j �

obeys an equation of motion that is similar to Eq. (4) with
the higher-order Green’s function appearing on the right-hand
side. Thus a set of infinite coupled equations will be generated.
To obtain tractable solutions, decoupling procedures have been
invoked to terminate the hierarchy of the equations of motion.
The RPA [21] is the decoupling usually taken. The Green’s
function can be Fourier transformed into k space:

Gij = 1

N

∑
k

g(k,ω)eik·(i−j ), (5)

where N is the number of lattice sites. The integral of the
wave vector k extends over the first Brillouin zone. According
to the standard spectral theorem, the correlation functions of
the product of the spin operators can be calculated by the
corresponding Green’s function g(k,ω):

〈
euBz

j B−
j A+

i

〉 = i

2πN

∑
k

eik·(i−j )

×
∫

g(k,ω + i0+) − g(k,ω − i0+)

eβω − 1
dω. (6)

Using the Callen method [21], we can obtain the average
spin operator m = 〈Sz〉 and the φF function by means of the
correlation function:

φF = 〈
euBz

j B−
j A+

i

〉/
�(u), F = AF1,AF2, (7)

where �(u) = 〈[A+
i ; euBz

j B−
j ]〉 and �(u = 0) = 2m. We skip

the tedious derivation of magnetizations of AF1 and AF2
states. The self-consistent equation for computing magneti-

zation can be expressed as [21]

m = (φF + 1 + S)φ2S+1
F − (φF − S)(φF + 1)2S+1

(φF + 1)2S+1 − φ2S+1
F

. (8)

The expression of the φF function is

φF = 1

N

∑
k

E1F

2
√

E2
1F − E2

2F

coth
β

√
E2

1F − E2
2F

2
− 1

2
. (9)

Here for the AF1 state

E1AF1 = 4m[J1 + J2(η cos kx cos ky − 1)],

E2AF1 = 2ηmJ1(cos kx + cos ky), (10)

and for the AF2 state

E1AF2 = 2m[J1η cos kx + 2J2],

E2AF2 = 2ηm(J1 cos ky + J2 cos kx cos ky). (11)

III. RESULTS AND DISCUSSIONS

In this paper, we calculate the sublattice magnetizations at
finite temperature. When we say zero temperature, we actually
mean that temperature is very close to zero, which is denoted
by T = 0+. Figure 1 plots the magnetization dependent on
temperature for different anisotropic parameters at S = 1/2.
In Fig. 1(a), the magnetization decreases when J2 approaches
1/2 from either side. This can be understood by the competition
between J1 and J2. At J2 = 0, it is an ordinary NN AF
exchange system, i.e., AF1 state. As J2 increases from zero,
the frustration is induced. The competition between J1 and J2

emerges and becomes stronger with increasing the value of J2.
As a result, both TN and m drop with increasing J2 value.
At J2 = 0.5, the competition reaches the strongest. As J2

increases further from 0.5, the effect of J2 exchange becomes
dominant, and the TN and m increase with increasing J2. In
this case, the system is of AF2 configuration.

FIG. 1. The sublattice magnetization m as a function of
temperature T at S = 1/2 under various parameters. (a) Anisotropy
η = 0.5 and different J2 values. (b) η = 0.5, J1 � J2, and J1 � J2.
(c) J2 = 0.5 and different η values. For η = 0, the two curves are
identical.
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Thus it is seen that the system is the AF1 state at J2 � 0.5
and AF2 state at J2 � 0.5, respectively. It indicates that the
role of J1 is the most important for J2 � 0.5, while J2 is pre-
dominant at J2 � 0.5. In Fig. 1(b), we show the magnetization
dependence on temperature for J1 � J2 or J1 � J2. It is seen
that the curves of magnetization versus temperature are the
same. This can be easily understood. In the former case, J2 is
very close to zero, and only the NN exchange J1 plays a role.
Hence the state is AF1 as has just been mentioned above. In
the latter case, J1 is close to zero. Imagine that if J1=0 only
the NNN exchange J2 plays a role. In this case, the lattice can
be partitioned into two independent sublattices, each being
regarded as a square lattice with NN exchange J2. Therefore,
the two curves in Fig. 1(b) are identical. This conclusion stands
for any anisotropy parameter η < 1.

It is noticed from Fig. 1(a) that at J2 = 0.5 the two states
have the same order-disorder transition point for anisotropic
parameter η = 0.5. Let us see whether the conclusion is true
for arbitrary anisotropy. Figure 1(c) plots the m-T curves
for different anisotropic parameters at J2 = 0.5. It is shown
that the TN for the AF1 and AF2 states are the same for
any anisotropy η < 1. We have confirmed by our numerical
evaluation that this conclusion is also valid for the spin
quantum number S > 1/2. Hereafter, the magnetizations of
AF1 and AF2 states at T → 0 are denoted as mAF1(0+) and
mAF2(0+), respectively. At each η value, the mAF1(0+) is lower
than mAF2(0+). The reason is that in the AF1 configuration
each spin is antiparallel to all of its four NN spins, while
in the AF2 configuration each spin has two parallel and two
antiparallel NN spins. Therefore, the AF1 state has stronger
quantum fluctuation compared to the AF2 state. When η = 0,
the magnetization curves of AF1 and AF2 are the same. This is
because at η = 0 both AF1 and AF2 recover an ordinary two-
dimensional Ising model. Therefore, as T → 0, the sublattice
magnetizations become fully saturated, m(0+) = S, and there
is no transversal quantum fluctuation. Figure 1(c) demonstrates
two features as the η value decreases from one to zero. One is
that both mAF1(0+) and mAF2(0+) increase until full saturation.
The other is that the relative difference between mAF1(0+) and
mAF2(0+) decreases. Both features are ascribed to the stronger
transverse quantum fluctuation for smaller η value, or less
anisotropy.

Figure 2 shows the order-disorder phase transition point TN

as a function of J2 for S = 1/2,1,3/2 at several anisotropies
η. These panels are also phase diagrams. Each solid line is the
border line of paramagnetic and AF1 states, and each dashed
line is the border line of paramagnetic and AF2 states, the
paramagnetic phase being above the lines. It is seen that the
critical temperature decreases with increasing η. It can be
easily understood that the anisotropy suppresses the quantum
fluctuation of the system, so that it leads to a large critical
temperature. The three panels also exhibit that the solid and
dashed lines with the same η value intersect at J2 = 0.5, i.e.,
the AF1 and AF2 configurations with the same exchange
anisotropy have the same critical temperatures as long as
J2 = 0.5. In the following, we study the cases where J2 = 0.5.
Since both states can exist under the conditions, one of them
may be stabler.

To determine which state is stabler, evaluation of their
thermodynamic functions is necessary. Under the same volume

FIG. 2. The Néel temperature TN as a function of J2 at different
S and η values. (a) S = 1/2. (b) S = 1. (c) S = 3/2.

and entropy, the state with lower internal energy is stabler.
However, the entropies of the two states at a fixed temperature
are different. Therefore, the internal energy is not a good judge
function. Under the same volume and temperature, the state
with lower free energy is stabler.

The free energy F (T ) can be evaluated numerically
by means of the internal energy via F (T ) = E(0) −
T

∫ T

0
E(T )−E(0)

T 2 dT , where the internal energy E(T ) is the
thermostatistical average of the Hamiltonian, E = <H>

N
[21].

Therefore, before calculating the free energy, one has to
compute the internal energy. Computing the internal energy
involves the calculation of the transverse (

∑
i,j < S+

i S−
j >)

and longitudinal (
∑

i,j < Sz
i S

z
j >) correlation functions. The

transverse correlation function can be directly calculated by
use of the spectral theorem. For longitudinal correlation func-
tion, roughly, one may adopt the mean field approximation, i.e.,∑

i,j < Sz
i S

z
j >= ∑

i,j < Sz
i >< Sz

j >. A better expression
for calculation of this term was given recently [23]. Here we
follow the routine presented in [23] to calculate this part of
energy.

Figure 3 plots the internal energies E(T ) and free energy
F (T ) for different anisotropies at S = 1/2. The E(T ) increases
with temperature as it should be. The free energy decreases
monotonically with temperature. When η = 0, the E(T )
curves of the AF1 and AF2 are identical, and their F (T ) curves
are as well [see Fig. 3(a)]. This is because the system with
η = 0 is an Ising model, and there is no transverse quantum
fluctuation, which has been mentioned in the interpretation
of Fig. 1(c). In this case, the system has only a longitudinal
correlation effect. As η increases from zero, the transverse
correlation is induced.

To be explicit, at T → 0 the internal energies of AF1
and AF2 states are denoted as EAF1(0+) and EAF2(0+), and
their free energies are denoted as FAF1(0+) and FAF2(0+),
respectively. When η > 0, the mAF1(0+) is different from
mAF2(0+), as shown in Fig. 1(c). Correspondingly, their
internal energies at T → 0 are different from each other.
However, when η � 0.0637, the difference is negligible, as
shown by Fig. 3(b). We have evaluated that in this case
|(FAF2 − FAF1)/FAF2| < 0.0001. It seems that the transverse
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FIG. 3. The internal energies E(T ) (ascending curves) and free
energies F (T ) (descending curves) as functions of the temperature
T at S = 1/2 and different anisotropic parameters. (a) η = 0.
(b) η = 0.0637. (c) η = 0.8. (d) η = 0.9.

correlation effect is so small that it is almost totally suppressed
by the longitudinal correlation effect. The system can be either
the AF1 or AF2 state, or coexistence of them.

When η > 0.0637, the transverse correlation effect be-
comes stronger, and the difference between the EAF1(0+) and
EAF2(0+) becomes non-negligible. It is seen from Figs. 3(c)
and 3(d) that EAF1(0+) is always lower than EAF2(0+), which
coincides with the fact that mAF1(0+) is less than mAF2(0+). In
Fig. 3, the free energies are plotted in the whole temperature
range under TN . In Figs. 3(c) and 3(d), the FAF2(T ) (descending
dashed lines) decreases with temperature more rapidly than
FAF1(T ) (descending solid lines). Figure 3(c) shows that
FAF1(T ) is always lower than FAF2(T ) as η = 0.8. Hence, the
AF1 state is stabler. As η further increases, the FAF1(T ) and
FAF2(T ) curves can cross below the Néel point [see Fig. 3(d)
as an example]. In this case, as temperature is close to zero,
the system should be the AF1 state. As temperature rises,
the FAF1(T ) and FAF2(T ) become closer, and at the cross point
FAF2(T ) becomes lower than FAF1(T ). This means that the AF2
state becomes stabler. Therefore, there can occur an AF1-AF2
phase transition at the cross point. Above the transition point,
the AF2 is stabler until the Néel point TN .

Let us discuss the order of the transition. At the transition
point, the free energies of the AF1 and AF2 states are the
same, but their internal energies are different, as can be seen
in Fig. 3(b). Subsequently, the specific heat at this point
is discontinuous (not shown). Therefore, it is a first-order
transition.

Figure 4 plots the free energy as a function of temperature
for different anisotropy and S when J2=0.5. For each spin
quantum number, there is an ηC value. When 0 � η � ηC , the
difference between FAF1(T ) and FAF2(T ) is negligible. The ηC

increases with increasing S. For η > ηC , FAF1(0+) is always
lower than FAF2(0+). When η is up to 0.8 or so, FAF1(T ) is
lower than FAF2(T ) within the whole temperature range below
the Néel point, indicating that the AF1 state is stabler. When η

rises further, say to about 0.9, the FAF1(T ) and FAF2(T ) have

FIG. 4. The free energies F (T ) as a function of the temperature
T at different S and η values. (a) S = 1. (b) S = 3/2. (c) S = 2.

a cross, although the two curves are close to each other. In
this case the system is the AF1 state in low temperature close
to zero, and will transit to the AF2 state at some temperature
below the Néel point. That is to say, a phase transition can
occur and it is a first-order transition. This conclusion is valid
for all calculated spin quantum numbers.

IV. CONCLUSIONS

We have investigated the J1-J2 Heisenberg model with
exchange anisotropy on a square lattice, and focused on
possible AF1-AF2 phase transition below the Néel point and
its dependence on the exchange anisotropy. The exchange
anisotropy is characterized by the parameter 0 � η � 1, where
η = 0 means an Ising model and η → 1 tends to an isotropic
Heisenberg model. When J2/J1 = 0.5, both AF1 and AF2 can
exist, which raises a question of which one is stabler. This is
judged by their free energies. For any spin quantum number
S, there is an ηC value, below which the difference between
the F (T ) of the two states is negligible. Therefore, either state
can exist, and coexistence of them is possible. Above ηC ,
FAF1(0+) is always lower than FAF2(0+). In a wide range of
η, FAF1(T ) is lower than FAF2(T ) in the whole temperature
range below the Néel point. So, the state remains AF1 until
the Néel point. As η is close to 1, there can occur a transition.
As temperature is close to zero, the state is AF1, and near the
Néel point the state is AF2, which is a first-order transition.
This is ascribed to stronger transverse quantum fluctuation.
The conclusion stands for any S value. The ηC value increases
with spin quantum number S.
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